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-e irregular packing problem involves arranging all the irregular pieces on a plate with the objective of maximizing the use of
material. In this article, the layout is formed by the ordered sequence of the irregular pieces which is obtained by a hybrid search
algorithm and where the order is decoded by a proposed placement principle. First, a novel no-fit-polygon (NFP) generator is
introduced. -en, a placement principle is presented with the new NFP generator. Finally, a search algorithm hybridized with
beam search (BS) and tabu search (TS) is proposed to search over the sequence.-e numerical experiments withmany benchmark
problems show that the hybrid algorithm is an applicative and effective approach for solving the irregular packing problem. -e
hybrid algorithm can produce competitive solutions in less time than many other typical algorithms.

1. Introduction

-e irregular packing problem arises in many manufacturing
industries, such as metal cutting, textile, leather, and so on,
with different industries having different objectives and
constraints. In this article, the irregular packing problem is
categorized as a 2D irregular open dimension problem (2DIP)
by the typology of Wäscher et al. [1]. -e problem is con-
cerned with finding a good arrangement of all pieces, which
may be arbitrary shape, on a plate. Usually, the objective is to
maximize the material utilization or minimize the length of a
plate with a fixed width.

-e problem of finding an arrangement of pieces to cut
from or pack inside larger objects is known as the cutting and
packing problem, which is NP-hard by Garey and Johnson [2].
-e Irregular Packing problem belongs to the more general
class of combinatorial optimisation problems—the Cutting and
Packing problems.-e 2DIP problem is NP-complete, and as a
result, the time consumption of the algorithm is very expensive
when the scale of the problem is large. To obtain approximate
solutions in a reasonable time, numerous methods for the
irregular packing problem have been developed [3, 4].

-ere are two key strategies summarized in the
published literature for handling this problem. -e first
one, called the legal placement method, represents the
problem as a sequence of pieces and applying a placement
rule to construct the solution. -e second one, named the
relaxed placement method, considers the problem as
building a layout on the plate and moves pieces within the
layout.

-e legal placement method never allows the overlap
to happen during the packing process. -e two critical
points of these methods are the placement sequence of
pieces and the placement strategy. Art [5] implemented a
placement strategy called BL (bottom-left) and using the
multiple factors weighted to place the pieces. Dowsland
and Dowsland [6] developed this strategy by permitting
unpacked pieces to jump over the packed pieces to fill
holes. Dowsland et al. [7] also proposed an algorithm
where the edges of the plate width were alternated when
searching for positions instead of packing pieces from the
bottom to the top. Gomes and Oliveira [8] obtained the
effective BL position by calculating intersections between
the NFP of the already packed pieces and the next piece to
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be packed. Oliveira et al. [9] put forward a famous
placement strategy in a sophisticated constructive heu-
ristic called TOPOS. -e solution is produced from a
floating position, not the BL position. What’s more, both
the next piece to be packed and its placement point are
determined by three criteria: (a) minimum area of the
rectangular enclosure; (b) minimum length of the rect-
angular enclosure; (c) maximum overlaps between the
rectangular enclosures of the two pieces.

