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As exoskeleton robots are more frequently applied to impaired people to regain mobility, detection and recognition of human gait
motions is important to prepare suitable control modes for exoskeletons. +is paper proposes to explore the potential of the
ensemble empirical mode decomposition (EEMD) method to help analyze and recognize gait motions for human subjects who
wear the exoskeleton to walk.+e intrinsic mode functions (IMFs) extracted from the original gait signals by EEMD are utilized to
act as inputs for classification algorithms. Evident correlations are found between some IMFs and original gait kinematic se-
quences. Experimental results on gait phase recognition performance on 14 able-bodied subjects are shown. +e performance of
the composing signals extracted from the original signals as IMF1 ∼ IMF8 is investigated, which indicates that IMF8 might be
helpful when wearing exoskeleton and IMF5 might be helpful when walking without exoskeleton on gait recognition. And the
similarity of joint synergy between wearing and without wearing exoskeleton is analyzed, and the result shows that the joint
synergy might change between with and without wearing exoskeleton. +e quantitative results show that based on some IMFs of
the same orders, these machine learning algorithms can achieve promising performances.

1. Introduction

Exoskeletons are encountered increasingly and frequently in
assisting the movement of people in various aspects, helping
them regain locomotion ability and reconstructing their lost
gait. In order to achieve better gait transition for exoskel-
etons with different gait modulation modes switched, it is
important to make accurate recognition of different gait
phases for the human-exoskeleton system. In the past de-
cades, researchers and engineers have developed a variety of
methods for detecting and recognizing human gait with and
without wearable robots. Aertbelien and Schutter developed
a statistical model method to learn the joint gait trajectory
and the variations for the control of the lower limb exo-
skeleton [1]. Brinker et al. proposed a gait recognition model
that can fast adapt to a novel user’s movements in

exoskeleton control by using previously collected other
users’ data and generate one side of leg exoskeleton
movement based on the other side of the leg movement [2].
Kim et al. presented a novel shape-based and model-based
combined gait recognition algorithm by extracting mode-
based gait cycle based on the prediction-based hierarchical
active shape mode [3]. Recently, Torricelli et al. presented a
methodology to predict the human joint motion based on
exoskeleton motion by combining personalized skeletal
models of human subject with a kinematic model of the
exoskeleton [4].

As some previous works mentioned, the human-exo-
skeleton system is a hybrid and complicated cognitive
dynamics system. In particular, different subjects with
exoskeletons may present different physical and dynamic
parameters to be identified, which makes the whole
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dynamic motion model hard to establish and personalize
[5]. When the control system of exoskeleton wants to
perform precise control tasks, it needs to know the accurate
gait status of the human-exoskeleton system [6]. However,
classification and recognition of gait phase through primal
modeling and identification of the dynamic human-exo-
skeleton may be cumbersome. In this instance, utilization
of some suitable machine learning algorithms driven by
immediately acquired gait data might be feasible for the
exoskeleton system to recognize different gait motions.

Since it is quite difficult to measure multiple joint tor-
ques and ground reaction forces simultaneously for the
human-exoskeleton system, employing gait data acquired by
motion capture devices is more convenient for the control
system to process and configure [7]. Due to different in-
fluence factors such as subjects’ biomechanics and physio-
logical movement diversity, gait kinematic signals can be still
characterized as nonlinear and nonstationary signals [8].
+us, it would be suitable to use the empirical mode de-
composition (EMD) method to analyze and extract the
potential features concealed in gait data, as an alternative [9].
Some researchers have utilized such pathway to analyze gait
signals [10]. For example, Cui et al. proposed a novel concept
as step stability index (SSI) which evaluates subjects gait
stability and fall risk by utilizing the decomposed the
1st ∼ 4th intrinsic mode functions (IMFs) from its original
signals [11]. Wen et al. found a new way based on improved
EMD using Gaussian process to denoise gait accelerator
data, and it gets better performance on denoising gait data
[9]. Ren et al. discovered a good performance of neurode-
generative disease characterization by utilizing EMD to
extract gait rhythm features from gait rhythm fluctuations
which is based on signals of vertical ground reaction force
[12]. Wang et al. achieved to characterize and differentiate
the single waist accelerator signals through EMD between 5
gait patterns with high accuracy [13].

In this paper, we propose a framework of gait phase
recognition for a human-exoskeleton system based on EMD.
In such EMD-based recognition framework, eight IMF
components are extracted from the original gait signals of 14
able-bodied subjects whose kinematics data are acquired by
the optical-marked motion capture device. Six kinds of
machine learning algorithms are applied for gait phase
classification and recognition as follows: support vector
machine (SVM), Kmeans, decision tree, logistic regression,
Naive Bayes, and random forest methods. +e extracted
IMFs are used as the input for the training models with these
six algorithms. +e gait recognition results based on the
5th ∼ 8th IMFs with some of these algorithms generally
show promising performance. In the meanwhile, nonlinear
fitting is used to examine the correlation between the
decomposed IMFs and the original gait signals, and such
fitting results could help to improve quantitatively evident
observations on the correlations between IMFs and original
gait data addressed in [11]. +e difference and similarity of
joint synergy between wearing with or without exoskeleton
is analyzed. To our best knowledge, there is little work
specifically focusing on human-exoskeleton gait phase
recognition based on the EMD method in such manner.

