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)e growing demand for clean energy can be met by improving the recovery of current resources. One of the effective methods in
recovering the unswept reserves is chemical flooding. Microemulsion flooding is an alternative for surfactant flooding in a
chemical-enhanced oil recovery method and can entirely sweep the remaining oil in porous media. )e efficiency of micro-
emulsion flooding is guaranteed through phase behavior analysis and customization regarding the actual field conditions.
Reviewing the literature, there is a lack of experience that compared the macroscopic andmicroscopic efficiency of microemulsion
flooding, especially in low viscous oil reservoirs. In the current study, one-quarter five-spot glass micromodel was implemented
for investigating the effect of different parameters on microemulsion efficiency, including surfactant types, injection rate, and
micromodel pattern. Image analysis techniques were applied to represent the phase saturations throughout the microemulsion
flooding tests.)e results confirm the appropriate efficiency of microemulsion flooding in improving the ultimate recovery. LABS
microemulsion has the highest efficiency, and the increment of the injection rate has an adverse effect on oil recovery. According
to the pore structure’s tests, it seems that permeability has little impact on recovery. )e results of this study can be used in
enhanced oil recovery designs in low-viscosity oil fields. It shows the impact of crucial parameters in microemulsion flooding.

1. Introduction

)e decreasing trend of fossil resources discovery in parallel
with the expanding energy demand raises the eminence of
techniques and approaches (reservoir-based and well-based)
applied to improve the recovery of current resources [1–10].
Approximately, 70% of the reserves are not producible
naturally [11–15]. )is significant trapped reserve is an
attractive target for applying enhanced oil recovery (EOR)
methods [16–23].

Generally, EOR techniques are majorly categorized into
thermal and nonthermal. )e main subdivisions of non-
thermal EOR are miscible and chemical techniques.
Chemical EOR techniques refer to the application of
standalone or combination of different materials (caustic,
surfactant, polymer, and micellar/emulsion). )ese tech-
niques substantially enhance the recovery by improving the

mobility ratio or by decreasing the saturation of residual oil.
Many parameters, including mineralogy, permeability, vis-
cosity ranges, temperature, and salinity, affect the efficiency
of chemical flooding [4, 24–28].

One of the effective chemical EOR methods is micro-
emulsion flooding [29, 30]. )is method was first suggested
as an alternative for surfactant flooding. It is more efficient in
comparison to surfactants [30]. )e microemulsion solution
consists of three main components, including water, hy-
drocarbon, and surfactant. Two other components (co-
surfactant and electrolyte) may be added to modify the
solution according to the reservoir conditions. )is multi-
phase microemulsion can be water external, oil external, or a
three-phase solution consisting of water, hydrocarbon, and
surfactant [4, 24, 25].)eoretically, this method is capable of
increasing the recovery up to 100%. Microemulsions can
remarkably induce the interfacial tension (IFT) to values of
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10−2–10−3mN m−1. )e IFT reduction arouses spontaneous
emulsification and consequently unswept oil displacement
[29]. )e main detrimental phenomenon that affects the
efficiency of microemulsion flooding is the retention of
surfactant molecules on the reservoir rock. Other factors that
affect microemulsion flooding include salinity and surfac-
tant concentration [31–33].

Microemulsion can be flooded in two general ap-
proaches. First, the solution is prepared on the surface and
then injected [30, 34]. In the second method, the micro-
emulsion is generated in the reservoir by continuous in-
jection of surfactants [35]. Microemulsion flooding needs a
high concentration of surfactants, and it is the main
restricting factor for the field application of this technique
[29, 36–38].

So far, many attempts have been made to investigate all
prospects of microemulsion flooding. )e equilibrium
condition of microemulsion along the excess oil, water, or
both was studied by Winsor [39]. Winsor categorized the
microemulsion system into four types (Figure 1):

Type I systems are made of an oil-water microemulsion
that coexists with an additional oil phase

Type II systems, an oil-water microemulsion, exist with
an extra water phase
Type III systems, three discrete phases of micro-
emulsion, water, and oil coexist together
Type IV systems, a homogeneous and single phase of
microemulsion exists

