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Aiming at the optimal path and planning efficiency of global path planning for intelligent driving, this paper proposes a global
dynamic path planning method based on improved A∗ algorithm. First, this method improves the heuristic function of the
traditional A∗ algorithm to improve the efficiency of global path planning. Second, this method uses a path optimization strategy
to make the global path smoother. .ird, this method is combined with the dynamic window method to improve the real-time
performance of the dynamic obstacle avoidance of the intelligent vehicle. Finally, the global dynamic path planning method of the
proposed improved A∗ algorithm is verified through simulation experiments and real vehicle tests. In the simulation analysis,
compared with the modified A∗ algorithm and the traditional A∗ algorithm, the method in this paper shortens the path distance
by 2.5%∼3.0%, increases the efficiency by 10.3%∼13.6% and generates a smoother path. In the actual vehicle test, the vehicle can
avoid dynamic obstacles in real time. .erefore, the method proposed in this paper can be applied on the intelligent vehicle
platform. .e path planning efficiency is high, and the dynamic obstacle avoidance is good in real time.

1. Introduction

As one of the development directions of future automobiles,
intelligent driving is receiving more and more attention [1]. In
particular, path planning is an important part of intelligent
driving. Path planning is an obstacle-free path from the starting
point to the target point that the intelligent vehicle plans out
based on environmental information [2]. Especially in the
dynamic environment, in order to ensure the real-time obstacle
avoidance and the efficiency of path planning, it is necessary to
improve the path planning algorithm.

In recent years, the most representative and common path
planning algorithms in the field are mainly divided into neural
network algorithm [3], artificial potential field algorithm [4],
rapidly expanding random tree algorithm [5], ant colony al-
gorithm [6], and A∗ algorithm [7, 8]. In particular, the A∗

algorithm is a heuristic search algorithm; because of its strong
global search ability, high search efficiency, and shortest path, it
is widely used. Ziang Zhang et al. [9] proposed an improved

hybrid path planning method for a spherical mobile robot
based on a pendulum, which improves the efficiency of path
search, but it is aimed at a spherical mobile robot. Bijun Tang
et al. [10] proposed an algorithm that uses an artificial potential
field method to optimize the path of the hybrid A∗ algorithm.
.e generated path not only is smooth but alsomaintains a safe
distance from obstacles. However, the real-time obstacle
avoidance is not good in a dynamic environment. Oleiwi et al.
[11] proposed a path planning method for multiobjective
mobile robots based on the ant colony algorithm and genetic
algorithm which can efficiently select the optimal path for
multiobjectives in a static environment, but it is not suitable for
dynamic environments. JikaiWang et al. [12] proposed a global
path planning framework based on hybrid mapping, which
improved the efficiency of path planning in complex envi-
ronments, but it cannot guarantee the optimal path. Xiaoru
Song et al. [13] proposed a dynamic global path planning
method suitable for mobile robots, which can plan a smooth
path in a dynamic environment, but the efficiency of path
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planning still needs to be improved..eA∗ algorithm based on
a grid map is suitable for global path planning. .is algorithm
has the advantages such as a simple structure and small cal-
culation amount [14]. However, the path planned by the
traditional A∗ algorithm has many folding points, which is not
conducive to the driving of the intelligent vehicle. Moreover, if
the space of the environment increases, A∗ algorithm needs
large storage space and it has low efficiency and poor real-time
performance. .e dynamic window method has good obstacle
avoidance ability in a dynamic environment, but it is not
suitable for global path planning [15].

Aiming at the optimal path and planning efficiency of
global path planning for intelligent driving, this paper
proposes a global dynamic path planning method based on
improved A∗ algorithm and dynamic window method. .e
improved path planning method has many advantages. First,
the heuristic function of the traditional A∗ algorithm is
improved to make the A∗ path search more biased. .e time
of the path planning is reduced, and the efficiency is in-
creased..en, the optimization strategy is used to reduce the
redundant turning points and nodes of the path planning.
.e distance of the path is optimized, and the smoothness of
the path is improved. Finally, the A∗ algorithm global search
capability is combined with the dynamic window method
local planning capability so that the intelligent vehicle can
perform global dynamic path planning, and the real-time
performance of dynamic obstacle avoidance is good. .e
remainder of the paper is organized as follows: Section 2
discusses the improved A∗ algorithm; Section 3 discusses the
dynamic windowmethod; Section 4 discusses the simulation
and experimental results; Section 5 discusses the real vehicle
test; and Section 6 discusses the conclusions of this research.