-e other critical point of the legal placement method is
the sequence of pieces. Dowsland et al. [10] proposed an
algorithm that adopts a fixed sequence to place pieces. -e
sequence can be generated in a random way or simply by
sorting the pieces by the area or length. Babu and Babu [11]
implemented a genetic algorithm to search over the se-
quence of pieces. Oliveira et al. [9] selected the next piece
dynamically by their TOPOS algorithm. Gomes and Oli-
veira [8] introduced a 2-swap heuristic for handling the
sequence of pieces. Burke et al. [12] combined their new
BLF(bottom-left-fill) heuristic algorithm with both hill
climbing and tabu search, where the sequence was searched
by randomly selecting one operator from four operators
(an insert move, a pairwise swap, a three-way swap, and an
n-way swap). -e beam search algorithm was presented by
Bennell and Song [13]; computational results showed that
some best results published in the literature could be
improved by their beam search algorithm. Sato et al. [14]
proposed simulated annealing that searched for feasible
layouts to be packed in a container with fixed dimensions.
Burke et al. [15] extended the orbital sliding method of
calculating no-fit-polygons to enable it to handle arcs and
used hill climbing and tabu local search algorithm to search
the sequence. Leung et al. [16] presented an extended local
search algorithm swapping two given polygons in one
placement and placing one polygon into a new position and
used the tabu search algorithm to avoid local minima.
Pinheiro et al. [17] proposed a random-key genetic algo-
rithm, which prescribed the integration of the aforemen-
tioned metaheuristic and well-known placement rules.
Mundim et al. [18] derived new concepts as the no-fit
raster, which could be used to check overlapping between
any two-dimensional generic-shaped pieces, and used a
biased random-key genetic algorithm to determine the
sequence in which pieces were packed. Martinez-Sykora
et al. [19] proposed a constructive approach allowing both
free orientation for the pieces, as in the case of the ceramic
industry, or a finite set of orientations as in the case of the
garment industry.

-e legal placement methods have the advantage of
generating feasible solutions and reducing an infinite so-
lution space to a discrete set of solutions. However, re-
ducing the number of solutions may generate the
possibility of omitting the global optimum at the same
time.

-e obvious characteristic of the relaxed placement
method is to allow overlaps during the packing process. It is
very easy to construct an initial layout. -e layout can be
built randomly, and better results might be obtained by
applying a good placement strategy. To minimize the

amount of overlap, the way of imposing penalties in ob-
jective functions was used widely.

Oliveira and Ferreira [20] applied a polygon-based
representation where identifying and resolving overlap
was handled by using D-functions. Jakobs [21] used
minimum rectangular enclosures to represent the ir-
regular pieces and then placed the pieces by the or-
thogonal method. Besides, the compaction algorithm was
applied to move the piece towards the BL position in the
orthogonal method, later, hybridizing linear program-
ming compaction with a search algorithm to handle the
process of moving pieces within the layout in Bennell and
Dowsland [22]. Gomes and Oliveira [23] improved this
approach by using a Simulated Annealing (SA) algorithm
to search the solution space, where linear programming
compaction was used to build the neighborhood struc-
ture. To avoid local optimum, meta-heuristics for re-
solving overlap have become quite popular in the relaxed
placement methods [24–26].

-e difference between the relaxed placement method
and the legal placement method is that the former usually
build the layout in a continuous region. -is means that
solution space can be infinite.-e relaxed placement method
has the advantage that no solutions are lost in the unchanged
solution space. However, the time consumption of these
methods may be unreasonable. In addition, such approaches
even do not guarantee to produce a feasible solution. By
contrast, the legal placement method produces a limited
number of solutions, but the solution is effective and the run
time of the algorithm is acceptable.

-ese approaches mentioned above can effectively solve
the irregular packing problem, but the time consumption of
the algorithm still can be reduced. More specifically, under
the orbiting method of NFP, creating potential translation
vectors and finding a feasible translation vector can be faster,
and this accounts for a large portion of time consumption.
Besides, the local evaluation of the placement position is
extensively used, which may lead to the local optimal so-
lution to some degree. Also, the search algorithms in the
former literature have a random character. -e algorithm
needs to be run several times to obtain a better solution, even
though it cannot always obtain a feasible solution. In this
article, a hybrid search algorithm is proposed to search the
sequence of pieces to be packed, which combines the local
evaluation and global evaluation, and, an improved orbiting
method of NFP, which reduces the steps of creating NFP in
Burke et al. [27]. -e proposed hybrid algorithm BSTS is
somehow deterministic and can produce some good results
with less time-consuming.

