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*e discounted {0–1} knapsack problem may be a kind of backpack issue with gathering structure and rebate connections among
things. A moth-flame optimization algorithm has shown good searchability combined with an effective solution presentation
designed for the discounted {0-1} knapsack problem. A new encoding scheme used a shorter length binary vector to help reduce
the search domain and speed up the computing time. A greedy repair procedure is used to help the algorithm have fast
convergence and reduce the gap between the best-found solution and the optimal solution.*e experience results of 30 discounted
{0-1} knapsack problem instances are used to evaluate the proposed algorithm. *e results demonstrate that the proposed
algorithm outperforms the two binary PSO algorithms and the genetic algorithm in solving 30 DKP01 instances. *e Wilcoxon
rank-sum test is used to support the proposed declarations.

1. Introduction

*e knapsack problem is a well-known problem in combi-
natorial optimization. *ere are many variants of knapsack
problems such as 0-1 knapsack problem, multidimensional
knapsack problem, change-making problem, generalized
assignment problem, bin-packing problem, and discounted
{0-1} knapsack problem (DKP01). Among the knapsack
variants, the discounted {0-1} knapsack problem is new. *e
DKP01 is first introduced by Guldan in [1]. *is problem has
an important role within the modern commerce real world. It
could be a portion of numerous key issues such as venture
decision-making, mission determination, and budget control.
A correct calculation based on energetic programming for the
DKP01 is, to begin with, proposed in [1]. An approach that
combined dynamic programming with the center of the
DKP01 to unravel it is considered in [2]. Two calculations
based on approximate methods for DKP01 are named
FirEGA and SecEGA in [3].

DKP01 can be presented as follows:

maximizef(X) � 
n−1

i�0
x3ip3i + x3i+1p3i+1 + x3i+2p3i+2( ,

(1)

subject to x3i + x3i+1 + x3i+2 ≤ 1, i ∈ 0, . . . , n − 1{ }, (2)

x3iw3i + x3i+1w3i+1 + x3i+2w3i+2( ≤C, (3)

x3i, x3i+1, x3i+2 ∈ 0, 1{ }, ∀i ∈ 1, 2, . . . , n − 1{ }, (4)

where x3i, x3i+1, and x3i+2 represent whether the items
3i, 3i + 1, and 3i + 2 are put into the a knapsack; xj � 0
indicates the item j(j � 0, 1, . . . , 3n − 1) is not in knapsack,
while xj � 1 indicates the item j is in the knapsack. It is
worth noting that a binary vector X � (x0, x1, . . . ,

x3n−1) ∈ 0, 1{ }3n is a potential solution of DKP01. Only if X
meets both (2) and (3), it is a feasible solution of DKP01. n is
the number of groups, each group has three items, and each
item has its profit and weight. *e item is collected for
knapsack aims to maximized profit while the weight capacity
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does not excess C. Each group does not contain more than
one item.

Lately, they moreover had a point-by-point consider-
ation of the calculations of the DKP01 and proposed
greenhorn deterministic calculation and estimation cal-
culations. A modern correct calculation and two guess
calculations with an eager repair administrator were pro-
posed to illuminate DKP01 [4]. A calculation based on PSO
is named GBPSO utilizing discrete molecule swarm opti-
mization [5]. An evolution algorithm combines with ring
theory to solve DKP01 [6], binary moth search algorithm
[7], and a teaching-learning-based optimization algorithm
[8].

Moth-flame optimization is first proposed in [9] and it is
successfully used to solve many optimization problems such
as a quantum-behaved simulated annealing algorithm-based
moth-flame optimization method [10], an efficient task
scheduling approach using moth-flame optimization algo-
rithm for cyber-physical system applications in fog com-
puting [11], a hybrid Harris hawks-moth-flame optimization
algorithm including fractional-order chaos maps and evo-
lutionary population dynamics [12], a differential moth-
flame optimization algorithm for mobile sink trajectory [13],
LVCI approach for optimal allocation of distributed gen-
erations and capacitor banks in distribution grids based on
moth-flame optimization algorithm [14], real challenging
constrained engineering optimization problems [15], pa-
rameters extraction of the three diode models for the
multicrystalline solar cell [16], Alzheimer’s disease diagnosis
[17], profit maximization with integration of wind farm [18],
and MFO with rolling mechanism to forecast the electricity
consumption of inner Mongolia [19].

