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+e multicommodity flow problem deals with the transshipment of more than one commodity from respective sources to
corresponding sinks without violating the capacity constraints. Due to the capacity constraints, flows out from the sources may
not reach their sinks, and so, the storage of excess flows at intermediate nodes plays an important role in the maximization of flow
values. In this paper, we introduce the maximum static as well as maximum dynamic multicommodity flow problems with
intermediate storage. We present polynomial and pseudopolynomial time algorithms for the former and latter problems, re-
spectively. We also present the solution procedures to these problems in contraflow network having symmetric as well as
asymmetric arc transit times. We transform the solutions in continuous-time settings by using natural transformation.

1. Introduction

Network is a topological structure with links (arcs), with its
crossings (nodes) being its components. +e transportation
network is one of the relevant examples of a network to-
pology, in which road segments are considered as the arcs
and their crossings as nodes. Any kinds of entities moving
on the road are considered as flows, and their initial and final
destinations are considered as the source and sink, re-
spectively. Each arc has nonnegative capacity, which limits
the flow on arc. Dynamic network has one more attribute on
arc, i.e., transit time, which represents the time to send the
flow from one node to another one. Ford and Fulkerson are
the pioneers of the network flow over time (so-called dy-
namic flow) problems [1, 2].

+e transshipment of several different commodities
from respective sources to corresponding sinks through a
network without violating the capacity constraints on the
arcs is known as multicommodity flow problem. Vehicle
routine in transportation, production planning, supply
chains for essential goods, and massage routing in tele-
communication are some examples of multicommodity flow
problem. On the basis of temporal dimension, multi-
commodity flow problem can be classified as static

multicommodity flow problem and dynamic multi-
commodity flow problem [3–6]. If we maximize the supply-
demand in a fixed time horizon, then the problem becomes a
maximum dynamic multicommodity flow problem. +e
static multicommodity flow problem is polynomial time
solvable by using the ellipsoid or interior point method,
whereas dynamic multicommodity flow problem is
NP-hard [7]. By using time expanded network, Kappmeier
[8] provided the solution of maximum dynamic multi-
commodity flow problem and multisource single sink
multicommodity earliest arrival transshipment problem in
pseudopolynomial time complexity. Priority-based multi-
commodity flow problem and polynomial time solution
strategy are presented in [9].

Maximum flow problem with intermediate storage is
extremely relevant in large scale disaster management. In
evacuation models, one wishes to shift maximum evacuees
from danger zones (sources) to safety places (sinks) as
quickly and efficiently as possible. +us, at the time of
evacuation, if the number of evacuees out from sources is
greater than the minimum cut capacity, then the excess
evacuees can be placed at intermediate shelters that are
comparatively safer than the danger zone. +e various ap-
plications of the network flow with intermediate storage are
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evacuation planning, demand-supply chain of goods, water
supply system, etc. Pyakurel and Dempe [10] introduced the
concept of maximum static and maximum dynamic flow
problems with intermediate storage and presented poly-
nomial time algorithms to solve them. +ey also presented
polynomial time algorithm for dynamic contraflow problem
with intermediate storage. In case of multisource multisink
network, Pyakurel et al. [11] solved the prioritized maximum
flow problem with intermediate storage and presented
polynomial time algorithm to solve the problem, where
priority is given to the farthest element from the source.
Recently, Pyakurel and Dempe [12] presented efficient al-
gorithms for universal maximum dynamic flow problem
with intermediate storage in general as well as two-terminal
series parallel networks.

In two-way network, contraflow (lane reversal) is one of
the best techniques to increase the outbound capacities of
arcs andminimize the overall time horizon, in which arcs are
reversed towards the destination [13]. Rebennack et al. [14]
provided the models and polynomial time algorithms for
maximum and quickest flow problems in a two-terminal
network by reverting the arcs at time zero and keeping them
fixed afterward by using analytical approach for discrete-
time settings. In continuous-time settings, Pyakurel and
Dhamala [15] introduced the dynamic contraflow model. By
using the natural transformation of Fleischer and Tardos
[16], they have presented efficient algorithms to solve the
maximum, quickest, and earliest arrival flow problems with
lane reversals.

Pyakurel et al. [17] introduced the concept of partial lane
reversals, in which only necessary arc capacities are reversed
to increase the flow value, and unused arc capacities are
saved for other emergency proposes like logistic supports
and facility locations. Dhamala et al. [18] presented ap-
proximation algorithms for quickest multicommodity flow
over time problem with partial lane reversals using length
bound flow and condensed time expanded network in
discrete-time settings. Continuous-time solutions of these
problems are found in [19]. Similarly, Pyakurel et al. [20]
presented polynomial time algorithm for maximum static
and pseudopolynomial algorithm for maximum dynamic
multicommodity flow problems with partial lane reversals.

In this paper, we aim to find the solution of discrete-time
maximummulticommodity flow problem with intermediate
storage by integrating the concept of multicommodity flow
problem and the maximum flow problem with intermediate
storage. We present polynomial time algorithm for static
multicommodity flow problem and pseudopolynomial time
algorithm for dynamic multicommodity flow problem by
allowing the storage of excess flow at intermediate nodes.
We extend the results for contraflow configuration with
symmetric as well as asymmetric transit times and also in
continuous-time settings.