2. Materials and Methods

In this section, experiments are divided into two parts. In the
1st part, kinematics data with and without exoskeletons
during locomotion for the 14 subjects are measured by the
optical motion capture system. In the 2nd part, another 3
subjects’ joint angles are captured by the inertial measure-
ment unit (IMU) system. For the 1st part and 2nd part of
experiments, IMFs are extracted from the measured original
kinematics data by ensemble empirical mode decomposition
(EEMD) algorithm, and the method of evaluation of the
correlation between them is proposed. For the 1st part
experiments, joint synergy is extracted from joint angle data.

2.1. Experiment Setup. In the 1st part of experiments, 14
able-bodied subjects (all males, 22.88 ± 1.32 years old,
173.65 ± 5.22 cm height, and 54.59 ± 5.21 kg weight) took
part in optical-object motion capture experiments to capture
their kinematics data with and without exoskeletons during
locomotion. In the 2nd part of experiments, another 2 able-
bodied subjects and 1 paraplegia subject (all males,
25.66 ± 2.44 years old, 177.10 ± 19.33 cm height, and
62.13 ± 1.91 kg weight) also participated in the IMU-based
motion acquisition experiments to measure their joint an-
gles. All motion capture studies were performed with their
consent. +e experiments followed the institutional guide-
lines of the University of Electronic Science and Technology
of China, and all the experiment operations were in ac-
cordance with the Declaration of Helsinki. +ey were all
instructed to utilize the lower limb exoskeletons to perform
the normal walking tasks during part of the optical-object
motion capture experiments. +e lower limb exoskeleton
system used in the experiments was developed by the
University of Electronic Science and Technology of China.
Such lower limb exoskeleton system is with four active
degrees of freedom (flexion/extension) of motion in hip and
knee joints, and its ankle joints are with two passive degrees
of freedom of motion (dorsi/plantar flexion). +e subjects
are required to use crutches to maintain the balance during
their locomotion for safety reasons.

In the 1st part of experiments, during optical-object
motion capture experiments, 39 infrared markers were at-
tached to each subject’s body for the VICON (Oxford
Metrics Limited, UK) motion capture system according to
the Plug-in Gait full body model [14]. +e VICON system
captured the locomotion of these 39 markers by 8 cameras
with a frame rate of 100Hz. +e locomotion on elbow,
shoulder, hip, knee, and ankle joints was acquired and
converted to the angles of these joints through the algorithm
provided by VICON. Each subject was required to perform
12 experiment sessions with different conditions, and a
group of 30 joint angle signals (i.e., hip joint, knee joint,
ankle joint, shoulder joint, and elbow joint at X, Y, and Z
axes on both left side and right side, respectively) were
captured correspondingly for each experiment session.

In the 2nd part of experiments, 7 IMU sensors (Per-
ception Neuron, Noitom Limited) were bonded to the
subjects lower body. +e Perception Neuron system
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captured the locomotion of these 7 sensors with a frame rate
of 120Hz. Raw data on the angles of hip, knee, and ankle
joints were captured.

2.2. Experimental Protocol. In the 1st part of experiments, all
the 14 subjects were required to perform walking tasks with
wearing or without wearing exoskeleton on 6 different floors
with different frictions and materials, which include normal
floor, wood floor, ceramic floor, carpet, plastic lawn, and
floor with cobble. +e first session of the test for each subject
was to let him walk on 6 different floor conditions wearing
an exoskeleton, and the second session of the test was to let
him walk on 6 different floor conditions without wearing an
exoskeleton. +ese two sessions are independent and sep-
arate. Each subject was told to walk about 5m for several
times for both test sessions. For each experiment in different
floor conditions with or without wearing exoskeleton, we
clipped some of experiment sessions when some of makers
are found to be lost on camera during the motion capture.
Figure 1 shows the subjects walking on the floor with dif-
ferent materials.

2.3. EEMD Computation and IMF Extraction. In each ex-
periment session, we need a group of 18 joint angle signals
(hip joint, knee joint, and ankle joint at X, Y, and Z axes on
both left side and right side, respectively) from 30 joint angle
signals mentioned above to perform gait recognition.
According to the EEMDdesign principle [10], the 18 original
gait time signals x(t) for each experiment session are to be
decomposed into the following n intrinsic mode function
(IMF) components, respectively:

x(t) � 
n

j�1
cj + rn, (1)

where cj denotes the jth IMF component (i.e., termed as
IMFj) decomposed from the gait sequence x(t) and rn is the
residue of x(t). +e EEMD algorithm for gait signals can be
described by the following algorithm (Algorithm 1).

Figure 2(a) shows one of the 18 joint angle signals
generated by one experiment session and its decomposed 8
IMF signals. Figure 2(b) shows the FFT of Figure 2(a); this
shows that with the increase of IMF order number, the
frequency of components the IMF contains decreases.

2.4. Gait Recognition. For the purpose of investigating how
the various floor materials would affect the gait on subjects
and how the different machine learning classifications and
the traits of IMF would affect gait recognition when it comes
to processing with VICON data in the part one experiments,
we try to make gait recognition based on the 14 subjects’
motion capture data, by applying classification/recognition
approaches with the extracted IMF components. Before
making recognition, first an algorithm is developed to tag
gait phase status for every frame of dataset according to the
signals of toe and heel marker on Z axis captured by VICON.