*is research proposed a new moth-flame optimization
(MFO) and a new encoding scheme for DKP01. A successful
0-1 vector with 2∗dimensional length is utilized for a so-
lution combined with MFO. *is advantageous solution
present is first used by Truong [20]. *e experience results
on 30 discounted {0-1} knapsack problem (DKP01) in-
stances are used to evaluate the proposed algorithm. *e
results demonstrate that the proposed algorithm outper-
forms the two binary PSO algorithms and genetic algorithm
in solving 30 DKP01 instances:

(i) Moth-flame optimization algorithm has shown
good searchability combined with an effective so-
lution presentation designed to the discounted {0-1}
knapsack problem.

(ii) A new encoding scheme used a shorter length bi-
nary vector to help reduce the search domain and
speed up the computing time.

(iii) A greedy repair procedure is used to help the al-
gorithm have fast convergence and reduce the gap
between the best-found solution and the optimal
solution.

*e rest of this paper is organized in the following order:
Section 2 presents related works. Section 3 proposes moth-
flame optimization algorithm for DKP01. *e simulated
results of the proposed algorithms are presented in Section 4.

We conclude this paper and suggest potential future work in
Section 5.

2. Related Works

2.1. Particle Swarm Optimization. *e PSO conducts its
search utilizing a swarm of particles; a swarm of particles is
arbitrarily made initially [21, 22]. *e standard atom swarm
optimizer keeps up a swarm of atoms that talk to the po-
tential courses of action for the issue at hand. Suppose that
the look space is D-dimensional and the position of ith
particle of the swarm can be portrayed utilizing a D-di-
mensional vector, xi � (xi1, . . . , xid, . . . , xiD). *e velocity of
the particle xi is described by a D-dimensional vector
vi � (vi1, . . . , vid, . . . , viD). *e last best position of ith par-
ticle is named pi � (pi1, . . . , pid, . . . , piD). In substance, the
heading of each atom is updated concurring to its claim
flying encounter as well as to that of the finest atom inside
the swarm. *e basic PSO calculation can be portrayed as

v
k+1
i,d � w · v

k
i,d + c1 · r

k
1 · p

k
i,d − x

k
i,d  + c2 · r

k
2 · p

k
g,d − x

k
i,d ,

x
k+1
i,d � x

k
i,d + v

k+1
i,d ,

(5)

where vk
i,d is dth dimension velocity of particle i in cycle k;

xk
i,d is the dth dimension position of particle i in cycle k; pk

i,d

is the dth dimension position of personal best (pbest) of
particle i in cycle k; pk

g,d is the dth dimension position of
global best particle (gbest) in cycle k; w is the inertia weight;
c1 is the cognitive weight and c2 is a social weight; and r1 and
r2 are two random values uniformly distributed in the range
of [0, 1] [23].

2.2. Moth-Flame Optimization Algorithm. Mirjalili [9]
proposed MFO in 2015 as a nature-inspired optimization
algorithm that simulates the actions of individuals in a
swarm of moths (search agents) that have unique night
navigation methods. In the MFO algorithm, the candidate
solutions are assumed to be search agents. In order to model
how individuals move in a spiral, them-by-dmatrix namely
M is used, where m stands for the number of search agents
and d for the number of dimensions. It is assumed that, for
each entity, there is an array for storing the value of the
objective function as an m-by-one matrix, namely, OM.