2. The Improved A∗ Algorithm

.e traditional A∗ algorithm is a heuristic search algorithm,
which constantly expands the nodes and calculates the value
of each node. Finally, we can find a path with the least value.
.e use of heuristic function can greatly improve the search
efficiency. .e formula of traditional A∗ algorithm is shown
as follows:

f(n) � g(n) + h(n), (1)

where f (n) is the estimated value from the initial node to the
target node, g(n) is the actual value from the initial node to
the node of state n, and h (n) is the estimated value from the
node of state n to the target node.

.e selection of h (n) directly affects the performance of
the algorithm. Only when the value of h (n) is closer to the
actual cost value from the node of state n to the target node,
the optimal path can be guaranteed and the efficiency of the
algorithm can be improved. .erefore, the following im-
provements have been made.

2.1. Improved Heuristic Function h (n). Assume that d (n) is
the actual value from the node of state n to the target node.
When the heuristic function h (n) is selected differently, the
following three conditions will occur:

(1) When h (n)> d (n), the search range of A∗ algorithm
is small and the extended nodes are relatively few.
.erefore, the algorithm has high efficiency, but the
result is not the optimal path.

(2) When h (n)< d (n), A∗ algorithm has a large search
range and a relatively large number of extended
nodes. .erefore, the algorithm has low efficiency,
but the result can get the optimal path.

(3) When h (n)� d (n), this is the most ideal choice, so
the A∗ algorithm will search strictly according to the
shortest path. .erefore, the A∗ algorithm has the
highest search efficiency.

In the traditional A∗ algorithm, the heuristic function
h (n) usually used Euclidean distance [16] h1(n), Manhattan
distance [17] h2(n), or Chebyshev distance h3(n):

h1(n) � D∗
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where (Mx, My) represents the coordinate value of the
current node, (Gx, Gy) represents the coordinate value of the
target node, and D is the actual cost value of the intelligent
vehicle moving one grid.

In order to make the heuristic function h (n) closer to the
actual value d (n), a new heuristic function is designed using
Manhattan distance and Chebyshev distance. .e heuristic
function is then dynamically weighted:
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(5)

where m (n) is the depth of search, R is the expected path
length, and K is constant. Other parameters are the same as
formulas (2)–(4).

2.2. Path Optimization Strategy. .e traditional A∗ algo-
rithm expands nodes based on the grid, which contains more
turning points and redundant nodes [18]. .ey are not good
for driving intelligent vehicles. In order to solve these
problems, this paper proposes a path optimization strategy.
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(1) Find redundant nodes and remove them. Assume
that the path planned by the A∗ algorithm is
Mk | k � 1, 2, 3, . . . , n  . First, start from the second
node M2 of the path plan and judge whether the
child node M3 of M2 and its parent node M1 are in
the same straight line. If it is on the same straight
line,M2 is a redundant node. Delete and update the
path list. .en, check whether the child node of the
next node and its parent node are on the same line.
Delete redundant nodes and update the path list.
Finally, all nodes are traversed to get a set of points
including the starting point, turning point, and
target point.

(2) Look for redundant turning points and delete
them. Assume that the path planned by the A∗

algorithm is Mk | k � 1, 2, 3, . . . , n . After the op-
timization of strategy (1), except the starting point
M1 and the target point Mn, the other nodes are
turning points. First, connect the node M1M3. If
the straight line M1M3 does not pass through the
obstacle and the distance from the nearest obstacle
is greater than the set safe distance, M2 is the
redundant turning point and M2 is deleted. .en
connect M1Mk (k � 4, 5, 6, . . ., n) and repeat the
above inspection steps. If M1Mk passes through an
obstacle or the distance from the nearest obstacle is
less than the safe distance, the nodeMk−2 is deleted
and the node M1Mk−1 is connected. Update the
path list and connect node M2Mk (k � 4, 5, 6, . . .,
n). Finally, repeat the above checking steps until all
the nodes are traversed.