+e tagged phase status contains four tags as left and
right foot both on land, left foot on land and right foot off
land, left foot off land and right foot on land, and the un-
certain mode, where gait phase status information was used
to generate dataset Y as label set. +en, we remove those
frames labeled as uncertain mode in Y set and their cor-
responding frame in the VICON data. We make gait rec-
ognition on 3 perspectives: gait recognition modes A, B, and
C.

2.4.1. Gait Recognition Mode A. In this mode, we randomly
divided the dataset which we acquired from each experiment
session into two parts as training set and testing set with 2 :1
ratio for the whole gait dataset of each experiment session.

+e original training dataset X and labeled dataset Y

were composed of 8 IMFs as IMF1 ∼ IMF8 dataset. And we
let the IMF1 ∼ IMF8 dataset signal train different machine
learning models (SVM, Kmeans, decision tree, logistic re-
gression, Naive Bayes, and random forest) and use the
corresponding testing set to count the recognition accuracy.

2.4.2. Gait Recognition Mode B. In this mode, for each
subject, we set the dataset on theNormal Floor as the training
set and let the others of the same subject as the testing set.
Because one subject’s experiment with the floor with cobble
was abandoned, we got 69 accuracies for the original dataset
gait recognition. +en, the 8 IMFs as IMF1 ∼ IMF8 dataset
were generated by decomposing the original dataset, and we
let the IMF1 ∼ IMF8 dataset signal to evaluate different
machine learning algorithms.

2.4.3. Gait Recognition Mode C. In this mode, for each floor
material, we set the dataset of the same subject as the training
set and let the others on the same floor material as the testing
set. Because one subject’s experiment with the floor with
cobble was abandoned, we got 77 accuracies for the original
dataset gait recognition. +en, we decompose the original
data into 8 IMFs as IMF1 ∼ IMF8 dataset, and we let the
IMF1 ∼ IMF8 dataset signal go through the same procedure
as its original signal dataset X had been processed.

2.5. Evaluation of Correlation between IMF Components and
Original Gait Trajectory. For the kinematics data of the
subjects measured by VICON, 12 experiment sessions in the
1st part of experiments are performed on each subject to
capture and thus produce a group of 18 original gait signals
(i.e., hip, knee, and ankle angles for X, Y, and Z axes on both
left side and right side, respectively) for each experiment
session. For the joint data acquired by IMU in part two
experiments, 3 experiment sessions are performed on all 3
subjects, and thus we generate a group of 3 original gait
signals (i.e., left hip, left knee, and left ankle). For all those
original signals Sn mentioned above, we divide them with
dividing parameter p ∈ [0, 1] into S1,n and S2,n. It means that
S1,n is the former p part of Sn and S2,n is the latter (1 − p) part
of Sn. And after the IMFs (IMF1n ∼ IMF8n,
n ∈ 1, 2, . . . , 12 × 18{ }) are extracted from these original gait
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Figure 1: Experimental setup and walk test. +e subjects walk on flat floors with 6 different friction situations with and without exo-
skeletons. +eir gait information is acquired by motion capture devices and sensors.

Input: Original gait signal x(t)

Output: IMF1 ∼ IMF8
(1) For different N noisy signals wi(t), i ∈ N, we generate different xi(t) and calculate its corresponding decomposing results,

IMF1i ∼ IMF8i. +is means we extract IMFs for N trials for different noisy signals wi(t).
(2) for i ∈ [1, N] do

xi(t) � x(t) + wi(t)

ri,0 � xi(t)
(3) Calculate (IMFj)i for the original signal xi(t).
(4) for j ∈ [1, 8] do

k � 0
hj,k(t) � ri,j− 1

(5) Check SD to see whether m(t) meets two conditions of IMF which is (1) in the whole dataset, the number of extrema and the
number of zero crossings must either equal or differ at most by one; (2) at any point, the mean value of the envelope defined by the
local maxima and the envelope defined by the local minima is zero.

(6) while ((SD> thereshold) or (k �� 0)) do
mk(t) � 1/2(uk(t) + lk(t))

hj,k+1(t) � hj,k(t) − mk(t)

SD � 

T

t�0
(hj,k+1(t) − hj,k(t))

2/(hj,k(t))
2

k � k + 1
(7) where uk(t) is the upper envelope of hj,k(t) which is a cubic spline line connecting all the local maxima of hj,k(t) and lk(t) is the

lower envelope of hj,k(t) which is a cubic spline line connecting all the local minima of hj,k(t)

(8) end while
(9) (IMFj)i � hj,k(t)

(10) ri,j � ri,j− 1(t) − (IMFj)i

(11) j � j + 1
(12) end for
(13) Calculate the average value of (IMFj)i

IMFj � 1/N 
N
i�1 (IMFj)i j ∈ [1, 8]

(14) end for

ALGORITHM 1: EEMD for IMF extraction.
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signals Sn, IMF11,n ∼ IMF81,n and IMF12,n ∼ IMF82,n are also
generated, respectively, for two data sequences S1,n and S2,n.
In order to investigate the correlation between the original
gait signals and IMFs by cross validation in a nonlinear
fitting manner, first, we construct the matrix Un for each Sn

as follows:

U
1
j,n �

IMF5j,n

· · ·

IMF8j,n

IMF5j,n 
2

· · ·

IMF8j,n 
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

U
2
j,n �

IMF4j,n

· · ·

IMF8j,n

IMF4j,n 
2

· · ·

IMF8j,n 
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

U
3
j,n �

IMF4j,n

· · ·

IMF8j,n

IMF4j,n 
2

· · ·

IMF8j,n 
2

IMF4j,n 
3

· · ·

IMF8j,n 
3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

U
4
j,n �

IMF3j,n

· · ·

IMF8j,n

IMF3j,n 
2

· · ·

IMF8j,n 
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

j ∈ 1 or 2.

(2)

Next, we produce a number of new signal matrices S
m

2,n

(m ∈ 1, 2, . . . , 6{ }, n ∈ 1, 2 . . . , 108{ }) as follows:

S
1
2,n � U

1
2,n U

1
1,n 

− 1
S1,n, (p � 0.6),

S
2
2,n � U

2
2,n U

2
1,n 

− 1
S1,n, (p � 0.4),

S
3
2,n � U

2
2,n U

2
1,n 

− 1
S1,n. (p � 0.5),

S
4
2,n � U

2
2,n U

2
1,n 

− 1
S1,n, (p � 0.6),

S
5
2,n � U

3
2,n U

3
1,n 

− 1
S1,n, (p � 0.6),

S
6
2,n � U

4
2,n U

4
1,n 

− 1
S1,n, (p � 0.6).

(3)

+us, we describe the variance between S2,n and S2,n by
index VAFn (variance accounted for) counted through the
following equation:

VAFm
n � 1 −

var S
m

2,n − S2,n 

var S2,n 
, m ∈ [1, 6]. (4)

As VAFn > 0 is closer to 1, it indicates that they may
possess more correlation evidence.

2.6. Joint SynergyExtraction. In addition, it is also important
to further compare the joint synergy for subjects between
them with wearing exoskeleton and without wearing exo-
skeleton to walk. We adopt principal component analysis
(PCA) to extract the principal components of the five joints’
angle data (i.e., ankle, knee, hip, shoulder, and elbow joints’
angle) in the part one experiments. Some researchers have
found that utilizing PCA to analyze the movement coor-
dination patterns for human-exoskeleton might be useful
[15, 16]. Firstly, we generate the following joint motion
matrix D acquired for each individual.

D �

DANK

DKNEE

DHIP

DSLDR

DELBW

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

DANK(1) · · · DANK(N)

DKNEE(1) · · · DKNEE(N)

DHIP(1) · · · DHIP(N)

DSLDR(1) · · · DSLDR(N)

DELBW(1) · · · DELBW(N)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5)

where Dj (j ∈ ANK,KNEE,HIP, SLDR, ELBW{ }) denotes
the data about the degree of ankle, knee, hip, shoulder, and
elbow joints which contain the information about joint
synergy. +e method of PCA creates a new set of variables
called principal components. Each principal component is a
linear projection of the original variables. We can generate
PCA through the following equations:

Σαl � λlαl, (6)
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where Σ denotes the covariance of the matrix D we con-
structed, αl denotes the direction that the original variables
project on and also is the lth eigenvector for matrix Σ, and λl

is the lth principal component corresponding to αl.

3. Results and Discussion

In this section, the results of gait recognition modes A, B,
and C for the human-exoskeleton system based on EEMD
with the six machine learning methods are presented. +e
influence of floor materials on gait recognition has also been
analyzed. Additionally, joint synergy for the subjects who
walk with and without exoskeletons is also drawn.

3.1. Gait Recognition Mode A Results. Figure 3 shows the
results of gait recognition mode A for the decomposing
signals IMF1 ∼ IMF8 of the original signals based on all the
six machine learning methods (SVM, Kmeans, decision tree,

logistic regression, Naive Bayes, and random forest) for the
14 subjects who walked on flat floors with different friction
situations with and without exoskeletons. Tables 1 and 2
show the detailed information of Figure 3. In this mode, we
could figure out the performance for the six learning al-
gorithms recognizing the gait status on each experiment
session.

According to these two subfigures in Figure 3, recog-
nition performance with IMF5 ∼ IMF8 can be generally
better than that with IMF1 ∼ IMF4. From Tables 1 and 2,
conclusion can be made that when IMF1 ∼ IMF4 are used
for the six algorithms, the recognition performance is not
satisfactory since the accuracy generally cannot reach 80%.
+e performance of IMF5 ∼ IMF8 is generally good for
recognition. +ese comparative results might indicate that
IMF5 ∼ IMF8 may be considered to be involved in the
recognition algorithms. Besides, in these results, especially
when SVM, Kmeans, logistic regression, decision tree, and
random forest approaches are applied for IMF5 ∼ IMF8,
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Figure 2: (a) One of the 18 joint angle signals generated by one experiment session and its decomposed 8 IMF signals and (b) FFT signals.
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promising recognition accuracy can be generated. Other-
wise, in Tables 1 and 2, we can see that when we know the
gait mode for someone in certain floor material, the gait
recognition can reach 98% through IMF6, which means that
IMF contains information for gait recognition.