Our models are designed with the following limitations:
at each intermediate node, inflowmust be greater or equal to
the outflow. At each arc, flow must not exceed the capacity.
+e storage capacity of intermediate nodes must be at least
the sum of incoming arc capacities. Every commodity must
transship from respective sources to their corresponding

sinks. Objects within a commodity group are homogeneous
and between the commodity groups are heterogeneous.

We organize the paper as follows. Section 2 provides the
basic terminologies used in the paper and the mathematical
formulation of flow models. In Section 3, we present a
polynomial time algorithm to solve the maximum static
multicommodity flow problem with intermediate storage,
and in Section 4, we solve the maximum dynamic multi-
commodity flow problem with intermediate storage in
pseudopolynomial time complexity. For two-way multi-
commodity network, we present a solution procedure of
these problems in Section 5 within the same time com-
plexity. Similarly, in Section 6, we extend the results of
dynamic flow problems in continuous-time settings by using
natural transformation. +e paper is concluded in Section 7.

2. Basic Terminologies and
Mathematical Models

Consider a dynamic network N � (V, A, K,u, b,

τ, di, S, D, T), where V and A⊆V × V represent the sets of
nodes and arcs with |V| � n and |A| � m, respectively. Let
si ∈ S ⊂ V and ti ∈ D ⊂ V be the source and sink nodes with
respect to commodity i ∈ K � 1, 2, . . . , k{ } and I � V∖ S, D{ }

the set of intermediate nodes. Here, di represents the amount
of supply from the source node si for each commodity i ∈ K

that is to be sent to the corresponding sink ti and the in-
termediate nodes I. Each arc a � (v, w) ∈ A with head (a) �

w and tail (a) � v is equipped with a capacity function
u: A⟶R+ that restricts the flow of commodity and a
nonnegative transit time function τ: A⟶R+ that mea-
sures the time to transship the flow from node v to node w.
Similarly, b: V⟶R+ represents the storage capacity
function of nodes that is used to hold the flow at sources and
sinks, together with the storage of excess flow leaving from
the source si but not reaching the sink ti at intermediate
nodes. Capacity of arcs (roads) and the storage capacity of
nodes (shelters) are the controlling parameters of our model,
which control the flow at arcs and nodes, respectively. Let
δout(v) and δin(v) be the set of outgoing arcs from node v

and incoming arcs to node v, respectively. +e time period T

given in advance is denoted byT � 0, 1, . . . , T{ } in discrete-
time settings and T � [0, T + 1) in continuous-time set-
tings. In static flow, the transit time is considered as the cost,
and time parameter T is absent.

+roughout the paper, we consider that the storage
capacity of sources and sinks is sufficiently large, i.e., bsi

�

bti
≤∞ and that of intermediate nodes is finite. If the sum of

incoming arc capacities of an intermediate node v ∈ I is
more than the sum of outgoing arc capacities, then the excess
flow is used to store at v. Moreover, for the uniqueness of the
solution, the storage capacity of v ∈ I should be
bv ≥a∈δin(v)ua.

2.1. Static Multicommodity Flow Model. +e static multi-
commodity flow function g on the given network
N � (V, A, K, c,u, b, di, S, D) is the sum of nonnegative arc
flow functions gi

a: A⟶R+ and the excess flow functions
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gi
v: I⟶R+, for each i ∈ K, satisfying conditions (1)–(5).

+e linear programming formulation of static multi-
commodity flow with intermediate storage is as follows:

maxdi � 

a∈δout si( )

g
i
a � 

a∈δin ti( )

g
i
a + 

v∈I: bv ≥ 0
g

i
v,

(1)

such that



a∈δin(v)

g
i
a − 

a∈δout(v)

g
i
a ≥ 0, ∀v ∈ I, i ∈ K,

(2)

0≤ga � 
i∈K

g
i
a ≤ua, ∀a ∈ A, (3)

0≤gv � 
i∈K

g
i
v ≤ bv, ∀v ∈ I, (4)



a∈δin(v)

ua ≤ bv, ∀v ∈ I.pt
(5)

Objective function in equation (1) is to maximize the
total flow out from each source, for all i ∈ K, which is equal
to the sum of inflow at the sink and the excess flow at

intermediate nodes. Equation (2) represents the noncon-
servation of flow at intermediate nodes.+e constraint in (3)
represents the bundle constraint on each arc that is bounded
by its capacity, and the constraints in (4) represent the excess
flow at each intermediate node, which is bounded by the
storage capacity. Similarly, the constraint in (5) represents
that the storage capacity of intermediate node v ∈ I is at least
the sum of incoming arc capacities to v. +e cost of static
flow g associated with arc a and commodity i with cost
coefficient ci

a is defined as

c(g) � 
i∈K


a∈A

c
i
ag

i
a. (6)