-e rest of the article is as follows: Section 2 describes
using the no-fit-polygon and the novel placement principle
to construct the solution under the situation of representing
the problem as a sequence of pieces. Section 3 depicts the
hybrid search algorithm used to search over the sequence of
pieces. When a new sequence is produced by the hybrid
search algorithm, the algorithm described in Section 2 will
be called to construct the layout. -e computational results
on many benchmark problems and conclusions are, re-
spectively, presented in Sections 4 and 5.
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2. Novel Placement Principle Based on
Improved NFP

-e main contribution of this article is to find out an
applicative and effective algorithm for the irregular shape
packing problem. -e problem is presented as a sequence
of pieces that be packed with a novel placement principle.
To describe the hybrid algorithm clearly, some related
concepts are defined and explained first. -e NFP can
efficiently avoid overlaps during the packing process. -e
placement principle is applied to rapidly find the place-
ment positions on NFPs and place the pieces. It is also
necessary to imply a search algorithm to search over the
sequence of pieces.

2.1. �e Improved NFP. -e no-fit-polygon concept was
first introduced by Art [5] and used to avoid overlaps when
placing the pieces on the plate. Later it was developed and
improved by several researchers. Although different ap-
proaches were proposed to generate NFP, they could be
categorized into three general methods: (a) the orbiting
algorithm [27, 28]; (b) Minkowski sums [29, 30]; (c) de-
composition algorithm [31–33].

When polygon B slides around the external edge of
polygon A (fixed), the locus of the reference point (on
polygon B) form the NFPAB. During the orbital process, the
relative orientations of the two polygons remained un-
changed (see Figure 1). -ere are three conditions about the
position of the reference point.

If the reference point of B is positioned inside NFPAB, A
and B will overlap; if the reference point of B is positioned on
the boundary of NFPAB, B will touch A; if the reference point
of B is positioned outside NFPAB, A and B will neither
overlap nor touch.

Hence, the problem of relative positions of two polygons
can be simplified as finding the relative positions between
one point and one polygon (see Figure 2).

In this article, the calculation of NFP is handled by the
orbital algorithm.-e improved approach is logically similar
to the algorithm of Burke et al. [27], while a modified
implementation is proposed.

In this section, the forming process of NFP is described.
When polygon B slides around A, each step creates an edge
of the NFP. Unlike the algorithm of Burke, the process of
producing NFP is broken down into the following three
subparts: finding potential vectors, eliminating infeasible
vectors, and calculatingminimum distance.-is method can
reduce the time of creating potential translation vectors and
finding a feasible translation vector.

2.1.1. Subheadings Finding Potential Vectors. As previously
described, the NFP is a polygon with each edge either de-
rived from an edge of A or B, depending on the situation (see
Figure 3).

-e set of potential translation vectors is obtained by the
touching edge pairs. -ere are three possible relative posi-
tions of two oriented edges (see Figure 4):

(1) A vertex of the orbiting edge b touches the middle of
the fixed edge a; the potential vector is PtPe

����→
.

(2) A vertex of the fixed edge a touches the middle of the
orbiting edge b; the potential vector is PePt

����→
.

(3) Both edges touch at a vertex. In this case, the po-
tential vector can be detected by the following rules:
if the angle from vector BjBj+1

������→
to AjAj+1

�������→
is less than

180°, the translation vector is AjAj+1
�������→

; otherwise, it is

Bj+1Bj

������→
(see Figure 5).

2.1.2. Eliminating Infeasible Vectors. -e potential transla-
tion vector produced by the method mentioned above might
be infeasible. -is section is to eliminate those potential
vectors which result in immediate intersections. For ex-
ample, in Figure 6(a), two potential translation vectors, a4
and −b1, can be created according to the rules mentioned in
case 3. Figure 6 demonstrates how to identify an infeasible
translation vector (a4). -e edge-pairs involving edge a4
have been omitted for brevity. Only the edge pairs of the
other touch point need to be tested. If translating polygon B
along vector a4, this would result in an immediate inter-
section between edges a1 and b1 (and also a2 and b1). Once
one translation is infeasible, the vector should be eliminated,
so a4 is not a feasible translation vector.