*e flame, which is defined in anm-by-d matrix called F,
is also an important part of this algorithm. It is assumed that
there is a way to store F’s fitness value as OF in an array.
When using the MFO algorithm, F can be thought of as M’s
best location in the search space. To mathematically model
this action, each search agent’s location is modified as
follows:

Mi � S Mi, Fj , (6)

where Mi is the ith search agent and Fj is the jth best position
found so far, and S indicates the logarithmic spiral function
which is updated as follows:

2 Mathematical Problems in Engineering



S Mi, Fj  � Die
cr cos(2πr) + Fj, (7)

where r is a random number in [−1, 1], c is a constant that
defines the shape of the logarithmic spiral, and Di factor is
the distance of the ith search agent for the jth flame, which is
calculated as follows:

Di � Fj − Mi



. (8)

M is required to use only one of the F to change its location
in this algorithm, and an adaptive mechanism for the
number of F is suggested as follows:

flame no. � round N −
t(N − 1)

T
 , (9)

where t is the current iteration number, N is the maximum
number of flames, and T is the maximum iteration number.

3. The Proposed MFO for DKP01

3.1. Solution Presentation. Currently, there are two methods
for presenting a solution: one uses a binary vector with a
length equal to the dimensional of the problem which is 3∗n
[3, 7, 24, 25], and the other uses an integer vector with a
length equal to the number of groups n [8].

*e solution [20] is presented in this paper using a
new binary encode scheme with a length of 2∗n. *is
encoding scheme has the benefit of being shorter in
length and automatically satisfying constraint 2. In Ta-
ble 1, a new binary encoding scheme is introduced. When
compared with the previous solution presentation shown
in Table 2, it has two disadvantages: it uses a longer
vector to present a solution and there are four violate
solutions in each scheme.

3.2. Repair Function. Constraint 2 is automatically satisfied
by the current encoding scheme. A new repair based on the
concept in [3] is proposed to manage restriction 3 and
increase the consistency of the solution.

*e benefit of this repair technique is that it strikes a
balance between CPU time consumption and the avoidance
of local optima.*e profit-to-weight ratios are pi/wi (i �1, 2,
. . ., n) so that they are not increasing. It means that

pi

wi

≥
pj

wj

, for i< j. (10)

*is repair operator consists of two phases. *e first
phase (called repair phase) examines each variable in an
increasing order of pj/wj and drops an item from knapsack
if feasibility is violated. *e first phase (called optimization
phase) examines each variable in an increasing order of
pj/wj and add an item to knapsack as long as feasibility is
not violated. *e repair phase aims to obtain a feasible
solution from an infeasible solution, whilst the optimization
phase seeks to improve the fitness of a feasible solution. *e
details of this repair operator can be found in [20].

*e overall pseudocode of the MFO algorithms for
DKP01 is given in Algorithm 1.

3.3. Binary Moth-Flame Optimization Algorithm. *e MFO
algorithm was designed for real domain. To solve DKP01,
MFO is used to redesign a search in a binary domain.
Equations (11)–(13) are used to convert real vectors to binary
vectors:

X(i, j) �
0, if rand()≥TF(M(i, j)),

1, if rand()<TF(M(i, j)),
 (11)

where TF (.) are the transforming functions of the proba-
bility as the following expressions:

Table 1: 2∗n length binary encoding scheme.

No. 2∗n length binary vector Meaning
1 00 No item of the group is chosen
2 01 *e first item of the group is chosen
3 10 *e second item of the group is chosen
4 11 *e third item of the group is chosen

Table 2: 3∗n length binary encoding scheme.

No. 3∗n length binary vector Meaning
1 000 No item of the group is chosen
2 001 *e first item of the group is chosen
3 010 *e second item of the group is chosen
4 011 Violate constraint (2)
5 100 *e third item of the group is chosen
6 101 Violate constraint (2)
7 110 Violate constraint (2)
8 111 Violate constraint (2)
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TF1(M(i, j)) �
1

1 + e
−2M(i,j)

, (12)

TF2(M(i, j)) �
1

1 + e
−M(i,j)

. (13)

In this section, we proposed 2 binary algorithms based
on MFO named MFO1 and MFO2. MFO1 and MFO2 use
transfer function TF1 (equation (12)) and TF2 (equation
(13)), respectively. *ey use formula (11) to compute binary
vector X.