2.2. Dynamic Multicommodity Flow Model. For a given
dynamic networkN with constant transit time τ on each arc
a, the multicommodity flow over time function ψ is the sum
of nonnegative arc flow functions ψi: A × T⟶R+ and
the storage flow functions ψi

v: I × T⟶R+ for each i ∈ K,
satisfying constraints (7)–(11). +e linear programming
formulation of dynamic multicommodity flow with inter-
mediate storage is as follows:

max di � 

a∈δout si( )



T

θ�0
ψi

a(θ) � 

a∈δin ti( )



T

θ�τa

ψi
a θ − τa(  + 

v∈I: bv ≥ 0
ψi

v(T), (7)

such that



a∈δin(v)



θ

β�τa

ψi
a β − τa(  − 

a∈δout(v)



θ

β�0
ψi

a(β)≥ 0,

∀v ∈ I, i ∈ K, θ ∈ T,

(8)

0≤ψa(θ) � 
i∈K

ψi
a(θ) ≤ua, ∀a ∈ A, θ ∈ T, (9)

0≤ψv(θ) � 
i∈K

ψi
v(θ) ≤ bv, ∀v ∈ I, θ ∈ T, (10)



a∈δin(v)

ua ≤ bv ≤T 

a∈δin(v)

ua, ∀v ∈ I.
(11)

Equation (7) is an objective function that maximizes
the total flow out from the source in time horizon T, for
each i ∈ K, which is equal to the sum of inflow at sink and
the excess flow at intermediate nodes. Equation (8)
represents the nonconservation of flow at intermediate
nodes for each time step θ. In any instance of time θ, the
bundle constraint in (9) is bounded by arc capacity, and
the constraint in (10) represents that the excess flow at
each intermediate node is bounded by the storage ca-
pacity. Similarly, the constraint in (11) represents the
lower and upper bounds of the storage capacity of in-
termediate node v ∈ I. +e cost of discrete dynamic flow ψ
associated with arc a and commodity i with cost coeffi-
cient ci

a is defined as

c(ψ) � 
i∈K


a∈A

c
i
a 

T

θ�0
ψi

a(θ). (12)

3. Maximum Static Multicommodity Flow

In this section, we introduce the maximum static multi-
commodity flow problem with intermediate storage and
present a polynomial time algorithm to solve it.

Problem 1. For a given static network N � (V,

A, K, c,u, b, di, S, D), the maximum static multicommodity
flow problem with intermediate storage finds the maximi-
zation of flow leaving from each source si, for all i ∈ K, which
is to be sent to the corresponding sink ti via si − ti paths by
allowing the storage of maximum excess flow at intermediate
nodes with storage capacity bv ≥a∈δin(v)ua.

As the solution strategy, we first reduce the multi-
commodity flow problem into k independent single com-
modity flow problems by reallocating the capacity of bundle
arcs using the resource directive decomposition method. It
reallocates the capacity of bundle arc for each commodity in
such a way that the objective is optimal. +e decomposition
algorithm to minimal-cost multicommodity flow problem
can be used for minimum cost flow problem, which was the
motivation for the development of the original Dant-
zig–Wolfe decomposition method [21] (see Bazaraa et al.
[22]). For each i ∈ K, we used to store the maximum flow at
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sink ti and the excess flow at intermediate nodes v ∈ I with
priority order. As in Pyakurel and Dempe [10], we have a
single sink for each commodity i ∈ K, which is considered as
the most appropriate place to store the flow. So, the first
priority is given to the sink to transship as much flow as
possible. To store the excess flow at intermediate nodes, we
set the priority order as follows: for each v ∈ I with storage
capacity bv ≥a∈δin(v)ua, calculate the shortest distance
d[si,v], for each i, by using algorithm of Dijkstra [23]. We
consider the path with the minimum cost as the shortest
path, and the priority is given to the farthest node among the
nodes with shortest distance. +at is, ∀v1, v2 ∈ I if
d[si,v1]> d[si,v2], then v1 is higher in priority than v2 and it is
denoted by v1 ≻ v2. It is to be noted that the nodes lying in the
bundle arcs may have different priority ordering with respect
to the commodity.

For each prioritized node v ∈ I, we create dummy port vi
′

(since the node v ∈ I lying in the bundle arc contains the
flow of more than one commodity, so dummy ports are
represented commodity-wise, i.e., vi

′) with cost
c[v,vi
′] � d[v,vi

′] � 0 and capacity u[v,vi
′] � bv � bvi

′, where u[v,vi
′]

and c[v,vi
′] are the arc capacity and cost of dummy arc (v, vi

′),
respectively. Every dummy port vi

′ with respect to com-
modity i has the same priority order as v has. Associated with
each commodity i, the collection of dummy ports vi

′  to-
gether with the sink ti forms a modified network
Ni
′ � (Vi
′, Ai
′, c,u, b, di, si, Di

′) with single source si and
multiple sink Di

′ � ti ∪ vi
′  . For an instance, if

ti ≻ vi,1 ≻ . . . ≻ vi,r is priority order of nodes with respect to
commodity i, then Di

′ � ti � vi,0′ , vi,1′ , . . . , vi,r
′ .

Now, we present a polynomial time algorithm to solve
Problem 1 by using the algorithm of Pyakurel and Dempe
[10] for single source multisink network Ni

′, ∀i ∈ K.