2.1.3. Calculating Minimum Distance. Before polygon B
translates along the translation vector, the feasible transla-
tion vector must be trimmed, which means calculating the
minimum distance of the vector. -is is necessary because
other edges may intersect during the translation of polygon
B. For example, in Figure 7(a), polygon A and polygon B
intersect because of applying the entire vector without
trimming. In this case, the minimum distance from the
original point to the intersection point defines the final
feasible vector (see Figure 7(b)).

2.2. �e Novel Placement Principle. -e solution space of
the irregular packing problem is infinite without limiting
the placement positions and rotations. To reduce the
solution space, some placement principles have been
presented, such as BL and TOPOS. BL principle, in which
a piece is placed to the bottom-left position, usually works
for the orthogonal packing problem, not for the irregular
packing problem. TOPOS algorithm is to place the piece
by evaluating the placement positions with the evaluation
criteria.

In this section, to determine placement position and
rotation angle for each piece, a new placement principle
based on BL principle and lowest-gravity-center principle
[34] is applied. -e modified and concise criteria are pro-
posed to evaluate the best placement position. Two attributes
(length L and area A of the rectangle enclosure) are selected
to create the criteria Z as follows (equations (1)–(3)). Fig-
ure 8 displays the meaning of the symbol in equations.
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length: L �
Lnew

xnew
, (1)

area: A �
Lnew × Wnew

xnew × ynew
, (2)

CostFuction(criteria): Z � min(L + A). (3)

Now, given a piece, its gravity center is first calculated
and then can generate two NFPs (gravity-center NFP and

bottom-left NFP) by viewing the gravity center and the
bottom-left vertex as the reference point, respectively. Note
that both gravity-center NFP and bottom-left NFP will be
different when different rotations of the piece are performed.
-e lowest gravity center and bottommost-leftmost vertex
are chosen to be evaluated by the criteria presented above.
-e position with the best evaluation is determined to be the
placement position. Figure 9 shows an example of the
presented placement principle. -e two solid polygons
(noted 1, 2) are the gravity-center NFPs with two different
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Figure 3: Translation vector: (a) derived from edge a3 and (b) derived from edge b1.
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Figure 2:-ree relative positions of the reference point andNFPAB: (a) overlapping, (b) touching, and (c) neither overlapping nor touching.
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Figure 1: -e no-fit-polygon of two polygons A and B.
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rotations. Meanwhile, the dotted polygons, noted 1 and 2
(some dotted edges coincide with the edges of the container)
are the bottom-left NFPs correspondingly.

3. The Hybrid Algorithm for
Searching Sequence

Usually, some sorting criteria, such as the area or the length,
are applied to determine the packing sequence of pieces.
Better solutions can be produced if a search algorithm is
applied to searching over the sequence. BS and TS algo-
rithms can successfully solve the 2DIP problem, but there are
still some imperfections. -e beam search is a heuristic with
a strong global search and deterministic. However, this may
also generate the possibility of removing other good solu-
tions. To deal with the problem, tabu search is hybridized
with a strong local search with beam search to implement an
applicative and effective hybrid search algorithm BSTS. -e
focus of this section is on the hybridization of tabu search
with beam search in the resolution of the packing sequence.

3.1. Tabu Search. Different from some greedy algorithms,
tabu search is a search algorithm with a neighborhood set
that accept worse solutions, not always better solutions. -e
advantage of this characteristic is that the tabu search can
escape from local minima. Tabu list is a dynamic and flexible
memory structure that prevents the algorithm from per-
forming the recently executed moves in the next few
iterations.

-e tabu search mechanism in this article is similar to the
algorithm of Glover and Taillard [35]. -e neighborhood size
in the tabu search is set to 5 and the tabu list is 100, which
contains the recently searched solutions, not the moves. In
this article, to extensively search over the packing sequence,
tabu search is applied to hybridize with beam search. -e
focus of the tabu search is on escaping from local minima. So
the neighbour structure is defined as a 4-way swap where four
randomly selected pieces are swapped. -e process can be
represented in the following way (see Figure 10).