Furthermore, Figure 4 shows the frequency that the
maximum accuracies may occur in each order of IMF in all
experiments, which stands for the probability that each IMF
contributes to the recognition accuracy for the six algo-
rithms. We generally can see that IMF7 and IMF8 have a
higher probability to enhance the recognition accuracy for
subjects who walk with exoskeletons, and IMF4 ∼ IMF8 can
have a higher probability for subjects who walk without
exoskeletons. As we can see, the signal in IMF1 ∼ IMF8 that
can get the highest probability changes between wearing
exoskeleton and without wearing exoskeleton. +e reason
behind this phenomenon may be that the gait locomotion
mode changes between wearing exoskeleton and without
wearing exoskeleton.

In conclusion, we can see that when it comes to rec-
ognizing gait with VICON data for each experiment session,
all six algorithms are useful for recognition, and

IMF7 ∼ IMF8 might be useful for recognition when wearing
exoskeleton, while IMF4 ∼ IMF8 might be helpful for rec-
ognition when walking without wearing exoskeleton.

3.2. Gait Recognition Mode B Results. Figure 5 shows the
results of gait recognition mode B with the original signal’s
decomposing signals IMF1 ∼ IMF8 for the same subject and
various floor materials. Tables 3 and 4 show the detailed
information of Figure 5. In this mode, we could evaluate the
performance of the learning algorithm when we acquire one
subject’s gait data in one floor material to establish the
recognition model and try to recognize the same subject’s
gait on other floor materials based on the model.

Kmeans could get good performance when wearing with
or without exoskeleton as their highest recognition average
accuracy all exceed 80%when with or without exoskeleton in
both Figure 5(a) and 5(b).

When subjects wear exoskeleton, we can see that for
different gait recognition algorithms, generally the higher
the IMF order number is and the higher the accuracy is in
Figure 5(a). +us, the accuracy of IMF8 is the highest

Table 1: Gait recognition accuracy for gait recognition mode A based on the IMFs of the original signal for the 14 subjects who wore
exoskeletons to walk (mean ± SD%).

Component SVM Kmeans Decision tree Logistic regression Naive Bayes Random forest
IMF1 47.10 ± 8.80 45.31 ± 7.59 41.53 ± 5.36 47.00 ± 8.92 38.65 ± 6.95 44.81 ± 6.54
IMF2 47.09 ± 8.82 49.64 ± 7.71 44.71 ± 5.02 47.07 ± 8.81 39.42 ± 8.02 49.60 ± 6.37
IMF3 47.13 ± 8.78 55.37 ± 7.12 50.19 ± 5.07 47.17 ± 8.64 39.39 ± 5.95 55.93 ± 5.70
IMF4 47.23 ± 8.67 74.74 ± 4.85 72.09 ± 4.87 47.40 ± 8.43 44.91 ± 7.78 78.70 ± 4.15
IMF5 49.84 ± 7.68 99.14 ± 0.60 95.19 ± 1.63 50.42 ± 7.69 64.91 ± 10.26 98.67 ± 0.70
IMF6 92.06 ± 5.44 99.65 ± 0.21 99.00 ± 0.58 72.54 ± 10.96 77.79 ± 9.33 99.63 ± 0.26
IMF7 99.47 ± 0.33 99.65 ± 0.22 99.48 ± 0.37 96.97 ± 4.08 87.00 ± 8.24 99.64 ± 0.22
IMF8 99.54 ± 0.29 99.66 ± 0.22 99.65 ± 0.29 99.20 ± 0.59 91.38 ± 3.77 99.66 ± 0.27
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Figure 3: Gait recognition results for gait recognition modeA based on the IMFs of the original signal for the 14 subjects who walked on flat
floors under different friction situations. (a) With exoskeleton. (b) Without exoskeleton.
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(80.94%) with Kmeans according to Table 3. Kmeans, lo-
gistic regression, and random forest have a good perfor-
mance with IMF8 in Table 3. Figure 5(b) shows that when
subjects walk without exoskeleton, generally IMF4 ∼ IMF6
have relatively better performance among IMF1 ∼ IMF8,
and IMF5 is the highest (80.24%) with Kmeans.

Additionally, Figure 6 shows the probability for
IMF1 ∼ IMF8 that each IMF may be the highest accuracy
among IMF1 ∼ IMF8 for the six algorithms. From Figure 6,

we could generally conclude that IMF8 has the highest
probability to get the maximum accuracy among
IMF1 ∼ IMF8 when wearing exoskeleton and IMF5 is most
likely to get the maximum accuracy among IMF1 ∼ IMF8
when walking without exoskeleton. Signal in IMF1 IMF8
that can get the highest probability changes between wearing
exoskeleton and without wearing exoskeleton. As with mode
A, signal in IMF1 ∼ IMF8 that can get the highest proba-
bility in mode B changes between wearing an exoskeleton
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Figure 4: Maximum probability that each IMF contributes to the recognition accuracy on gait recognition mode A. (a) With exoskeleton.
(b) Without exoskeleton.
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Figure 5: Gait recognition results of gait recognition mode B based on the IMFs of the original signal for the 14 subjects who walked on flat
floors with different friction situations. (a) With exoskeleton. (b) Without exoskeleton.
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and without wearing exoskeleton. +is shows again that gait
locomotion mode may change between wearing exoskeleton
and without wearing exoskeleton.