Theorem 1. Algorithm 1 solves the maximum static mul-
ticommodity flow problem with intermediate storage
optimally.

Proof. Before proving the optimality, we first prove the
feasibility of the algorithm. Step 1 is the use of de-
composition algorithm to reduce the multicommodity
flow problem to single commodity flow problem, and
Step 2 calculates the shortest distances by using
Dijkstra’s algorithm, so both steps are feasible. Steps 3,
4, and 6 are prioritization of nodes, modification of
network, and transformation of solution, which can be
solved in linear time, and so they are feasible. Similarly,
according to Pyakurel and Dempe [10], Step 5 provides
feasible flow with intermediate storage for each com-
modity i ∈ K. +us, the solution obtained from Algo-
rithm 1 is feasible.

+e optimality of algorithm is assured by Step 5. For each
commodity i ∈ K, lexicographic maximum static flow in
prioritized sink Di

′ is obtained optimally as the single
commodity flow problem solved by Pyakurel and Dempe
[10]. So, the sum of optimal single commodity flows idi is
optimal multicommodity flow with intermediate
storage. □

Theorem 2. Maximum static multicommodity flow problem
with intermediate storage can be solved in polynomial time
complexity by using Algorithm 1.

Proof. +e decomposition algorithm in Step 1 is obtained in
polynomial time complexity, and the shortest distance can
be obtained in O(n2) time by using Dijkstra’s algorithm.+e
prioritization of nodes and creating dummy ports can be
obtained in linear time. For each single commodity i, Step 5
can be solved in polynomial time complexity of O(δmn) for
0< δ < n, [10]. +erefore, Algorithm 1 solves the maximum
static multicommodity flow problem with intermediate
storage in polynomial time with complexity
O(n2) + O(kδmn), where |K| � k. □

Example 1. Consider a two-commodity network with ca-
pacity and cost on each arc as shown in Figure 1(a), where
the numbers aside the nodes represent the node capacities.
Using Dijkstra’s algorithm, we find the shortest distance of
each intermediate node and fix the priority order with
farther-in-distance-higher-in-priority. So, the priority or-
ders are t1 ≻y≻ x and t2 ≻ x≻y for commodity 1 and
commodity 2, respectively. After priority ordering, we de-
note D1′ � t1, y1′, x1′  and D2′ � t2, x2′, y2′  as the set of
prioritized dummy ports for commodity 1 and commodity
2, respectively, which is presented in Figure 1(b).

While decomposing the flow on the bundle arc (x, y),
flows of 3 and 2 units are assigned for commodity 1 and
commodity 2, respectively. By using Algorithm 1, the
maximum amount of flow leaving the source s1 is 4 units out
of which 2 units of flow are reached at sink t1 and the in-
termediate nodes y and x hold 1 unit each. Similarly, 7 units
of flow are transmitted from the source s2, out of which 6
units of flow are reached at the sink t2 and the intermediate
nodes x and y hold 1 and 0 units, respectively. At last, the
solution is transformed to the original network by removing
the dummy ports and dummy arcs and sending back the
flow to its respective nodes. +e amount of flow stored at
sinks and the intermediate nodes is gt1

� 2, gt2
� 6, gx � 2,

and gy � 1. If the intermediate storage is not permitted, then
the flow of gt1

� 2 and gt2
� 6 units can only be

transshipped.

4. Maximum Dynamic Multicommodity Flow

+is section deals with the maximum dynamic multi-
commodity flow problem, where storage of the excess flow at
intermediate nodes is allowed. We present a pseudopoly-
nomial time algorithm based on the time expanded network
of Kappmeier [8] to solve the problem.

Problem 2. For a given dynamic network
N � (V, A, K,u, b, τ, di, S, D, T), the maximum dynamic
multicommodity flow problem with intermediate storage is
to maximize the flow leaving each source si, for all i ∈ K,
which is to be sent to the corresponding sink ti via si − ti

paths by allowing the storage of maximum excess flow at the
intermediate nodes with storage capacity a∈δin(v)ua ≤
bv ≤Ta∈δin(v)ua within time horizon T.
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As in Section 3, we first reduce the multicommodity flow
problem into k independent subproblems and fix the pri-
ority order of intermediate nodes. Static solution is obtained
in the modified single source and multisink network Ni

′ �
(Vi
′, Ai
′,u, b, τ, di, si, Di

′, T) for all i ∈ K, by using Algo-
rithm 1. To obtain the dynamic solution, we use the static
multicommodity flow on time expanded network as in
Kappmeier [8].