3. Dynamic Window Method

.e dynamic window method can make an intelligent ve-
hicle have a good obstacle avoidance ability in a dynamic
environment. .e dynamic window method is mainly used
to sample multiple groups of velocities in the velocity space
(linear velocity v and angular velocity w) and simulate the
trajectory of intelligent vehicle in the next time interval.
After obtaining multiple sets of trajectories, the multiple sets
of trajectories are evaluated according to the evaluation
function [19] and the intelligent vehicle will select the speed
corresponding to the optimal trajectory for the next step of
driving [20].

3.1. 6e Vehicle Kinematics Model. According to the dy-
namic window method, it can continuously simulate the
trajectory of the intelligent vehicle in a period of time.
.erefore, it is necessary to know the kinematics model of
the intelligent vehicle [21, 22]. .e trajectory is repre-
sented by ( _xt, _yt). .e kinematic model is shown in
Figure 1.

Using the fundamental law of dynamics, we can get the
dynamic formula:

_xt � v∗ cos θt( ,

_yt � v∗ sin θt( ,

_θt � v∗
tan ϕt

L
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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(6)

where ( _xt, _yt) is the projection speed of the intelligent ve-
hicle on the coordinate axis at time t, v is the speed of the
intelligent vehicle, θt is the attitude angle at time t, _θt is the
angular velocity of attitude at time t, L is the wheelbase of the
intelligent vehicle, ϕt is the front wheel angle at time t, and
ρ is the turning radius.

In practical application, considering the omnidirectional
motion of the intelligent vehicle and the transformation of
the world coordinate system, the new kinematics formula is
obtained:

xt � xt−1 + vxΔt cos θt(  − vyΔt sin θt( ,

yt � yt−1 + vyΔt sin θt(  + vyΔt cos θt( ,

θt � θt−1 + ωΔt.

(7)

3.2. Design of Speed Sampling. After establishing the kine-
matics model of the intelligent vehicle, the trajectory can be
calculated according to its speed (linear velocity v and an-
gular velocity w). However, there are infinite groups of speed
in the speed space. In order to control the speed sampling
better, the speed group must be limited in a certain control
range according to the limitations of the intelligent vehicle
and the environment space.

(1) .e linear speed of the intelligent vehicle and its
angular speed limit range formula are shown as
follows:

Vt � vt ∈ vmin, vmax , wt � wmin, wmax  . (8)

L
ϕ

(x, y)

θ
ρ

y

x
o

Figure 1: .e vehicle kinematics model.
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(2) In practical application, the motor must go through a
certain time interval to make the intelligent vehicle
reach the corresponding speed and the speed is
within a dynamic range under the influence of the
motor torque. .erefore, the formula is shown as
follows:

Vt1 � vt,ωt( 
vt ∈ vd − _veΔt, vd + _vcΔt ∩

ωt ∈ ωd − _ωeΔt,ωd + _ωcΔt 


 , (9)

where vd andωd are the current front linear speed
and angular speed of the intelligent vehicle, _vc and _ve

are the maximum acceleration and deceleration of
linear velocity, respectively, and _ωc and _ωe are the
maximum acceleration and deceleration of angular
velocity, respectively.

(3) During the operation of the intelligent vehicle, when
an obstacle is detected within a safe distance, the
intelligent vehicle needs to slow down or even stop.
.erefore, it is necessary to further limit the velocity
(linear velocity and angular velocity):

Vt2 � vt,ωt( |vt ≤
���������������

2 · dist vt,ωt(  · _ve



∩ωt ≤
�������������������

2 · distance vt,ωt(  · _ωe



 , (10)

where dist(vt,ωt) is the distance between the current
position of the intelligent vehicle and the nearest
obstacle.

3.3. Design of Dynamic Window Evaluation Function.
According to the dynamic window method, we need an
appropriate evaluation function to select the optimal

trajectory from the final planned multiple trajectories. .e
priority criterion of the evaluation function is to make the
intelligent vehicle avoid obstacles and move toward the
target with the shortest track. .e formulas are shown as
follows:

G(v, w) � σ(α · s head(v, w) + β · s dist(v, w) + c · s velocity(v, w)),
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,

(11)

where head(vt,ωt) is the sampling speed of the robot at time
t, dist(vt,ωt) is the distance between the robot’s trajectory
and the nearest obstacle at time t, and velocity(vt,ωt) is the
velocity of the robot at time t.