4. Simulation Results

In this paper, the experience results of MFO1 and MFO2
algorithms are compared to find out the best one to solve
DKP01 among them. *e proposed algorithms are used to
compare the results of three algorithms took from [6] named
as SecEGA and two PSO algorithms took from Truong [20].
*e PSO1 and PSO2 algorithms are BSPO7 and BPSO8
taken from Truong [20], respectively. 30 DKP01 test in-
stances include 10 weakly correlated instances (denoted as
WDKP1–WDKP10), 10 inverse strongly correlated in-
stances (denoted as IDKP1–IDKP10), and 10 strongly
correlated instances (denoted as SDKP1–SDKP10) [3].

All experiments of the proposed algorithms are running
on a Laptop ASUS with an Intel (R) Core (TM) i5-8250u
CPU-1.6GHz and 8GB DDR4 memory. *e operating
system is Microsoft Windows 10. *e programming lan-
guage is MATLAB, version R2016a.

In MFO, the number of moths is set to 50, and the
search domain is the interval [1, 10]. *e parameters of
SecEGA are shown in [6]. *e population size of SecEGA is
set to 50, and the iteration is set equal to the dimension of
the DKP01. For a fair comparison, the parameters for two
PSO algorithms are set as the number of particles equal to
50, C1 and C2 are set to 2, w is linearly decreased from 0.9 to
0.4, the maximum number of iterations is set equal to the
dimension of DKP01, and the stopping criterion is satisfied
when the maximum number of iterations is reached. For all
algorithms, the max iteration is set equal to 2∗ n. *e Gap
is calculated by

Gap �
|OPT − Average|

OPT
100%. (14)

In this section, the short terms Best, Average, Worst, and
StdDev are best, average, worst, and standard deviation of 30
independent runs, respectively.

Tables 3–5 summarizes the comparison among PSO1,
PSO2, MFO2, SecEGA, andMFO1 based on the 6 different
performance criteria on 30 independent runs including
Best, Average, Worst, StdDev, the Gap, and Average rank.
*eMFO1 is better than PSO1, PSO2, MFO2, and SecEGA
in Best, Average, and Worst for the instances of SDKP,
UDKP, and WDKP except for instances of IDKP. *e
algorithm MFO1 archived the best rank on Average
results.

*e results showed that MFO1 is the best one among the
5 algorithms. Table 6 summarizes the average rank of the 5
algorithms on 30 instances. *e result showed that MFO1

Input: initial parameters
Output: optimal solution
(1) Initialize search agents M
(2) t� 1;
(3) while t≤T do
(4) Update flame no. by equation (9)
(5) Generate binary X matrix by equation (11);
(6) Apply repair operator on X and assign its fitness to OM;
(7) if t� � 1 then
(8) F� sort (M1);
(9) OF� sort (OM1);
(10) else
(11) F� sort (Mt−1, Mt);
(12) OF� sort (OMt−1, OMt);
(13) for i� 1:m do
(14) for j� 1:d do
(15) Calculate D by equation (8);
(16) Update M (i, j) by equations (6) and (7);
(17) t� t+ 1.

ALGORITHM 1: *e overall pseudocode MFO algorithm for DKP01.
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Table 3: Comparison of PSO1, PSO2, SecEGA, MFO1, and MFO2 on IDKP1–IDKP10.