For this, we construct a temporary sink ti with infinite
capacity and join each dummy port vi

′ ∈ Di
′ with u[vi

′,ti]
�

gi
vi
′(θ) and τ[vi

′,ti]
� 0, where gi

vi
′(θ) is the static flow of

commodity i at vi
′ at time θ. +e choice of u[vi

′,ti]
� gi

vi
′(θ) is

taken to assure that the flow while sending back from the
dummy ports must be on respective nodes. Now, for each
i ∈ K, the new network Ni

′ is obtained by adding temporary
sink and arcs in Ni

′ so that it becomes a single source single
sink network with prioritized intermediate nodes. LetNT �

(VT, AT � AM ∪AH ∪As ∪At, K,u, b, τ, di,
S, D, T) be the

time expanded network of new network N′ � ∪ i
Ni
′, where

Ni
′ is obtained by including temporary sinks, supersource,

and supersink in Ni
′. +e components in time expanded

network NT are defined as follows:

25 20

x y
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t2

4, 1

3, 2

5, 1
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∞

∞
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∞

(a)

x y
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t1
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∞

∞
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1/25

1/25
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(b)

Figure 1: (a) A two-commodity network with capacity and cost on the arcs and storage capacity on the nodes. (b)+e modified network of
(a) with prioritized dummy ports.

Input: given static network N � (V, A, K, c,u, b, di, S, D).
Output: maximum static multicommodity flow with intermediate storage in N.

(1) Reconfigure themulticommodity flow problem into k independent single commodity flow problems by reallocating the capacity of
bundle arcs using the resource directive decomposition.

(2) For each v ∈ I with bv ≥a∈δin(v)ua, compute commodity-wise shortest distance d[si ,v] by using Dijkstra’s algorithm.
(3) Fix the priority order as ti ≻ vi,1 ≻ . . . ≻ vi,r with respect to commodity iwith first priority to the sink ti and priority for intermediate

elements as d[si ,vi,m]> d[si ,vi,m+1]⇒ vi,m ≻ vi,m+1, for m � 1, . . . , r − 1.
(4) For each i ∈ K, construct the modified networkNi

′ � (Vi
′, Ai
′, c,u, b, di, si, Di

′) with single source si and multiple sinks with dummy
ports Di

′ � ti � vi,0′, vi,1′, . . . , vi,r
′ .

(5) For i � 1, . . . , k:
Compute the lexicographic maximum static flow in Ni

′ with priority order of Step 3 according to [10].
(6) Transform the solution to the original network N by removing the dummy ports and the dummy arcs.

ALGORITHM 1: Maximum static multicommodity flow algorithm with intermediate storage (MSMCFAIS).
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VT � vθ: v ∈ V, θ ∈ T ∪ vi,θ′ ∪ ti,θ : i ∈ K, θ ∈ T ∪ s
∗
i , t
∗
i : i ∈ K ∪ s,t ,

AM � vθ, wθ+τa
 : a � (v, w) ∈ A, θ ∈ T ∪ vθ, vi,θ′ ∪ vi,θ′, ti,θ : v ∈ I, θ ∈ T ,

AH � vθ, vθ+1( : v ∈ V, θ ∈ T ∪ vi,θ′, vi,θ+1′ ∪ ti,θ, ti,θ+1 : i ∈ K, θ ∈ T ,

A
s

� s, s
∗
i( : i ∈ K ∪ s

∗
i , si,θ : i ∈ K, θ ∈ T ,

A
t

� t, t
∗
i( : i ∈ K ∪ t

∗
i , ti,θ : i ∈ K, θ ∈ T ,

S � s, s
∗
i , si,θ: i ∈ K, θ ∈ T ,

D � t, t
∗
i , ti,θ: i ∈ K, θ ∈ T .

(13)

Kappmeier [8] has shown that the static multi-
commodity flow on the time expanded network is equivalent
to the dynamic multicommodity flow on the original
network.

Theorem 3. (see [8]). For a given dynamic network N �

(V, A, K,u, b, τ, di, S, D, T) with time horizon T, a feasible
static S − D multicommodity flow gT in the time expanded
networkNT yields the feasible dynamic multicommodity flow
ψ in N such that |gT| � |ψ|.

We now present an algorithm to solve problem 2 by
using time expanded network.

Theorem 4. Algorithm 2 provides an optimal solution to the
maximum dynamic multicommodity flow problem with in-
termediate storage in pseudopolynomial time complexity.

Proof. At first, we prove the feasibility of Algorithm 2. As
Step 1 is a reconfiguration of given network by using de-
composition algorithm, and Step 2 is its modification in-
cluding dummy ports and temporary sinks, so these steps
provide the feasible solution. Due to +eorem 3, con-
struction of time expanded network in Step 3 is feasible, and
the feasibility of Step 4 is obtained by Algorithm 1. +e
transformation of solution in original network is also fea-
sible. +e optimality of algorithm is assured by the opti-
mality of Step 4, which is as similar to [8].