3.2. Beam Search. Beam search is an established heuristic
derivative branch-and-bound. A common application is the
algorithm that uses a tree search mechanism in which only
the most promising nodes are performed to branch at each
level according to the evaluations. Usually, a two-stage beam
search is applied with two evaluations: local evaluation and
global evaluation. A local evaluation (also called rough
evaluation) can be faster but may result in discarding some
good solutions, whereas a global evaluation (also called
accurate evaluation) usually may be more time-consuming.
So, the combination of the two evaluations is significant in
most beam search algorithms.

First, a local evaluation is applied to evaluate all child
nodes (branching from each beam node) and select the best
c nodes (filter width) at each level. -en, the global eval-
uation is used to accurately evaluate the c nodes and retain
the best w nodes (beam width) to branch (see Figure 11).

In this article, the search tree, from the root to the last
level, represents the packing sequence of all pieces. At each
level, each node with its parent nodes in the upper levels

Start

Input the required data: pieces,
parameters, rotations, plate

Sorting the pieces by area or length to
 produce the current sequence S;
calculating the evaluation E of S

�e stop condition reached?Y

N

Make the 4-way swap,
forming the neighborhood

Selecting the optimal evaluation E∗ and
sequence S∗ from the neighborhood

E∗ > E ?
N

Y

E = E∗, S = S∗

Update tabu list

Return S and E

End

Figure 10: -e algorithm of tabu search.
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represents a partial solution. Each branch from each beam
node means adding an unpacked piece to the partial solution
until the lowest level, which means the complete solution.
Obviously, from the root to the lowest level, the number of
levels is the number of all pieces. And at each level, the
number of nodes branching from its parent node is the
number of the remaining piece types. Figure 12 shows how
beam search works for the problem.

3.3. Hybrid Algorithm. As mentioned above, the beam search
is a heuristic with a strong global search and deterministic.
However, this may also generate the possibility of removing
other good solutions. To deal with the problem, hybridize tabu
searchwith a strong local searchwith beam search to implement
an applicative and effective hybrid search algorithm BSTS.

-e hybrid search algorithm uses the same process of the
beam search except that using global evaluation to evaluate
the complete solution. In the hybrid search algorithm, the
sequence of the already packed pieces has been determined
by the BS mechanism and only the unpacked pieces need to
be searched by tabu search, not simply ordered randomly or
by decreasing area. -e hybrid search algorithm is a two-
stage strategy, where the local evaluation is the same criteria
was presented in the placement principle, but the global
evaluation is the length of the complete solution.-e process
of the algorithm can be represented as in Figure 13.

4. Results

In this section, the hybrid algorithm is tested by the
benchmark problems previously published in the literature.
To provide good solutions, NFP and the novel placement
principle are discussed in Section 3 to place each piece by the
sequence, which is given by the BSTS. Implementation and
parameters are set by preliminary computational experi-
ments, which are not discussed in this article.

4.1. Problem Instances. Hybrid algorithm (BSTS) is tested
by the packing problem instances, also used as

benchmark problems in other literature. -e data files
can be downloaded from the ESICUP website (http://
www.fe.up.pt/esicup). -e details can be summarized in
Table 1.

4.2. Results. -e computational tests were conducted on a
Core 2 D 2.0GHz processor with 1024Mb of RAM. -e
program was coded in Visual Studio C++.

As presented above, the times of applying global eval-
uation are rising with the increase of the filter width c of the
hybrid algorithm, which means more time-consuming.
Furthermore, if the tabu search used to determine the se-
quence of the unpacked pieces is complicated, the hybrid
algorithm may not be acceptable. According to the pre-
liminary computational experiments, the parameters were
set by the following rules: filter width�min {M, O ∗ 5},
Beam widths� {10, 100} with tabu iterations� (N− n− 1) ∗
5, where N was the total number of all pieces, n was the
number of packed pieces, M was the total number of the
piece types, and O was the number of the allowed orien-
tations. -e neighborhood size in the tabu search is set to 5
and the tabu list is 100.