Instance OPT Algorithm Best Average Worst StdDev Gap Rank

IDKP1 70106

PSO1 69471 68980 68252 288.0 1.6 4
PSO2 69530 69117 68376 237.2 1.4 3

SecEGA 68 663 68000 67 369 328.4 3.0 5
MFO1 70106 70106 70106 0.0 0.0 1
MFO2 70106 70104 70090 4.9 0.0 2

IDKP2 118268

PSO1 116710 116212 115370 354.2 1.7 4
PSO2 117200 116516 115700 337.3 1.5 3

SecEGA 114 434 113385 112 307 7446.7 4.1 5
MFO1 118268 0.0 0.0 1
MFO2 118268 118251 118230 19.3 0.0 2

IDKP3 234804

PSO1 234290 233653 232350 420.4 0.5 3
PSO2 234390 232600 232600 389.6 0.4 4

SecEGA 220 096 217982 216 313 835.8 7.2 5
MFO1 234770 234748 234740 7.7 0.0 1
MFO2 234700 234544 234360 92.3 0.1 2

IDKP4 282591

PSO1 280540 279714 277810 578.1 1.0 4
PSO2 280770 279858 279110 486.7 1.0 3

SecEGA 263 238 260425 258 922 933.4 7.8 5
MFO1 282590 282587 282570 5.8 0.0 1
MFO2 282470 282210 281940 132.1 0.1 2

IDKP5 335584

PSO1 333140 331595 329340 748.8 1.2 4
PSO2 332710 331896 329280 691.2 1.1 3

SecEGA 309 573 306878 304 881 907.2 8.6 5
MFO1 335580 335580 335580 0.0 0.0 1
MFO2 335280 335000 334780 107.2 0.2 2

IDKP6 452463

PSO1 450290 449287 447540 681.7 0.7 4
PSO2 450880 449350 447890 683.3 0.7 3

414 090 411367 408 788 1099.3 9.1 5
MFO1 452430 452415 452390 9.7 0.0 1
MFO2 451750 451293 450990 198.3 0.3 2

IDKP7 489149

PSO1 483180 481656 478830 944.5 1.5 3
PSO2 483170 481578 479910 1034.9 1.5 4

SecEGA 451 528 444316 442 133 1280.3 9.2 5
MFO1 489150 489132 489120 9.7 0.0 1
MFO2 488520 487889 487030 288.1 0.3 2

IDKP8 533841

PSO1 523300 520939 517720 1480.0 2.4 4
PSO2 526240 521844 519190 1540.0 2.2 3

SecEGA 490 494 481831 478 035 2215.7 9.7 5
MFO1 533840 533825 533820 6.3 0.0 1
MFO2 533050 532345 531940 284.3 0.3 2

IDKP9 528144

PSO1 515680 511908 507210 1937.0 3.1 4
PSO2 516550 512575 509090 1727.0 2.9 3

SecEGA 489 661 477001 471 848 3656.2 9.7 5
MFO1 528140 528136 528120 7.2 0.0 1
MFO2 527140 526734 526370 205.8 0.3 2

IDKP10 581244

PSO1 563960 560214 556100 2204.1 3.6 4
PSO2 566670 562000 559540 1950.2 3.3 3

SecEGA 535 541 521604 516 445 4265.1 10.3 5
MFO1 581240 581233 581230 4.5 0.0 1
MFO2 580620 579589 578870 365.0 0.3 2
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Table 4: Comparison of PSO1, PSO2, SecEGA, MFO1, and MFO2 on SDKP1–SDKP10.

Instance OPT Algorithm Best Average Worst StdDev Gap Rank

SDKP1 94459

PSO1 94219 93874 93489 184.3 33.9 4
PSO2 94205 93999 93703 130.5 34.1 3

SecEGA 89 769 88832 87463 594.9 6.0 5
MFO1 94286 94274 94258 12.6 34.5 1
MFO2 94286 94222 94121 43.2 34.4 2

SDKP2 160805

PSO1 160280 159531 158810 360.1 34.9 4
PSO2 160090 159617 159030 307.4 35.0 3

SecEGA 153 821 152059 150753 489.4 5.4 5
MFO1 159980 159895 159800 47.3 35.2 1
MFO2 159840 159667 159390 93.9 35.0 2

SDKP3 238248

PSO1 237340 236389 235320 440.2 0.7 3
PSO2 237300 236428 235620 371.4 0.7 1

SecEGA 224 997 223580 221918 543.4 6.2 5
MFO1 236530 236404 236310 51.8 0.7 2
MFO2 236140 235855 235600 128.8 0.4 4

SDKP4 340027

PSO1 337960 337013 335880 585.0 19.3 1
PSO2 337860 336811 335890 508.3 19.2 3

SecEGA 318 510 315513 313 747 851.1 7.2 5
MFO1 336980 336865 336800 39.0 19.2 2
MFO2 336390 335989 335730 172.9 18.9 4

SDKP5 463033

PSO1 459780 458216 456130 728.5 36.5 3
PSO2 459420 458086 456840 615.1 36.5 4

SecEGA 420 238 416964 413 933 1291.7 10.0 5
MFO1 460190 460096 460010 45.5 37.1 1
MFO2 459240 458554 458240 225.4 36.6 2

SDKP6 466097

PSO1 462350 460874 459340 677.1 1.9 2
PSO2 462000 460989 459690 602.6 1.9 1
SecGA 430 738 427304 425 504 1031.1 8.3 5
MFO1 461000 460862 460750 64.3 1.9 3
MFO2 460060 459245 458780 226.8 1.5 4