In general, the result of this section tells us that when we
tend to utilize someone’s gait data on the normal floor as the
model to recognize the same subject’s gait in other materials,
Kmeans may be a more helpful algorithm to analyze gait
recognition among the six algorithms. Also, IMF8 may be
more helpful for analyzing gait recognition when subjects

walk with exoskeleton on flat floor, and meanwhile IMF5
may be more useful to recognize gait among IMF1 ∼ IMF8
when subjects walk without exoskeleton on flat floor.

3.3. Gait Recognition Mode C Results. +e results of gait
recognition mode C that the decomposing data of the
original data as IMF1 ∼ IMF8 for the same floor material
and various subjects can be analyzed from Figure 7. Tables 5
and 6 show the elaborate information for Figure 7. In this

Table 2: Gait recognition accuracy for gait recognition mode A based on the IMFs of the original signal for the 14 subjects who walked
without exoskeletons (mean ± SD%).

Component SVM Kmeans Decision tree Logistic regression Naive Bayes Random forest
IMF1 45.10 ± 7.49 36.13 ± 6.97 36.62 ± 5.63 44.63 ± 7.69 34.23 ± 6.20 38.33 ± 6.09
IMF2 45.11 ± 7.61 41.64 ± 5.53 42.00 ± 5.24 45.20 ± 7.74 35.55 ± 6.79 44.36 ± 5.81
IMF3 45.65 ± 7.58 74.32 ± 9.56 67.86 ± 9.90 46.35 ± 7.03 53.79 ± 11.74 72.47 ± 9.47
IMF4 92.45 ± 9.22 98.13 ± 1.26 95.17 ± 2.65 76.79 ± 10.41 90.65 ± 5.34 98.08 ± 1.69
IMF5 98.59 ± 0.98 98.62 ± 0.95 97.75 ± 1.85 97.96 ± 2.75 91.20 ± 4.96 98.30 ± 1.24
IMF6 98.64 ± 1.00 98.45 ± 1.08 98.05 ± 1.58 98.29 ± 1.39 91.36 ± 4.17 98.32 ± 1.36
IMF7 93.52 ± 8.11 98.42 ± 1.17 98.22 ± 1.56 88.90 ± 5.94 84.67 ± 9.65 98.47 ± 1.29
IMF8 98.20 ± 1.14 98.59 ± 1.05 98.45 ± 1.35 80.94 ± 16.84 83.31 ± 10.76 98.56 ± 1.24

Table 3: Gait recognition accuracy for gait recognition mode B based on the IMFs of the original signal for the 14 subjects who wore
exoskeletons to walk (mean ± SD%).

Component SVM Kmeans Decision tree Logistic regression Naive Bayes Random forest
IMF1 42.28 ± 12.73 39.19 ± 8.16 36.19 ± 3.77 42.03 ± 12.61 39.25 ± 10.85 38.17 ± 5.20
IMF2 42.29 ± 12.73 43.31 ± 8.90 38.34 ± 4.69 41.99 ± 12.61 36.66 ± 8.57 41.67 ± 6.70
IMF3 42.29 ± 12.73 45.44 ± 8.72 40.16 ± 5.41 42.00 ± 12.67 36.75 ± 6.58 43.73 ± 7.62
IMF4 42.29 ± 12.73 45.86 ± 7.94 41.74 ± 5.67 42.68 ± 11.82 35.60 ± 8.27 45.12 ± 7.73
IMF5 43.33 ± 12.05 54.22 ± 8.15 49.49 ± 7.25 43.14 ± 11.27 48.57 ± 11.27 54.42 ± 8.32
IMF6 69.01 ± 11.65 71.89 ± 9.70 63.00 ± 9.47 51.07 ± 11.46 67.05 ± 10.27 69.62 ± 9.24
IMF7 72.41 ± 13.12 77.81 ± 9.57 62.07 ± 10.83 62.32 ± 16.11 67.84 ± 15.42 71.87 ± 8.98
IMF8 71.34 ± 15.41 80.94 ± 10.13 68.07 ± 15.73 78.78 ± 10.84 72.00 ± 15.80 76.87 ± 11.48
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Figure 6: Maximum probability that each IMF contributes to the recognition accuracy on gait recognition mode B. (a) With exoskeleton.
(b) Without exoskeleton.
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mode, we can compare the performance of different ma-
chine learning algorithms when we establish the recognition
model by one subject experiment session and recognize gait
with the same floor material in different subjects.

When it comes to the performance of IMF1 ∼ IMF8
while wearing an exoskeleton in Figure 7(a) and Table 5,
Kmeans is also the best algorithm compared to others and
IMF8 contains the highest accuracy among IMF1 ∼ IMF8
with Kmeans (69.18%). In Figure 7(b) and Table 6, we can

see that Kmeans performs best and IMF5 gets the highest
accuracy among IMF1 ∼ IMF8 with Kmeans (72.87%).