Healy and Reed investigated some microemulsion
fundamentals (IFT, salinity, and viscosity). )ey related the
phase behavior results toWinsor’s concepts [40]. Holm used
sodium sulfonates to produce microemulsion for the EOR
test and reported the effect of temperature on micro-
emulsion efficiency [41]. Healy et al. conducted the
microemulsion flooding (with the addition of mono-
ethanolamine salt of alkylorthoxylene sulfonic acid) and
stated the impact of surfactant retention on the reservoir
rock [42]. )e influence of water salinity on surfactant re-
tention and the consequent phase behavior was studied by
Glover et al. [31]. Verkruyse and Salter showed that although
the microemulsion (with the addition of ethoxylated alco-
hols) could considerably reduce the IFT, the ultimate re-
covery was not changed remarkably [43]. Bouabboune et al.
compared surfactant with microemulsion flooding (alkali
surfactant NM as a surfactant) and concluded that the
microemulsion had a better performance [44]. Mandal et al.
utilized the nanoemulsion in the EOR process (with the
addition of Tergitol), and they found that this solution can
improve the ultimate recovery by more than 30% [45].
Karambeigi et al. studied the phase behavior of different
solutions (including surfactant brine, biodiesel, and co-
solvent) and the consequent efficiencies in carbonated rock
[46]. Hu et al. used nanoparticles (iron oxide) for micro-
emulsion and evaluated their application in EOR. )ey
reported that this system significantly increased the oil re-
covery reaching 28.9% and presented a more stable pressure
profile [47]. Ferreira et al. prepared microemulsion with

glycerin, and the prepared solution was injected in a
sandstone rock. )e maximum attained recovery in this
system was 49% [48]. Castro Dantas et al. examined the
effect of acid microemulsion on EOR in carbonate reser-
voirs, and the maximum reported recovery was 30% [49].

One of the main methods that have been widely used for
visualizing chemical flooding is the micromodel. )is setup
consists of an etched flow pattern that is visible by a mi-
croscope. )e pattern can be synthetic or extracted from a
real pore stricter. )e visualization of fluid flow is very
constructive in understanding the mechanism of the EOR
process at the pore level. However, the visual micromodel
encounters many limitations. )e most important one is the
difference in the flow pattern in the micromodel and field
porous media [50–56]. It can be mentioned that few studies
have been appropriately applied to quantify microemulsion
flooding in micromodel experiments.

In this study, the one-quarter five-spot glass micromodel
was used to investigate the effect of different factors in-
cluding, solution injection rate, types of solution, and
micromodel structure, on the performance of micro-
emulsion flooding. In the end, they compared with each
other to suggest the best conditions for one of the low
viscous Iranian oil reservoirs.

2. Experimental Setup and Procedure

2.1. Low-PressureMicromodelApparatus. Figure 2 shows the
micromodel setup used for microemulsion flooding in this
study. All experiments were conducted at atmospheric
pressure.

Six microemulsion flooding tests were performed to
study the impact of the following parameters:

Microemulsion type
Injection rate
Pore structure

For each microemulsion flooding experiment, the fol-
lowing steps were repeated.

Winsor
Type I

Winsor
Type II

Winsor
Type III

Winsor
Type IV

Oil
Microemulsion
Water

Figure 1: Classified microemulsion systems by Winsor [39].
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)e first step was the saturation of the micromodel with
brine. )e saturated media was then flooded by oil to reach
the initial water saturation. )e saturated micromodel was
kept for two weeks to restore wettability. Finally, the
microemulsion was injected into the micromodel at a
constant rate. )e recoveries were recorded throughout the
flooding process. )e microscope of the zooming range of
200X to 500X was used to take pictures of high resolution to
observe oil, connate water, solvent saturation, and asphal-
tene deposition after each experiment.

2.2. Crude Oil Properties. Experiments were conducted on
the low viscous oil samples prepared from an Iranian oil
field. )e oil properties are represented in Table 1.

2.3. SyntheticBrine. Regarding the composition and properties
of real field water samples, the synthetic brine (136000ppm)
with the following composition was prepared (Table 2).

2.4. Cleaning Fluid. Before conducting each experiment, the
micromodel was sequentially washed with the injection of
toluene, alcohol, and distilled water.

2.5. Microemulsion. Two solutions were prepared for in-
vestigating the efficiency of microemulsion in EOR im-
provement. )e coconut fatty acid diethanolamide
(cocamide DEA) [57] and linear alkylbenzenes (LABS) were
used as surfactant and n-hexane as a hydrocarbon. )e
critical micelle concentration (CMC) of these two surfac-
tants is 1.4% w/w and 0.65% w/w, respectively. Figure 3
represents the structure of these surfactants.

To construct the ternary phase diagram, different con-
centrations (volume percent) of brine, surfactant, and
n-hexane are mixed. )e volume measurements were done
primarily on a mass scale, considering the density of the

components at the desired temperature. Different phases
(Winsor microemulsion types) are recorded, and conse-
quently, the ternary diagram is plotted considering the
phases and volumes. Since the salinity of brine is fixed for
injection (produced formation water), the sensitivity on
salinity is not in the scope of this study.