-e computational tests consisted of 20 runs for each
instance, both for the simulated annealing hybrid algorithm
(SAHA) and the Random-Key Genetic Algorithm
(μ-BRKGA). -e SAHA and μ-BRKGA algorithms can
obtain a good solution to the problem. -ere are some
differences between these algorithms in the computational
environment. -e details about the hardware environment
are shown in Table 2. -e detailed parameters of the al-
gorithms are represented in their published literature. -us
results are compared with the results of SAHA [23] in
Table 3, and compared with the results of μ-BRKGA [36] in
Table 4. -e results of these algorithms are taken from their
original articles.

-e better results obtained by the hybrid algorithm BSTS
have been highlighted. Less than 1% worse results are
underlined. In comparison to the average results obtained by
SAHA, the proposed BSTS algorithm produces three better

Root

Level 1

Level 2

Level 3

Filter width (γ) = 3
Beam width (w) = 2

Figure 11: Illustration of a beam search.
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Start

Input the required data: pieces,
parameters, rotations, plate

Initial root number M

M < w
N Y

Adding new piece types to
the partial solution until M > w

Sorting the unpacked pieces by area
to generate complete solution

Global evaluation on
each complete solution

Selecting the best w
nodes to branch

Sorting all pieces by
decreasing area

Selecting the best w
nodes to branch

Stop condition is reached?

Adding new piece types to the partial
solution conducting local evaluation

Generating complete solution and conducting
global evaluation on γ∗w solutions

Selecting the best w
nodes to branch

Return the best final solution

End

Y

N

Figure 12: -e algorithm of beam search.
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Start

Input the required data: pieces,
parameters (BS,TS), rotations, plate

Initial root number M

M < wN Y

Adding new piece types to
 the partial solution untill M > w

Generate the complete solution

Calling the tabu search algorithm to
search unpacked pieces

Global evaluation on 
each complete solution

Selecting the best w
nodes to brach

Stop condition is reached?

N

Adding new pieces type to the partial
solution conducting local evaluation

Y

Generating complete solution and calling the tabu
search algorithm to search unpacked pieces

Conducting global evaluation on
γ∗w solutions

Selecting the best w
nodes to branch

Return the best final solution

End

Selecting the best w
nodes to branch

Sorting all pieces by
decreasing area

Figure 13: -e hybrid search algorithm.
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Table 1: Details of the benchmark problems.

Problem instance Number of piece types Total number of pieces Rotational constraints Sheet width
Fu 12 12 90 incremental 38
Jakobs1 25 25 90 incremental 40
Jakobs2 25 25 90 incremental 70
Shapes0 4 43 0 absolute 40
Shapes1 4 43 0, 180 absolute 40
Shapes2 7 28 0, 180 absolute 15
Dighe1 16 16 0 absolute 100
Dighe2 10 10 0 absolute 100
Albano 8 24 0, 180 absolute 4900
Dagli 10 30 0, 180 absolute 60
Mao 9 20 90 incremental 2550
Marques 8 24 90 incremental 104
Swim 10 48 0, 180 absolute 5752
Trousers 17 64 0, 180 absolute 79

Table 2: Computational environments.

Algorithm #lan CPU RAM (G) Times
BSTS VS C++ Core 2 D CPU at 2.0GHz 1 20
SAHA C++ Pentium IV CPU at 2.13GHz 0.5 20
μ-BRKGA Java Intel i7- 960 CPU at 3.2GHz 8 20

Table 3: BSTS algorithm results compared with the average results of SAHA.