Next, we prove the computational time of Algorithm 2,
which is dominated by the complexity of Step 4. Here, the
computational time complexity of Step 4 is
O(T × MSMCFAIS), where O(MSMCFAIS) is the com-
plexity of maximum static multicommodity flow algorithm
with intermediate storage. From +eorem 2,
O(MSMCFAIS) � O(n2) + O(kδmn) for 0< δ < n. With
Step 4 being polynomial in input size of the network, but not
bounded in T, Algorithm 2 solves the maximum dynamic
multicommodity flow problem with intermediate storage in
pseudopolynomial time. □

Example 2. Consider a two-commodity network from
Figure 1 by considering the cost on each arc as the transit
time with time horizon T � 5. +e prioritization of inter-
mediate nodes and creating dummy ports are similar to
Example 1. For each commodity i � 1, 2, the problem is

reduced to single source and multisink single commodity
flow problem due to dummy ports (see Figure 1(b)). By
adding temporary sink ti, it reduces to commodity-wise
single source single sink (i.e., si − ti) problem, which is
shown in Figure 2. We calculate the maximum static
multicommodity flow with intermediate storage using Al-
gorithm 1 and then repeat the procedure with intermediate
storage in time expanded network as similar to Kappmeier
[8]. Here, the maximum static flow is calculated from
minimum cost flow by considering the transit time as cost.
Figure 3 represents the time expanded network of Figure 2
with time horizon T � 5. At last, we obtain the maximum
dynamic flow with intermediate storage by removing the
dummy arcs and replacing the flow of dummy ports to their
respective nodes.

For commodity 1, total amount of flow leaving the
source s1 within the time horizon T � 5 along the path s1 −

x − y − t1 is 20 units, out of which 4, 8, and 8 units are
transshipped with priority order at t1, y and x, respectively.
For commodity 2, flows are sent through two paths s2 − x −

y − t2 and s2 − y − t2 with priority order t2 ≻ x≻y. It is to be
noted that while sending flow from the path s2 − x − y − t2,
flow leaving s2 at θ � 0 sends 2 units of flow at t2 by storing 1
unit at x. After next iteration onward, flow cannot reach the
sink, and so it is to be stored at x but not at y because x is
higher in priority than y. Similarly, path s2 − y − t2 first
sends 4 units of flow thrice at t2 and then holds the flow at y

for next two times. Total amount of flow leaving the source s2
through two paths within T � 5 is 32 units, out of which 14,
10, and 8 units are transshipped at t2, x and y, respectively.
+e detailed information of the flow leaving from sources at
different time steps θ, which are to be stored at sinks and the
intermediate nodes, is presented in Table 1.

Here, the amount of flow reaching the sinks is the max-
imum multicommodity flow without intermediate storage. So,
if intermediate storage is prohibited, then only 4 units of flow of
commodity 1 and 14 units of flow of commodity 2 can be
reached at their respective sinks within the time T � 5.

5. Multicommodity Contraflow Problems

In this section, we investigate themulticommodity flowproblem
with contraflow configuration, where the storage of excess flow
at intermediate nodes is allowed. In a two-way network, con-
traflow means the reversal of oppositely directed arcs towards
the destination node to improve the flow and reduce the overall
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time horizon. We discuss two different aspects of transit times
(or cost for static), symmetric and asymmetric, between the pair
of nodes with oppositely directed arcs.

5.1. Contraflow with Symmetric Transit Times. Let
N � (V, A, K,u, b, τ, di, S, D, T) be a dynamic multi-
commodity network having symmetric transit times on

antiparallel arcs, i.e., τa � τ
a
←, where a

←
� (w, v) is oppositely

directed arc of a � (v, w). To solve the problem in contra-
flow network, we transform the given network to an aux-
iliary network as follows.

Input: given dynamic network N � (V, A, K,u, b, τ, di, S, D, T).
Output: maximum dynamic multicommodity flow with intermediate storage in N.

(1) Reconfigure themulticommodity flow problem into k independent single commodity flow problems by reallocating the capacity of
bundle arcs by using the resource directive decomposition and considering the transit times as cost.

(2) Construct a modified new network N′ by including temporary sinks, supersource, and supersink in Ni
′.

(3) Using new network N′, construct the time expanded network NT � (VT, AT � AM ∪AH ∪As ∪At, K,u, b, τ, di,
S, D, T).

(4) Calculate the maximum static multicommodity flow with intermediate storage on the time expanded network NT by using
Algorithm 1.

(5) Transform the solution to the original network N by removing the dummy ports, temporary sinks, supersource, supersink, and
dummy arcs.

ALGORITHM 2: Maximum dynamic multicommodity flow algorithm with intermediate storage (MDMCFAIS).
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Figure 2: Modified new network N′ with dummy ports and
temporary sinks.
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Figure 3: Time expanded multicommodity network flow with
intermediate storage, where black and red colors are for commodity
1 and commodity 2, respectively. Dotted arcs represent the dummy
arcs.
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For a given two-way multicommodity network N with
symmetric transit times, the corresponding auxiliary net-
work is denoted by N with network topology
N � (V, A, K,u, b, τ, di, S, D, T), containing undirected
edges A � (v, w): (v, w) or (w, v) ∈ A{ }. +e capacity of an
arc in an auxiliary network is the sum of capacities of arcs a

and a
←

such that ua � ua + u
a
←, where ua � 0 if a ∉ A. +e

transit time of an arc in an auxiliary network is

τa �
τa, if a ∈ A,

τ
a
←, otherwise.

⎧⎨

⎩ (14)

All other parameters are the same as in N. Contrary to
the general network, incoming arcs to the sources si and
outgoing arcs from the sinks ti may be present in the
contraflow network for all i ∈ K.

We now present the maximum dynamic contraflow
problem with intermediate storage herein.