)e phase diagram of microemulsion containing coca-
mide DEA is given in Figure 4.

)is solution has different behaviors in comparison to
the ideal behavior presented by Green and Willhite [58]. It
included several multiphase and single-phase regions. )e
volume percent of each component was estimated regarding
the single-phase behavior of microemulsion.

Hadi et al. applied the cocamide DEA emulsion for heavy
oil [57]. For light oil with high water saturation, it is better to
apply a new microemulsion. In the second microemulsion,
similar to Hadi’s study [57], n-hexane was used as hydro-
carbon, but LABS as surfactant.

Several titrations were done to obtain the phase behavior
of LABS. As shown in Figure 5, the result was closer to the
ideal behavior in comparison to the previous micro-
emulsion. Also, laboratory pictures from results of one, two,
and three phases are given in this figure.

Digital
Video Camera

Zoom Lens

Injection Pump
DPT

Micro Model

Ligth Source

Supporting
System

Waste
Storage

Tank

TV Monitor

Host Computer

Figure 2: Schematic of micromodel assembly.

Table 1: Oil properties.

Temperature: 119°C
Bubble point pressure (psia) API Viscosity (cp)
1959.7 43.6 0.554

Table 2: Synthetic brine composition (136000 ppm).

Component Molecular weight (g/mol) Concentration (g/lit)
MgCl2.6H2O 203.3 1
CaCl2.2H2O 147.03 3
Na2SO4 142.04 30
NaCl 58.44 102
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Figure 3: )e chemical structure of cocamide DEA and LABS. (a) Cocamide DEA. (b) LABS.
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Figure 4: Ternary diagram for cocamide DEA [57].
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Figure 5: )e ternary diagram for LABS.
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)e final compositions chosen for injection are given in
Table 3. )e composition and the volume percentage of con-
stitute materials were selected regarding the following criteria:

Single-phase behavior
Minimum possible surfactant concentration (economic
criterion)
Desirable viscosity

2.6. Pattern Design. In this study, two synthetic hexagonal
patterns with different coordination numbers and pore
throat ratios were used for microemilsion tests. )e patterns
are shown in Figures 6 and 7 (the permeability of A and B
patterns are 1500 and 2000 md, respectively).

Each pattern (with 6.5 ∗ 6.5 cm area) was etched on a
thick float plate (dimensions: 4 ∗ 7 ∗ 0.183 inches) and
covered with the same size plate.)e cover had two ports for
fluid injection and production (with 3mm diameter). )e
etched and cover plates were connected and sealed to form
an enclosed pore space.

3. Result and Discussion

3.1. Effect of Microemulsion Type. Pattern B was used to
evaluate the efficiencies of suggested microemulsions. )e
injection rate of microemulsion into the saturatedmicromodel
was 0.0008 cc/min. Microemulsion A consists of hexane
(hydrocarbon), LABS (surfactant), and brine. Microemulsion
B consists of hexane (hydrocarbon), coconut fatty acid
diethanolamide (surfactant), and brine. )e main mechanism
for the recovery improvement is the reduction of IFT. Once
themicroemulsion front reaches the remained oil, it lowers the
IFT, and consequently, the capillary force decreases. Capillary
force plays an important role in phase trapping through the
porous media, and reduction in capillary force leads to higher
recovery. Viscous force is another force that plays a role in
hydrocarbon recovery. Increasing the viscosity of injection
fluid (lower mobility ratio) improves the recovery factor.
Results show that type A has better efficiency than type B due
to more IFT reduction and more elevated viscosity. However,
this difference is not significant after 1 PV of injection. )e
main difference between these two microemulsions is
breakthrough time. Type B shows a higher breakthrough time
(0.93 PV) in comparison to type A (0.31 PV) because it has a
higher amount of hydrocarbon than type A. It seems that the
increase of hydrocarbon concentration in microemulsion
ascends the breakthrough time. However, the increase of
breakthrough time does not affect the ultimate recovery
significantly.

Figure 8 illustrates recoveries vs. the number of pore
volume injections. According to this figure, it can be con-
cluded that microemulsion A has a higher recovery than type
B. Furthermore, type A has lower hydrocarbon content, and
it can be the advantage of this type.

3.2. Effect of Injection Rate. In order to investigate the effect
of injection rate on ultimate recovery, two different rates
(0.0008 and 0.001 cc/min) were tested. Pattern B and

microemulsion type A were selected for these experiments,
and other conditions were the same as before. )e results
show that breakthrough is highly dependent on the rate of
injection. In the case of changing the injection rate, the
viscous force plays the main role. Increasing the injections’
rate leads to a higher probability of viscous fingering
throughout the flooding period.)e viscous fingering brings
the earlier breakthrough and lower recovery. )is analysis is
based on the pore volume of the injected microemulsion, not
on the time of injection. Comparing the breakthrough
according to the time of injection might be inaccurate. )e
breakthrough time for 0.0008 and 0.001 cc/min is 0.31 and
0.26 PV, respectively.