Problem
Average results of SAHA Average results of BSTS

Length Avg. (%) Time (s) BW/FW Length Avg. (%) Time (s)
Fu 32.70 87.15 296 100/12 32.99 86.38 282
Jakobs1 12.93 75.80 332 100/20 11.98 81.87 639
Jakobs2 25.86 74.62 454 100/20 25.84 74.66 777
Shapes0 63.15 63.18 3914 10/4 66.11 60.38 363
Shapes1 58.17 68.59 10314 10/4 60.14 65.26 557
Shapes2 26.53 81.41 2257 100/7 28.48 75.82 401
Dighe1 122 81.97 83 10/5 125.66 79.48 185
Dighe2 119.53 83.66 22 10/5 121.12 82.56 92
Albano 10280.1 84.68 2257 100/8 10443.1 83.37 926
Dagli 59.41 85.36 5110 100/10 62.37 80.93 413
Mao 1842.70 79.99 8245 100/9 1839.4 80.12 759
Marques 79.63 86.87 7507 100/8 79.94 86.40 591
Swim 6121.39 72.27 6937 100/10 6369.1 69.46 855
Trousers 244.68 89.01 8588 100/10 252.07 86.41 641
Compared with the average results of SAHA, the better results obtained by the hybrid algorithm BSTS are highlighted by bold. Less than 1% worse results are
italicized, and this also shows that the BSTS algorithm can produce some comparable results. -e bold and italicized values can display the advantage of the
BSTS algorithm more clearly.

Table 4: BSTS algorithm results compared with the results of μ-BRKGA.

Problem
-e results of μ-BRKGA -e results of BSTS

Best (%) Avg. (%) Time (s) BW/FW Best (%) Avg. (%) Time (s)
Fu 91.96 88.34 1815 100/12 88.79 86.38 282
Jakobs1 89.09 78.79 6300 100/20 83.55 81.87 639
Jakobs2 79.75 77.90 7150 100/20 75.72 74.66 777
Shapes0 66.50 63.50 1200 10/4 62.19 60.38 363
Shapes1 72.55 65.89 1860 10/4 67.55 65.26 557
Dighe1 100.00 100.00 1920 10/5 82.21 79.48 185
Dighe2 100.00 100.00 2050 10/5 85.12 82.56 92
Albano 89.11 84.69 4200 100/8 84.46 83.37 926
Marques 89.14 84.31 3240 100/8 87.31 86.40 591
Swim 73.59 70.78 7400 100/10 71.74 69.46 855
Trousers 90.52 88.67 7250 100/10 88.84 86.41 641
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(c) (d)

(e)

Figure 14: Continued.

Mathematical Problems in Engineering 11



results (Jakobs1, Jakobs2, Mao) and four comparable results
(Dighe2, Fu, Albano, Marques) which are within 1% of the
average results. In comparison to the average results ob-
tained by μ-BRKGA, the proposed BSTS algorithm produces
two better average results (highlighted in Table 4). Although
the best results of μ-BRKGA surpass the BSTS, the time of
μ-BRKGA much overtakes the BSTS. In ten benchmark
problems, there are all solutions (highlighted in Table 4) to
be produced much faster than μ-BRKGA.-e layouts for the
best results of the seven cases can be found in Figure 14 in
Appendix. -e details of 20 runs for the 14 benchmark
problems are also shown in Table 5 in Appendix.

5. Conclusions

-e article describes a hybrid search algorithm for the ir-
regular packing problem. -e packing problem is presented
as a sequence of pieces. -e sequence is searched by the
proposed hybrid search algorithm BSTS and decoded by an
improved placement principle. -e improved orbiting
method of NFP is presented. It can create potential trans-
lation vectors and find a feasible translation vector in a
significantly faster time. -e placement position of each
piece is determined by an evaluation, which is also the local
evaluation of the hybrid search algorithm. To generate

(f)

(g)

Figure 14: (a) Fu: 88.36% (282 s), (b) Jacobs1: 83.55% (639 s), (c) Marques: 86.40% (591 s), (d) Swim: 71.74% (855 s), (e) Mao: 81% (759 s),
(f ) Albano: 84.46% (926 s), and (g) Trousers: 88.84% (641 s).

Table 5: -e detailed results of 20 runs for 14 instances.