SDKP7 620446

PSO1 614510 612746 610360 1059.2 25.3 4
PSO2 614780 612902 610930 928.1 25.3 3

SecEGA 561 224 556083 552 007 1926.3 10.4 5
MFO1 615900 615756 615630 69.2 25.9 1
MFO2 613930 613268 612870 281.1 25.4 2

SDKP8 670697

PSO1 663730 661988 659770 984.4 24.0 4
PSO2 664250 662529 660340 992.7 24.1 2

SecEGA 611 644 606263 603 774 1446.9 9.6 5
MFO1 664750 664590 664450 76.0 24.5 1
MFO2 662910 662053 661640 303.5 24.0 3

SDKP9 739121

PSO1 731830 730283 727770 1058.9 38.3 3
PSO2 732320 730619 728570 1060.1 38.3 2

SecEGA 674 885 667900 664 580 1614.0 9.6 5
MFO1 731630 731502 731360 68.3 38.5 1
MFO2 728790 728306 727650 315.5 37.9 4

SDKP10 765317

PSO1 756580 755021 753220 806.2 29.9 2
PSO2 757430 754798 752470 1402.8 29.9 3

SecEGA 708 935 695557 691 994 2956.1 9.1 5
MFO1 756190 755966 755650 120.7 30.1 1
MFO2 753740 753027 752270 336.6 29.6 4
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Table 5: Comparison of PSO1, PSO2, SecEGA, MFO1, and MFO2 on WDKP1–WDKP10.

Instance OPT Algorithm Best Average Worst StdDev Gap Rank

WDKP1 83098

PSO1 82998 82764 82465 140.5 18.1 4
PSO2 83002 82797 82549 125.7 18.1 3

SecEGA 80014 79022 78096 473.7 4.9 5
MFO1 82962 82894 82848 22.5 18.2 1
MFO2 82950 82862 82798 34.8 18.2 2

WDKP2 138215

PSO1 137880 137278 136770 254.2 16.1 4
PSO2 137860 137381 136780 247.2 16.2 3

SecEGA 133315 132276 131337 415.6 4.3 5
MFO1 137920 137873 137850 22.0 16.6 1
MFO2 137890 137795 137720 40.7 16.5 2

WDKP3 256616

PSO1 256160 255362 254210 422.3 8.8 4
PSO2 255990 255386 254670 356.3 8.8 3

SecEGA 238331 235721 234025 873.6 8.1 5
MFO1 255970 255891 255820 28.4 9.0 1
MFO2 255660 255463 255260 90.0 8.8 2

WDKP4 315657

PSO1 314790 313860 313010 434.8 11.1 4
PSO2 314750 314108 313390 399.3 11.2 3

SecEGA 293640 290851 288764 950.1 7.9 5
MFO1 315040 314980 314930 28.0 11.5 1
MFO2 314630 314400 314190 125.6 11.3 2

WDKP5 428490

PSO1 426910 425683 424470 701.9 26.8 4
PSO2 426680 425736 424520 501.1 26.9 3

SecEGA 393617 390014 387992 1059.8 9.0 5
MFO1 427710 427666 427620 23.0 27.4 1
MFO2 427260 426687 426270 214.5 27.1 2

WDKP6 466050

PSO1 463690 462092 460590 641.3 2.1 4
PSO2 463350 462284 460930 583.1 2.2 3
SecGA 429208 425112 423269 1058.4 8.8 5
MFO1 464880 464819 464760 28.9 2.7 1
MFO2 463820 463485 463080 203.2 2.4 2