3.4. Flowchart of the Algorithm. .e flowchart of the algo-
rithm is shown in Figure 2.

Step 1: the map is initialized and the improved A∗

algorithm is used for global path planning
Step 2: strategy optimization of the planned path
Step 3: the kinematics model is established, and the
velocity group is sampled
Step 4: according to the planned global path and the
multiple trajectories simulated by the speed at the next
moment, the optimal trajectory is selected by using the
evaluation function

Step 5: establishing the optimal path

4. Simulation Experiment and Analysis

In order to verify the effectiveness of the fusion algorithm
designed in this paper, MATLAB 2019b is used for simu-
lation experiments to build a grid map scene (20m× 20m,
grid spacing 1m) and simultaneously place seven static
obstacles of different shapes and sizes and two dynamic
obstacles. In the grid map built by the simulation experi-
ment, the starting point coordinates are (1.5m, 1.5m) and
the target point coordinates are (19.5m, 19.5m).

4.1. Simulation Experiment of Improved Heuristic Function.
.e traditional A∗ algorithm has many redundant nodes and
large search range, which reduces the efficiency of the al-
gorithm. In this paper, the A∗ algorithm is improved to
reduce the scope of search and improve the efficiency of the
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algorithm. Black is the initial position, green is the target
position, red is the optimal path, and yellow is the search
area except the optimal path. .e experimental results are
shown in Figure 3.

.e experimental image of the improved A∗ algorithm
used in this paper is shown in Figure 3(a). .e search area
is 128m2, the path length is 28.38m, and the time is
0.040 s.

.e experimental image of traditional A∗ algorithm is
shown in Figure 3(b). .e search area is 180m2, the path
length is 28.38m, and the time is 0.050 s.

.e experimental image of the improved A∗ algorithm
using Manhattan distance and Euclidean distance is shown
in Figure 3(c). To distinguish, it is named the modified A∗

algorithm. .e search area is 166m2, the path length is
28.38m, and the time is 0.045 s.

.e detailed data are shown in Table 1.
From the above data, compared with the traditional A∗

algorithm, the improved A∗ algorithm in this paper can
reduce the search area by 28.9% and increase the efficiency
by 20.0%. Compared with the modified A∗ algorithm, the
improved A∗ algorithm in this paper can reduce the search
area by 22.9% and increase the efficiency by 11.1%.

4.2. Static Global Path Planning. In a static simulation en-
vironment, the simulation experiments results based on
different algorithms will be compared in this section. .e
simulation experiments in this paper are in the same en-
vironment, the maximum speed and acceleration of the
intelligent vehicle are the same, and the red line is the actual
trajectory of the intelligent vehicle.

Start

Initialization;
create a map

Create an obstacle environment;
create open list
and closed list

Calculate the next node
(f (n), g(n), h(n))

Looking for the smallest f (n)

Reach target 
Position ?

Search the key points

Strategy optimization

Update the list

N

Y

Kinematic model

Speed sampling

To generate the trajectory and 
choose the optimal trajectory

Reach target 
position ?

The optimal path

End

N

Y

Figure 2: Flowchart of the algorithm.
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Working condition 1: the experimental image of the
traditional A∗ algorithm is shown in Figure 4(a). Each
circle in the figure represents a node, and various
polygons are obstacle environments. According to the
results of simulation experiments, this algorithm has
many redundant nodes and turning points, the number
of optimal path nodes is 24, the number of turning
points is 7, and a total of 180 nodes are expanded. .e
search path length is 28.38m, and the time is 0.050 s.
Working condition 2: the experimental image of the
modified A∗ algorithm is shown in the blue line in
Figure 4(b). Each circle in the figure represents a node,
and various polygons are obstacle environments.
According to the results of simulation experiments, the
number of optimal path nodes in this algorithm is 4, the
number of turning points is 2, and a total of 166 nodes

are expanded. .e length of the search path is 27.50m,
and the time is 0.045 s.
Working condition 3: the experimental images of the
modified A∗ algorithm and the dynamic window
method are shown in the red line in Figure 4(b). Each
circle in the figure represents a node, and various
polygons are obstacle environments. According to the
results of the simulation experiment, the trajectory
planned by this algorithm is smooth, the optimal path
length is 28.56m, and the time is 51.31 s.
Working condition 4: the experimental image of the
improved A∗ algorithm in this paper is shown in the
blue line in Figure 4(c). Each circle in the figure rep-
resents a node, and various polygons are obstacle en-
vironments. According to the results of the simulation
experiment, the number of optimal path nodes of this

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
x (m)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

y (
m

)
Target

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
x (m)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

y (
m

)

Target

(b)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
x (m)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

y (
m

)

Target

(c)

Figure 3: Path planning results of various algorithms. (a) .e improved A∗ algorithm. (b) Traditional A∗ algorithm. (c) Modified A∗

algorithm.