Problem 3. For a given dynamic network
N � (V, A, K,u, b, τ, di, S, D, T), the maximum dynamic
multicommodity contraflow problem with intermediate
storage is to find the maximum flow leaving from each
source si, ∀i ∈ K, which is to be sent to their respective
sinks ti via si − ti paths by allowing the storage of maximum
excess flow at intermediate nodes v ∈ I with storage ca-
pacity a∈δin(v)ua ≤ bv ≤Ta∈δin(v)ua, ∀a ∈ A within the
given time horizon T by reverting the direction of arcs at
time zero.

To solve the problem, we present an algorithm based on
the time expanded network of an auxiliary network N as
follows.

We first transform the given two-way network into an
auxiliary network N. As in Section 3, we decompose the
multicommodity flow problem to k single commodity flow
problems and then fix the priority order of each intermediate
node. On each cycle free path of auxiliary network N, we
solve the maximum dynamic multicommodity flow prob-
lem, for each i ∈ K, as described in Section 4.

Here, Steps 1, 3, and 4 of Algorithm 3 can be computed
in O(E) time. In Step 2, we can find a pseudopolynomial
time solution for dynamic multicommodity contraflow
problem with intermediate storage in N (as in +eorem 4).
So, the maximum dynamic multicommodity contraflow
problem with intermediate storage can be solved in pseu-
dopolynomial time by using Algorithm 3.

Theorem 5. Algorithm 3 solves the maximum dynamic
multicommodity contraflow problem with intermediate
storage in pseudopolynomial time complexity.

Remark 1. If we consider the cost instead of transit time and
apply Algorithm 1 in Step 2 of Algorithm 3, then the solution
of maximum static multicommodity contraflow problem
with intermediate storage can be obtained in polynomial
time complexity.

5.2. Contraflow with Orientation-Dependent Transit Times.
If the transit times on antiparallel arcs of a two-way network
are not identical, then it is known as the network with
asymmetric transit times. For a network with asymmetric
transit times, if the transit times of arcs in an auxiliary
network are taken as the orientation of the arcs, then it is
known as orientation-dependent transit time. Nath et al.
[24] considered the orientation-dependent asymmetric
transit times of reversed lanes in general form and presented
strongly polynomial time algorithms to solve the single
source single sink maximum dynamic and quickest con-
traflow problems. Here, we discuss about the multi-
commodity contraflow problem with intermediate storage
by taking orientation-dependent transit times.

Let N � (V, A, K,u, b, τ, di, S, D, T) be a two-way dy-
namic network with asymmetric nonzero transit times τ on
arcs, so that τa ≠ τa

←. We construct an auxiliary network
N � (V, A, K,u, b, τ, di, S, D, T), where A is obtained
by reverting the direction of arcs a

←
at time zero. +e

arc capacity u and transit time τa can be obtained as follows:

ua � ua + u
a
←, (15)

Table 1: Multicommodity flow with intermediate storage in each time θ.

Commodity 1 Commodity 2
Path: s1 − x − y − t1 Path: s2 − x − y − t2

Start time at s1
Flow at Reaching time at last node Start time at s2

Flow at Reaching time at last node
x y t1 x y t2

θ� 0 1 1 2 θ� 4 at t1 θ� 0 1 0 2 θ� 5 at t2
θ� 1 1 1 2 θ� 5 at t1 θ� 1 3 × × θ� 3 at x

θ� 2 1 3 × θ� 4 at y θ� 2 3 × × θ� 4 at x

θ� 3 1 3 × θ� 5 at y θ� 3 3 × × θ� 5 at x

θ� 4 4 × × θ� 5 at x Path: s2 − y − t2

θ� 0 × 0 4 θ� 3 at t2
θ� 1 × 0 4 θ� 4 at t2
θ� 2 × 0 4 θ� 5 at t2
θ� 3 × 4 × θ� 4 at y

θ� 4 × 4 × θ� 5 at y

Total 8 8 4 Total d1 � 20 Total 10 8 14 Total d2 � 32
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where ua � 0 if a ∉ A and

τa �
τa if the orientation of arc is along a,

τ
a
← if the orientation of arc is along a

←
.

⎧⎨

⎩ (16)

By using Algorithm 3, the optimal solution for maxi-
mum static and maximum dynamic multicommodity con-
traflow problems with intermediate storage can be obtained
for a given network with asymmetric transit times, where
transit time is considered as a cost in static problem.

If, on the other hand, the transit time attributes on the
evacuation network are antisymmetric, but one wishes to
adopt contraflow approach with the same transit time on the
reversed arcs as it was before its reversal, Algorithm 3 ob-
viously works well as that can be interpreted as symmetric
transit time solution. It can be applied if two nodes in a
network have parallel connections with different transit
times.

6. Continuous Dynamic Multicommodity Flow

We discussed the maximum dynamic flow and contraflow
problems with intermediate storage in Section 4 and Section
5, respectively, where transit times are taken in discrete
settings. Actually, discrete dynamic flow function ψ assigns
the flow from the source node at each time step θ � 0, . . . , T

satisfying the capacity constraints. In this section, we for-
mulate the dynamicmulticommodity flowwith intermediate
storage in continuous-time settings. A continuous dynamic

flow function ψc with intermediate storage is defined as the
flow rate per unit time that leaves from the source at each
moment of time by allowing the storage of excess flow at
intermediate nodes without violating the capacity
constraints.