WDKP7 547683

PSO1 544700 542724 538860 1154.9 11.0 4
PSO2 544730 542765 539860 922.5 11.0 3

SecEGA 501557 496134 493845 1230.9 9.4 5
MFO1 546500 546425 546380 29.8 11.7 1
MFO2 545300 544705 544110 295.4 11.4 2

WDKP8 576959

PSO1 572530 570187 567530 1216.6 6.8 4
PSO2 571870 570226 568570 825.3 6.8 3

SecEGA 530971 523203 520350 2157.1 9.3 5
MFO1 575590 575463 575360 45.5 7.8 1
MFO2 574520 573672 572880 299.1 7.5 2

WDKP9 650660

PSO1 643950 641272 638210 1501.3 21.4 4
PSO2 645140 641658 638230 1502.3 21.5 3

SecEGA 598343 586770 583854 2315.5 9.8 5
MFO1 648760 648672 648600 35.9 22.8 1
MFO2 647040 646510 646030 268.1 22.4 2

WDKP10 678967

PSO1 672380 668923 666420 1429.2 15.1 3
PSO2 671880 668830 665740 1553.1 15.1 4

SecEGA 620230 606215 609964 3090.9 10.7 5
MFO1 677450 677388 677330 34.5 16.5 1
MFO2 676110 675115 674680 284.2 16.2 2
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Table 6: Average rank of PSO1, PSO2, SecEGA, MFO1, and MFO2 on 30 instances.

Algorithms Mean rank of 10 Mean rank of 10 Mean rank of 10
IDKP instances SDKP instances WDKP instances

PSO1 3.8 3.0 3.9
PSO2 3.2 2.5 3.1
SecEGA 4.5 4.5 4.5
MFO1 1.0 1.4 1.0
MFO2 2.0 3.1 2.0
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Figure 1: Box plot of four algorithms on IDKP instances. (a) IDKP2. (b) IDKP4. (c) IDKP6. (d) IDKP8.
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achieved the average best rank in all the three test instances
on average mean rank. Figure 1 demonstrates the boxplot of
the four algorithms on IDKP instances: IDKP2, IDKP4,
IDKP6, and IDKP8. Figure 2 demonstrates the boxplot of the
four algorithms on WDKP instances: WDKP2, WDKP4,
WDKP6, andWDKP8. Figure 3 demonstrates the boxplot of
the four algorithms on SDKP instances: SDKP2, SDKP4,
SDKP6, and SDKP8. *ese box plot figures showed that
MFO1 obtained the best result.

Figure 4 demonstrates the convergence curves of the four
algorithms on IDKP instances: IDKP2, IDKP4, IDKP6, and
IDKP8. Figure 5 demonstrates the convergence curves of the
four algorithms on WDKP instances: WDKP2, WDKP4,
WDKP6, and WDKP8. Figure 6 demonstrates the conver-
gence curves of the four algorithms on SDKP instances:
SDKP2, SDKP4, SDKP6, and SDKP8. *ese convergence

curves demonstrated thatMFO1 has faster convergence than
group algorithms PSO1, PSO2, and MFO2.

*erefore, the performance of MFO1 is better than that
of the other algorithm for the DKP01 problem. From the
above comparison, MFO1 showed far better result than
those of PSO1, PSO2, MFO2, and SecEGA. *e evidence
supports that MFO1 is a potential method for solving
DKP01.

4.1.WilcoxonRankSumTest. With the observable measures,
I am ready to prove beyond a shadow of a doubt that the
outcomes are not the product of chance. *e nonparametric
Wilcoxon statistical test is used and the calculated p values
are reported as metrics of significance as well. Any p values
<0.05 evidence the statistical significant superiority of the
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Figure 2: Continued.
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Figure 2: Box plot of four algorithms on WDKP instances. (a) WDKP2. (b) WDKP4. (c) WDKP6. (d) WDKP8.
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Figure 3: Box plot of four algorithms on SDKP instances. (a) SDKP2. (b) SDKP4. (c) SDKP6. (d) SDKP8.
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Figure 4: Continued.
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Figure 5: Continued.
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Figure 4: Convergence curves of four algorithms on IDKP instances. (a) IDKP2. (b) IDKP4. (c) IDKP6. (d) IDKP8.
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Figure 5: Convergence curves of four algorithms on WDKP instances. (a) WDKP2. (b) WDKP4. (c) WDKP6. (d) WDKP8.