Table 1: Statistics 1.

Name .e improved A∗ algorithm Traditional A∗ algorithm Modified A∗ algorithm
Search area (m2) 128 180 166
Path length (m) 28.38 28.38 28.38
Average time (s) 0.040 0.050 0.045
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algorithm is 4, the number of turning points is 2, and a
total of 128 nodes are expanded. .e optimal path
length of this algorithm is 26.99m, and the time is
0.04 s.
Working condition 5: the experimental images of the
improved A∗ algorithm and dynamic window method
in this paper are shown in the red line in Figure 4(c).
Each circle in the figure represents a node, and various
polygons are obstacle environments. According to the
results of the simulation experiment, the path planned
by this algorithm is smooth, the optimal path length is
27.13m, and the time is 46.69 s.

Detailed statistics are shown in Tables 2 and 3.

4.3. Dynamic Global Path Planning. In the dynamic simu-
lation environment, this section will compare simulation
experiments based on different algorithms. .e simulation
experiment in this paper is in the same environment, the
maximum speed and acceleration of the intelligent vehicle
are the same, and the red line is the actual trajectory of the
intelligent vehicle.

Working condition 1: the experimental images of the
traditional A∗ algorithm and dynamic window method
are shown in Figure 5. .e figure shows the dynamic
obstacle avoidance situation at different moments.
Various polygons are the obstacle environment.
According to the results of simulation experiments, the
optimal path length of this algorithm is 29.63m and the
total time is 54.77 s.

Working condition 2: the experimental images of the
modified A∗ algorithm and dynamic window method
are shown in Figure 6. .e figure shows the dynamic
obstacle avoidance situation at different moments.
Various polygons are the obstacle environment.
According to the results of simulation experiments, the
optimal path length of this algorithm is 29.48m and the
total time is 52.75 s.

Working condition 3: the experimental images using
the improved A∗ algorithm and dynamic window
method in this article are shown in Figure 7. .e figure
shows the dynamic obstacle avoidance situation at
different moments. Various polygons are the obstacle
environment. According to the results of simulation
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Figure 4: Path planning results of three algorithms. (a) Traditional A∗ algorithm. (b) Modified A∗ algorithm. (c) Improved A∗ algorithm.
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Table 2: Simulation data statistics 2.

Name Number of nodes
(piece)

Number of break points
(piece)

Search node
(piece)

Path length
(m)

Average time
(s)

Working condition 1
(static) 24 7 180 28.38 0.050

Working condition 2
(static) 4 2 166 27.50 0.045

Working condition 4
(static) 4 2 128 26.99 0.040

Table 3: Simulation data statistics 3.

Name Working condition 3
(static)

Working condition 5
(static)

Working condition 1
(dynamic)

Working condition 2
(dynamic)

Working condition 3
(dynamic)

Path length (m) 28.56 27.13 29.63 29.48 28.74
Average time (s) 51.31 46.69 54.77 52.75 47.30
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Figure 5: Trajectory of the traditional A∗ algorithm. (a) Traditional A∗ algorithm 1. (b) Traditional A∗ algorithm 2. (c) Traditional A∗

algorithm 3. (d) Traditional A∗ algorithm 4.
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Figure 6: Trajectory of the modified A∗ algorithm. (a) Modified A∗ algorithm 1. (b) Modified A∗ algorithm 2. (c) Modified A∗ algorithm 3.
(d) Modified A∗ algorithm 4.
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Figure 7: Continued.
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experiments, the optimal path length of this algorithm
is 28.74m and the total time is 47.30 s.

Detailed statistics are shown in Table 3.

4.4. SimulationExperimentResults andAnalysis. In the static
obstacle environment, compared with the modified A∗ al-
gorithm and the dynamic window algorithm, the improved
A∗ algorithm and the dynamic window algorithm in this
paper reduce the path distance by 5.0% and the time by 9.0%.