Furthermore, Figure 8 shows the probability for
IMF1 ∼ IMF8 that each IMF may be the highest accuracy
among IMF1 ∼ IMF8 for the six algorithms. In Figure 8(a),
we could say that the most likely to get the maximum ac-
curacy among IMF1 ∼ IMF8 when wearing exoskeleton is
IMF7 and IMF8 especially for Kmeans, Decision tree, lo-
gistic regression, and random forest. From Figure 8(b), we
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Figure 7: Gait recognition results of gait recognition mode C based on the IMFs of the original signal for the 14 subjects walking on flat
floors with different friction situations. (a) With exoskeleton. (b) Without exoskeleton.

Table 4: Gait recognition accuracy of gait recognition mode B based on the IMFs of the original signal for the 14 subjects who walked
without exoskeletons (mean ± SD%).

Component SVM Kmeans Decision tree Logistic regression Naive Bayes Random forest
IMF1 36.85 ± 10.04 35.14 ± 4.86 34.36 ± 3.22 36.72 ± 9.81 34.13 ± 4.66 35.12 ± 4.68
IMF2 36.88 ± 10.09 35.94 ± 4.75 35.99 ± 3.83 37.04 ± 9.81 32.89 ± 5.35 36.67 ± 5.22
IMF3 37.27 ± 10.31 44.75 ± 9.79 43.39 ± 8.43 36.77 ± 8.89 43.37 ± 12.52 45.98 ± 10.36
IMF4 63.27 ± 14.92 71.30 ± 13.18 58.90 ± 10.17 48.55 ± 12.15 69.78 ± 12.30 67.57 ± 11.58
IMF5 51.14 ± 18.31 80.24 ± 12.68 65.07 ± 13.16 63.80 ± 16.31 70.29 ± 13.26 72.85 ± 12.66
IMF6 39.60 ± 10.32 69.88 ± 17.20 61.95 ± 17.14 64.91 ± 13.19 55.16 ± 14.47 68.83 ± 14.67
IMF7 45.20 ± 13.34 50.94 ± 15.79 45.98 ± 12.26 51.83 ± 11.52 42.92 ± 11.51 45.78 ± 14.22
IMF8 37.52 ± 10.29 48.20 ± 20.72 43.78 ± 13.13 48.74 ± 14.82 40.31 ± 9.48 43.88 ± 12.93

Table 5: Gait recognition accuracy for gait recognition mode C based on the IMFs of the original signal for the 14 subjects who wore
exoskeletons to walk (mean ± SD%).

Component SVM Kmeans Decision tree Logistic regression Naive Bayes Random forest
IMF1 32.14 ± 12.32 33.08 ± 4.23 33.73 ± 2.78 31.77 ± 10.56 31.30 ± 5.86 32.86 ± 3.52
IMF2 32.61 ± 13.14 36.33 ± 3.85 33.92 ± 3.34 32.30 ± 11.05 31.44 ± 7.39 34.41 ± 4.39
IMF3 32.53 ± 13.30 37.09 ± 5.00 34.45 ± 3.22 32.71 ± 10.26 31.11 ± 5.36 35.01 ± 4.08
IMF4 30.08 ± 12.06 35.67 ± 4.84 37.00 ± 4.99 31.62 ± 9.19 36.87 ± 6.33 37.90 ± 6.11
IMF5 32.45 ± 10.20 42.35 ± 8.11 41.41 ± 7.34 31.86 ± 6.24 46.13 ± 9.66 43.40 ± 8.38
IMF6 47.53 ± 10.52 51.25 ± 11.39 50.92 ± 7.65 40.57 ± 6.55 60.54 ± 11.20 55.60 ± 8.28
IMF7 50.59 ± 10.91 58.46 ± 11.73 48.44 ± 11.60 48.94 ± 13.30 61.02 ± 14.07 54.75 ± 11.94
IMF8 38.65 ± 15.24 69.18 ± 10.20 50.49 ± 15.91 61.25 ± 13.64 43.37 ± 14.80 51.35 ± 17.74
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can see that IMF4 ∼ IMF6, especially IMF5 can get the
maximum accuracy among IMF1 ∼ IMF8 when walking
without exoskeleton.

In sum, from the result of mode C, we could generalize
that when we try to recognize various subjects’ gait based on
another subject with the same floor materials, Kmeans may
be better to perform gait recognition among the six algo-
rithms on mode C. IMF8 may be more helpful for analyzing
gait recognition when subjects walk with exoskeleton on flat
floor, and meanwhile IMF5 may be more useful to recognize
gait among IMF1 ∼ IMF8 when subjects walk without
exoskeleton on flat floor. +is is the same as mode B.

3.4. Correlation Analysis between IMF Components and
Original Gait. As addressed in previous gait recognition
results, we see that there might be potential evident cor-
relation between the latter IMFs and the original signals.
Now the aforementioned nonlinear fitting approach is
adopted to investigate the trajectory correlation between the

latter IMFs and the original signals. Table 7 shows the VAF
results for finding correlation between the IMF combination
and the original gait signals acquired from the VICON
system on the 14 subjects in part one experiments and IMU
sensors on the 3 subjects in part two experiments. We can
see that IMF4 ∼ IMF8 of some combinations can be used to
identify the original gait signals. It reveals that the combi-
nation of IMFs may be utilized to identify the original gait
trajectory.