×105

1.44

1.46

1.48

1.5

1.52

1.54

1.56

1.58

A
ve

ra
ge

 B
es

t-s
o-

fa
r

100 200 300 400 5001
Iteration

PSO1
PSO2

MFO1
MFO2

(a)

×105

3

3.05

3.1

3.15

3.2

3.25

3.3

A
ve

ra
ge

 B
es

t-s
o-

fa
r

100 200 300 400 5001
Iteration

PSO1
PSO2

MFO1
MFO2

(b)

Figure 6: Continued.
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Table 7: p values of the Wilcoxon rank-sum test over 30 runs.

Instance MFO2 PSO1 PSO2
IDKP1 0.081404 1.21E− 12 1.21E− 12
IDKP2 1.14E− 05 1.21E− 12 1.21E− 12
IDKP3 1.86E− 11 1.87E− 11 1.87E− 11
IDKP4 6.34E− 12 6.42E− 12 6.42E− 12
IDKP5 1.2E− 12 1.21E− 12 1.21E− 12
IDKP6 1.23E− 11 1.24E− 11 1.24E− 11
IDKP7 2.25E− 11 2.25E− 11 2.25E− 11
IDKP8 1.45E− 11 1.45E− 11 1.45E− 11
IDKP9 7.77E− 12 7.8E− 12 7.8E− 12
IDKP10 8.84E− 12 8.87E− 12 8.87E− 12
SDKP1 4.45E− 07 2.11E− 11 2.11E− 11
SDKP2 5.56E− 11 4.32E− 06 0.000351
SDKP3 2.89E− 11 0.482158 0.578909
SDKP4 2.76E− 11 0.030575 0.109566
SDKP5 2.93E− 11 2.94E− 11 2.94E− 11
SDKP6 2.95E− 11 0.164345 0.26713
SDKP7 2.96E− 11 2.97E− 11 2.97E− 11
SDKP8 2.96E− 11 2.96E− 11 2.96E− 11
SDKP9 2.97E− 11 3.91E− 08 0.000431
SDKP10 2.99E− 11 1.02E− 06 3.36E− 05
WDKP1 2.68E− 05 0.000774 0.000401
WDKP2 2.19E− 10 1.87E− 10 8.09E− 11
WDKP3 2.21E− 11 2.41E− 07 6.25E− 10
WDKP4 2.71E− 11 2.74E− 11 2.73E− 11
WDKP5 2.86E− 11 2.87E− 11 2.87E− 11
WDKP6 2.87E− 11 2.86E− 11 2.88E− 11
WDKP7 2.85E− 11 2.85E− 11 2.85E− 11
WDKP8 2.9E− 11 2.92E− 11 2.92E− 11
WDKP9 2.83E− 11 2.84E− 11 2.83E− 11
WDKP10 2.92E− 11 2.93E− 11 2.93E− 11
p> 0.05 is indicated in bold.
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Figure 6: Convergence curves of four algorithms on SDKP instances. (a) SDKP2. (b) SDKP4. (c) SDKP6. (d) SDKP8.
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results when comparing MFO1 with MFO2, PSO1, and
PSO2. After all, the statistical results for 30 instances are
provided in Table 7.

5. Conclusion

A moth-flame optimization algorithm that showed good
searchability is combined with an effective solution pre-
sentation designed to the discounted {0-1} knapsack
problem. A new encoding scheme used a shorter length
binary vector to help reduce the search domain and speed up
the computing time. A greedy repair procedure is used to
help the algorithm have fast convergence and reduce the gap
between the best-found solution and th eoptimal solution.
*e simulation results of 30 DKP01 instances showed that
the proposed algorithms are better than the two particle
swarm optimization algorithms and one genetic algorithm.
In the future, some variants of the moth-flame optimization
algorithm are considered for study for the discounted {0-1}
knapsack problem.
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