In the dynamic obstacle environment, compared with
the modified A∗ algorithm and dynamic window algorithm,
the improved A∗ algorithm and dynamic window algorithm
in this paper reduce the path distance by 2.5% and the time
by 10.3%. Compared with the traditional A∗ algorithm and
dynamic window algorithm, the path distance of the algo-
rithm proposed in this paper is reduced by 3.0% and the time
is reduced by 13.6%

.erefore, the algorithm proposed in this paper is more
efficient. .e planned path is shorter and smoother, which is
conducive to the driving of intelligent vehicle.

5. Real Vehicle Test

.is paper uses an unmanned dual-head driving test vehicle
based on the Linux system to verify the improved A∗ path
planning algorithm. .e platform supports complete in-
dependent development, equipped with 16-line laser radar,
millimeter wave radar, binocular vision module, GPS po-
sitioning module, and other equipment, with high-precision
positioning, automatic navigation, and tracking functions.
.e actual vehicle is shown in Figure 8. .e static obstacle is
a cardboard box, and the dynamic obstacle is a tester. To
ensure safety, the test vehicle is equipped with a driver
responsible for emergency situations, and the maximum
speed is set to 30 km/h.

Figure 9 is an image displayed by binocular vision,
which shows an obstacle environment. Figure 10 is a lidar
image, including the location of obstacles. Figure 11 shows
the static obstacle avoidance trajectory..e red trajectory is
the trajectory of global path planning and local path
planning, the yellow is the obstacle, and the blue is the
actual trajectory of the experimental vehicle. .e static
obstacles are cartons with a large width, so the obstacle
avoidance range is large. Figures 12 and 13 are dynamic
obstacle avoidance trajectories. .e red trajectory is the
trajectory of global path planning and local path planning,
the yellow is the obstacle, the blue is the actual trajectory of
the experimental vehicle, and the dynamic obstacle is the
experimental personnel. Figures 14–17 are the obstacle
avoidance pictures taken during the real vehicle test at high
speed.

.e real vehicle test shows that the vehicle can avoid
dynamic obstacles in real time. .e trajectory is smooth.
.erefore, the algorithm proposed in this paper can be
applied to the practical application of intelligent electric
vehicle platform and has practical value of engineering
application.
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Figure 7: Trajectory of the improved A∗ algorithm. (a) Improved A∗ algorithm 1. (b) Improved A∗ algorithm 2. (c) Improved A∗ algorithm 3.
(d) Improved A∗ algorithm 4.

Figure 8: Intelligent driving platform.
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Figure 9: Binocular vision image.

Figure 10: Lidar image.

Figure 11: Static obstacle avoidance trajectory diagram.

Figure 12: Dynamic obstacle avoidance trajectory 1.

Figure 13: Dynamic obstacle avoidance trajectory 2.

Figure 14: Static obstacle avoidance diagram.

Figure 15: Dynamic obstacle avoidance 1.

Figure 16: Dynamic obstacle avoidance 2.
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6. Conclusions

In this paper, a global dynamic path planning method based
on the improved A∗ algorithm is proposed to deal with the
optimal path and planning efficiency of global path planning
for intelligent driving. .is method has high efficiency and
smoother path planning, and the real-time performance of
dynamic obstacle avoidance is good. .e specific contents of
this article are summarized as follows:

(1) .e heuristic function h (n) of traditional A∗ al-
gorithm is improved, and the dynamic weighting
method is used to make h (n) closer to the actual
distance d (n). .is method reduces the search
area in the A∗ path search, reduces the planning
time, and improves the efficiency of the
algorithm.

(2) Use optimization strategies to optimize the optimal
path, reduce redundant nodes and turning points of
the optimal path, and make the path smoother,
which is conducive to the driving of intelligent ve-
hicle. .e improved A∗ algorithm is combined with
the dynamic window method for dynamic obstacle
avoidance. .is not only ensures that the improved
A∗ algorithm can efficiently plans the optimal path
but also improves the local optimal problem of
dynamic window method so that the intelligent
vehicle has global dynamic path planning
capabilities.

(3) In the simulation analysis, the method in this
paper shortens the path distance by 2.5%∼3.0%,
increases the efficiency by 10.3%∼13.6%, and
generates a smoother path. .rough the actual
vehicle test, the results show that the algorithm
proposed in this paper has good real-time per-
formance and good stability for dynamic obstacle
avoidance. .e improved A∗ method can be ap-
plied in practice on the intelligent electric vehicle
platform, and it has a practical value in engi-
neering application.
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