By using natural transformation, Fleischer and Tardos
[16] established the relation between discrete and contin-
uous flow models. +is natural transformation defines the
continuous dynamic flow for time interval [θ, θ + 1) with
ψc

a[θ, θ + 1) � ψa(θ), where ψa(θ) is the amount of discrete
dynamic flow entering arc a ∈ A at each time step
θ � 0, . . . , T. Here, we use this logic to transform the dis-
crete-time multicommodity flow to continuous-time mul-
ticommodity flow with intermediate storage as follows: any
discrete multicommodity flow over time ψi

a with integral
time horizon T is equivalent to the continuous multi-
commodity flow over time ψi,c

a [θ, θ + 1) by incorporating the
flow ψ entering an arc a at time step θ ≤T − τa as a constant
flow rate on arc a during the unit time interval [θ, θ + 1) by
allowing the storage of excess flow at intermediate nodes.
Mathematically,


θ+1

θ
ψi,c

a (α)dα � ψi
a(θ), ∀a ∈ A, i ∈ K. (17)

We formulate the dynamic multicommodity flow
models with intermediate storage in continuous settings as
follows:

maxdi � 

a∈δout si( )


T

θ�0
ψi,c

a (θ)dθ � 

a∈δin ti( )


T

θ�τa

ψi,c
a θ − τa( dθ + 

v∈I: bv ≥ 0


T

θ�0
ψi,c

v (θ)dθ, (18)

such that



a∈δin(v)


θ

β�τa

ψi,c
a β − τa( dβ − 

a∈δout(v)


θ

β�0
ψi,c

a (β)dβ≥ 0, ∀v ∈ I, i ∈ K, θ ∈ T, (19)

0≤ψc
a(θ) � 

i∈K
ψi,c

a (θ)≤ua, ∀a ∈ A, θ ∈ T, (20)

0≤ψc
v(θ) � 

i∈K
ψi,c

v (θ)≤ bv, ∀v ∈ I, θ ∈ T, (21)

Input: given two-way dynamic multicommodity network N.
Output: maximum dynamic multicommodity contraflow with intermediate storage.

(1) Construct an auxiliary network N of N.
(2) Compute the maximum dynamic multicommodity flow with intermediate storage in N by using Algorithm 2.
(3) Decompose the flow along si − ti paths and cycles, and remove the flows in cycles ∀i ∈ K.
(4) An arc a

←
is reversed if and only if the flow along arc a is greater than its capacity, or if there is a nonnegative flow along arc a ∉ A.

ALGORITHM 3: Maximum dynamic multicommodity contraflow algorithm with intermediate storage.
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a∈δin(v)

ua ≤ bv ≤T 

a∈δin(v)

ua, ∀v ∈ I.
(22)

Here, equation (18) represents an objective function,
which is to maximize the total amount of flow out from the
source in continuous-time settings, which is sent to the sink
and the intermediate nodes.+e nonconservation of the flow
is represented by equation (19). Equations (20)–(22) have
their usual meanings as in Section 2.

Dynamic flow problems defined in Section 4 and Section
5 can be solved in continuous-time settings by using this
natural transformation with their respective algorithms
within the same time complexity.

7. Conclusion

If the amount of flow out from the source node is more
than the minimum cut capacity, then the excess flow
cannot reach the sink. To deal with this problem, maxi-
mum static, maximum dynamic, and maximum dynamic
contraflow problems with the storage of excess flow at
intermediate nodes have been studied in two-terminal
general network.

In this paper, we have investigated the multi-
commodity flow models with intermediate storage in
static as well as dynamic networks. We have introduced
the maximum static and maximum dynamic multi-
commodity flow problems. We have presented a poly-
nomial time algorithm to solve the maximum static
multicommodity flow problem and a pseudopolynomial
time algorithm for the maximum dynamic multi-
commodity flow problem by allowing the storage of excess
flow at intermediate nodes. Moreover, we have presented
an algorithm to solve the maximum dynamic multi-
commodity contraflow problem with symmetric as well as
asymmetric transit times. By using natural transformation
in multicommodity network, we solved the maximum
dynamic flow and maximum dynamic contraflow prob-
lems with intermediate storage in continuous-time set-
tings. To the best of our knowledge, the maximum
multicommodity flow problems with intermediate storage
and their solution strategies for the static flow, dynamic
flow, and contraflow problems are introduced for the first
time.

+e universally maximum multicommodity flow prob-
lem (the earliest arrival flow problem) with intermediate
storage is harder problem, which is of interest for the further
research. +is problem is NP-hard even in case of two-
terminal series parallel networks. Together with this, we are
interested to work on maximum flow and earliest arrival
flow problems with orientation-dependent transit times and
flow-dependent transit times. We are also interested in
implementing these techniques as a case study in Kath-
mandu road network.
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