3.5. Joint Synergy Results. In addition to gait motion rec-
ognition results, in order to investigate the possible simi-
larity of joint synergy, we performed PCA on the five joints:
elbow, shoulder, hip, knee, and ankle joints, to extract the
principal components which can represent joint synergy
indexes. For these five joints on X axis, from Figure 9, we
could see the comparison on the joint synergy for the
subjects who walk with and without exoskeleton.
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Figure 8: Maximum probability that each IMF contributes to the recognition accuracy of gait recognition mode C. (a)With exoskeleton. (b)
Without exoskeleton.

Table 6: Gait recognition accuracy for gait recognition mode C based on the IMFs of the original signal for the 14 subjects who walked
without exoskeletons (mean ± SD%).

Component SVM Kmeans Decision tree Logistic regression Naive Bayes Random forest
IMF1 37.96 ± 10.39 30.65 ± 6.43 33.30 ± 4.62 37.53 ± 10.16 32.38 ± 3.62 31.35 ± 5.74
IMF2 37.96 ± 10.39 31.65 ± 7.41 32.46 ± 4.15 37.09 ± 9.95 29.37 ± 5.37 33.37 ± 6.64
IMF3 37.96 ± 10.39 39.06 ± 8.80 40.21 ± 7.41 35.76 ± 9.01 42.92 ± 9.60 41.02 ± 8.74
IMF4 50.43 ± 13.04 60.88 ± 13.13 47.69 ± 12.17 43.07 ± 11.55 57.88 ± 13.25 54.70 ± 11.32
IMF5 38.65 ± 10.57 72.87 ± 16.95 54.08 ± 15.26 49.54 ± 16.93 51.17 ± 12.55 62.38 ± 15.30
IMF6 38.00 ± 10.47 63.47 ± 19.32 51.82 ± 16.42 48.16 ± 13.55 40.32 ± 9.91 52.48 ± 17.08
IMF7 42.30 ± 18.02 50.23 ± 18.64 40.93 ± 12.69 42.34 ± 17.73 40.47 ± 8.71 40.40 ± 14.34
IMF8 34.13 ± 16.80 41.09 ± 17.28 35.15 ± 16.60 41.45 ± 17.29 35.60 ± 15.47 37.13 ± 16.72
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In Figures 9(a)–9(c), the first average principal com-
ponents without exoskeletons on X, Y, and Z axes of left side
joints are, respectively, 74.24%, 85.59%, and 94.63%, and the
first average principal components with exoskeletons on X,
Y, and Z axes of left side joints are, respectively, 79.38%,
92.36%, and 98.67%. In Figures 9(d)–9(f ), the first average
principal components without exoskeletons on X, Y, and Z
axes of right side joints are, respectively, 74.39%, 85.89%,
and 94.52%, and the first average principal components with
exoskeletons on X, Y, and Z axes of right side joints are,
respectively, 78.76%, 92.64%, and 98.92%. +e second

principal components also show different values for the two
groups on the left side and right side joints. It can be seen
that when the subjects wear exoskeletons to walk, such PCA-
based synergy extraction results show that the principal
components can be altered.

4. Conclusions

In this paper, EEMD-based gait recognition modes A, B, and
C are proposed for the human-exoskeleton system. SVM
(support vector machine), Kmeans, decision tree, logistic
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Figure 9: Normalized PCA of the joint synergy of five joints. (a) Left side joints on X axis. (b) Left side joints on Y axis. (c) Left side joints on
Z axis. (d) Right side joints on X axis. (e) Right side joints on Y axis. (f ) Right side joints on Z axis.

Table 7: VAFm
n for evaluating correlation between IMF combinations and original gait signal captured by VICON and IMU sensors

(mean ± SD%).

Correlation VICON IMU
VAF1 55.11 ± 944.89 94.1 ± 5.4
VAF2 41.94 ± 945.09 98.7 ± 1.7
VAF3 95.78 ± 65.56 98.9 ± 1.2
VAF4 99.09 ± 11.44 98.9 ± 1.2
VAF5 − 20782.26 ± 870032.49 96.81 ± 7.28
VAF6 98.71 ± 33.32 99.7 ± 0.3
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regression, Naive Bayes, and random forest methods are
used as training algorithms for such framework, and the
performance of these six algorithms is discussed. +us, we
estimate how various algorithms, IMF order number, dif-
ferent floor materials, and various subjects would affect the
result of recognition. And the results show that when it
comes to gait recognition among various subjects and
various floor materials, Kmeans might be better on per-
formance whenever with or without wearing exoskeleton.
For the contribution of gait recognition with IMF1 ∼ IMF8
among various subjects and various floor materials, IMF8
might be helpful when wearing exoskeleton, and IMF5
might be useful when walking without exoskeleton. And
floor materials have little influence on gait recognition.

+e correlation of original gait data and their decom-
posing signal IMFs through EEMD is investigated, which
reveals that the combination of IMFs may be utilized to
identify the original gait trajectory.

At last, joint synergy of five joints for the subjects who
walked with and without exoskeletons is also drawn, which
showed that the joint synergy might change between with
and without wearing exoskeleton.
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