Fu Jakobs1 Jakobs2 Shapes0 Shapes1 Shapes2 Dighe1 Dighe2 Albano Dagli Mao Marques Swim Trousers
86.36 79.67 74.23 61.01 67.31 75.26 78.5 85.12 84.46 80.37 81 86.76 68.83 86.77
88.79 80.99 73.67 60.82 67.55 80.23 77.2 81.67 84.46 83.01 78.24 86.4 69.58 88.84
85.84 81.67 74.59 60.92 64.04 73.72 76.62 83.37 82.74 79.37 79.15 85.93 69.51 86.6
86.1 81.67 75.54 62.19 66.17 76.06 80.14 80.15 84.06 80.5 80.11 86.76 69.38 86.6
86.36 81.67 74.59 59.55 66 76.06 80.84 82.12 83.4 83.01 79.89 85.93 69.11 85.55
86.36 83.55 74.23 60.36 63.43 75.26 80.26 80.64 83.4 81.27 80.87 87.31 68.47 85.92
86.36 81.67 74.23 60.36 64.35 76.06 78.18 82.75 84.27 79.49 79.3 86.76 68.74 86.64
86.36 83.55 74.66 61.29 66.17 76.33 80.35 82.25 84.06 80.37 79.38 85.4 68.22 86.09
87.66 81.67 74.23 59.55 63.45 76.06 78.39 84.85 82.7 80.89 80.01 86.68 69.82 86.4
85.86 81.67 75.72 60.36 65.2 79.33 82.21 81.03 83.05 82.06 80.66 87.31 68.71 86.88
86.1 83.33 74.23 60.72 65.41 76.06 80.32 81.89 82.61 80.76 80.87 85.93 69.92 86.05
85.84 82.28 74.23 60.27 63.33 76.33 78.61 81.76 82.54 80.76 79.38 86.25 70.41 86.4
86.36 80.33 74.23 59.91 64.04 76.33 78.67 83.31 83.05 80.12 80.11 86.25 68.92 86.36
86.36 81.67 75.54 59.55 63.74 75.26 79.68 82.56 83.81 81.54 79.97 84.98 70.6 87.26
85.84 81.67 75.09 59.55 63.84 75.52 79.41 82.75 83.05 81.54 81 86.25 71.74 85.75
86.36 81.67 74.34 60.45 66.17 76.87 80.38 84.46 82.61 79.74 80.68 86.76 69.08 86.12
85.84 82.49 74.23 59.55 63.94 75.26 78.39 81.82 83.27 81.67 80.87 85.4 68.89 85.45
86.1 82.86 74.59 59.82 67.55 73.97 78.45 84.46 83.05 80.37 79.89 86.68 69.33 86.19
86.36 81.67 75.72 61.2 66.17 75 81.31 82.18 83.36 79.62 80.87 86.76 70.41 86.36
86.36 81.67 75.39 60.18 67.31 74.48 81.73 82 83.36 82.06 80.11 87.31 69.04 86.05
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complete solutions, tabu search is applied to search over the
unpacked pieces and decide Beam nodes by using global
evaluation. -e hybrid algorithm BSTS is somehow deter-
ministic and can produce some good results with less time
consumed. Furthermore, hybridizing BS with TS can de-
crease the possibility of removing other good solutions
caused by the determinacy of the single BS approach.

-e experiments show that the hybrid algorithm is an
applicative and effective algorithm for the irregular packing
problem. To demonstrate its efficiency and determinacy, the
proposed algorithm can produce three better results and
four comparable results that are within 1% of the average
results of SAHA in the 14 benchmark problems. Also, the
algorithm can produce available solutions much faster than
μ-BRKGA approaches.

In future work, the performance of the BSTS will be
examined in more instances available on the ESICUP
website, extending the ideas developed here to other bin
packing problems with irregular pieces, such as the problems
arising from cutting leather, in which bins are neither
identical nor rectangular, and can even have some defects,
defining nonusable zones.
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