Figure 9 shows that, by increasing the injection rate, the
recovery goes down. In addition, the graph shows that
changing the injection rate does not have a sensible effect on
the trend of the chart, and both scenarios have the same
trend.

3.3. Effect of Pore Structure. Two patterns A and B, with
different permeabilities, were used for evaluating the impact
of flow networks on ultimate recovery of microemulsion
flooding. Microemulsion type A with 0.0008 cc/min rate was
injected in these tests. Figure 10 illustrates the effect of the
pore structure and permeability on the consequent recovery.
)e permeability variation affects the viscous forces, so the
IFT reduction mechanism for both cases is the same.
However, the results showed that there was no obvious
change in recovery by changing the permeability. Roughly
two graphs in Figure 10 are the same. Since the IFTreduction
is the main mechanism for microemulsion flooding and
leads to a high recovery factor (about 80% in our study), the
impact of permeability on the ultimate recovery can be
negligible in high recovery factor values.

3.4. Qualitative Observation of Connate Water’s Effect.
Qualitative microscopic observations were conducted
throughout the flooding period of each test. Figure 11 il-
lustrates six stages of microemulsion (A) flooding in pattern
A. )e figure clearly shows the movement of connate water
in the frontal path; also, it shows that the front moves very
stable and sweeps all water and oil through its way.)e high-
viscosity and low-mobility ratio of microemulsion causes the
front stability in this case. Figure 12 shows six stages of
flooding with microemulsion (B). It shows that the front is
not very stable, and viscous fingering occurs to some extent.
)e lower viscosity of this microemulsion is the reason for
this behavior.

Figures 13 and 14 show the microscopic images to il-
lustrate the mechanism of the connate water (trapped or
made the film on grain) discharging during the micro-
emulsion flooding.

Figure 13 shows when the microemulsion faces the
connate water, the microemulsion causes IFTreduction, and
consequently, connate water becomes movable. )e water
which is not in touch with the microemulsion cannot move
easily because of high interfacial tension. Figure 14 depicts

Mathematical Problems in Engineering 5



Table 3: Composition of microemulsions.

Composition Surfactant Surfactant
vol. (%)

n-Hexane
vol. (%)

Water
vol. (%) Viscosity (cp)

Microemulsion (A) LABS 6.7 56.1 37 8
Microemulsion (B) Cocamide DEA 5.86 64.89 29.25 7.5

Figure 6: Triple hexagonal pattern (A) with the coordination number of 6 and pore-throat ratio of 4.

Figure 7: Single hexagonal pattern (B) with the coordination
number of 3 and pore-throat ratio of 6.
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Figure 8: Effect of microemulsion types on recovery.
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PV=0.2 PV=0.31(BT)

PV=0.4 PV=0.6

PV=0.8 PV=1

Figure 11: 6-stages of microemulsion flooding (A) (green: water, light brown: oil, and white: emulsion).
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this state. In this pore, microemulsion does not reach the
connate water.

)ese experiments show how microemulsion affects
the water saturation in two sides of microemulsion front.

Behind the front, the microemulsion changes the end-
point of the residual water saturation by reducing the IFT
value. Consequently, the swept water is moved to the head
of the front.

PV=0.2 PV=0.4

PV=0.4 PV=0.6

PV=0.93 (BT) PV=1

Figure 12: 6-stages of microemulsion flooding (B) (green: water, light brown: oil, and white: emulsion).
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4. Conclusion

Regarding the objectives of this study, the following con-
clusions were obtained:

)is study investigates the application of micro-
emulsion flooding for low viscosity oil. )e micro-
emulsion flooding leads to interfacial tension reduction
and consequently increasing oil recovery.
Two types of surfactants were used in this study. )e
results show that the type of surfactant has a significant
effect on the recovery factor. )e LABS surfactant
increases the recovery by two times after 0.2 PV
injection.
In the case of injection rates, increasing the rate from
0.0008 to 0.001 cc/min leads to a slight increase in oil
recovery.
)e permeability is another parameter that was studied
using different pore structures. )e pore structure does
not show a sensible effect on recovery.
Behind the front of the microemulsion, the end-point
saturations are changed due to changing of IFT.

Data Availability

)e data used to support the findings of this study are in-
cluded within the article.
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