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In this study, the fractional reduced differential transform method (FRDTM) is employed to solve three-dimensional fourth-order
time-fractional parabolic partial differential equations with variable coefficients. /e fractional derivative used in this study is in the
Caputo sense. A few important lemmas which are essential to solve the problems using the proposedmethod are proved./e novelty
of this method is that it uses appropriate initial conditions and finds the solution to the problems without any discretization,
linearization, perturbation, or any restrictive assumptions. Two numerical examples are considered in order to validate the efficiency
and reliability of the method. Furthermore, the FRDTM solution when α� 1 is compared with other analytical methods available in
the existing literature. Computational results are shown in tables and graphs./e obtained results revealed that themethod is capable
and simple to solve fractional partial differential equations. /e software used for the calculations in this study is Mathematica 7.

1. Introduction

In the last decade, fractional calculus has become an important
mathematical tool in several branches of sciences and engi-
neering due to its enormous numbers of applications ([1] and
the references therein). What specifics fractional calculus is the
existence of various approaches to define differentiation with
the nonintegral order [2]. As a result, several definitions for
fractional derivatives appear in the literature to present more
accurate models for real life phenomena. Some of known
fractional derivatives are Riemann–Liouville, modified Rie-
mann–Liouville, Caputo, Hadmard, Erdélyi–Kober, Riesz,
Grunwald–Letnikov, Marchaud, and others ([3] and the ref-
erences therein). All known fractional derivatives satisfy one of
the well-known properties of classical derivative, namely, the
linear property. However, the other properties of classical
derivative, such as the derivative of a constant is zero; the
product rule, quotient rule, and the chain rule either do not
hold or are too complicated for many fractional derivatives.

In recent years, fractional differential equations have
received considerable attention owing to their applicability in
different fields of sciences such as chemistry, biology, diffusion,

control theory, rheology, viscoelasticity, and so on [4]. Con-
sequently, the solution of FPDEs represents nowadays a vig-
orous research area for scientists, and finding approximate and
exact solutions to FPDEs is an important task [5]. However,
PDEs are commonly hard to tackle, and their fractional order
types are more complicated [2, 6–10]. /erefore, several
methods such as the homotopy perturbationmethod [11], sub-
ODE method [12, 13], generalized tanh method [14], residual
power series method [14, 15], and so on [16–21] are developed
to obtain solutions of some nonlinear fractional differential
equations. Most of these methods sometimes require complex
and huge calculation in order to obtain approximate solutions.
To overcome such difficulties and drawbacks, an alternative
method, the so called the fractional reduced differential
transform method (FRDTM), has been developed by Keskin
andOturanc [22]. FRDTMplays a vital role among all the listed
methods because it takes small size computation, easy to
implement as compared to other techniques [23]. Using this
method, it is possible to find both exact and approximate
solutions in a rapidly convergent power series form. FRDTM is
a very reliable, efficient, and effective powerful computational
technique for solving physical problems [24–26].
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In the field of modern science and engineering, the
fourth-order initial/boundary value problems are of great
importance. For example, airplane wings, bridge slabs, floor
systems, and window glasses are being modeled as plates
subjected to different types of end supports which are
successfully described in terms of fourth-order PDEs
[27, 28]. Time-fractional NLPDEs come from classical
NLPDEs by replacing its time derivative with a fractional
derivative. Time-fractional partial differential equations
have many applications in areas such as electrochemistry,
diffusion processes, electromagnetic, material science, cha-
otic dynamics, and so forth [27, 29].

In this work, we consider the class of three-dimensional
fourth-order time-fractional parabolic PDEs of the form
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a<x, y, z< b, t> 0.

(1)

Subjected to the initial conditions,

u(x, y, z, 0) � f0(x, y, z),

z

zt
u(x, y, z, 0) � f1(x, y, z).

(2)

And boundary conditions

u(a, y, z, t) � g0(y, z, t),

u(b, y, z, t) � g1(y, z, t),

u(x, a, z, t) � k0(x, z, t),

u(x, b, z, t) � k1(y, z, t),

u(x, y, a, t) � k0(x, y, t),

u(x, y, b, t) � k1(x, y, t),
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(3)

where 0< α≤ 1, μ(x, y, z), λ(x, y, z), and η(x, y, z) are
positive, and the functions fi, gi, ki, hi, fi, gi, ki, hi for
i � 0, 1.

/e remaining sections of this study are organized as
follows: in Section 2, we give some fundamental definitions
and lemmas associated with fractional calculus. In Section 3,
some basic definitions and properties related to the three-
dimensional fractional reduced differential transform
method taking the fractional derivatives in the Caputo sense
are presented, and some lemmas are proved. In Section 4, we
present the formulation of the method. Section 5 is devoted
to apply the method to solve three-dimensional time-frac-
tional parabolic partial differential equation with variable
coefficients. In Section 6, we present the numerical results
and discussion. Tables and graphs are used to show the
effectiveness, validity, and performance of the FRDTM for
some values of α. Finally, the conclusion is presented in
Section 7.

2. Fractional Calculus

In this section, some basic definitions and lemmas associated
with fractional calculus are presented. Some of these defi-
nitions are due to Riemann–Liouville and Caputo sense; for
details, see [2, 24, 30–33].

Definition 1. /e gamma function. /e gamma function
Γ(z) is simply a generalization of the factorial real argu-
ments. /e Gamma function can be defined as

Γ(z) � 􏽚
∞

0
e

− t
t
z− 1dt, z ∈ C. (4)

Definition 2. /e fractional derivative of f(t) in Caputo
sense is defined as

D
α
t f(t) � J

n− α
D

n
f(t) �

1
Γ(n − α)

􏽚
t

0
(t − τ)

n− α− 1
f

(n)
(τ)dτ, n − 1< α≤ n,

d
n

dt
n f(t), α � n.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(5)

/e basic properties of the Caputo fractional derivative
can be given by the following lemma.

Lemma 1. If m − 1< α≤m, m ∈ N and f ∈ Cm
μ , μ≥ − 1,

then

D
α
J
α
f(x) � f(x), x> 0,

D
α
J
α
f(x) � f(x) − 􏽘

m

k�0
f

(k) 0+
( 􏼁

x
k

k!
, x> 0.

(6)

Definition 3. For p to be the smallest integer that exceeds α,
and m to be the smallest integer that exceeds, β the Caputo
time-fractional derivative of order α> 0 is defined as
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t u(x, y, z, t) �
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zt
α �
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α , α � p ∈ N,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(7)

and the space fractional derivative operator with respect to x,
y, and z of order β> 0 is, respectively, defined as

D
β
t u(x, y, z, t) �

z
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u(x, y, z, t)
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β �
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⎧⎪⎪⎪⎪⎪⎪⎪⎨
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z
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⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(8)

3. Fractional Reduced Differential Transform
Method (FRDTM)

In this section, the basic definition and properties related to
the three-dimensional fractional reduced differential
transform method taking the fractional derivatives in the
Caputo sense are presented.

Definition 4 (see [33, 34]). If w(x, y, z, t) is analytic and
continuously differentiable with respect to space variables x,
y, and time variable t in the domain of interest, then the
spectrum function is defined as

RD(w(x, y, z, t)) ≈Wk(x, y, z)

�
1

Γ(kα + 1)

zkα

ztkαu(x, y, z, t)􏼢 􏼣
t�t0

.

(9)

Definition 5 (see [33, 34]). /e inverse FRDTM of
Wk(x, y, z) is defined as

R
− 1
D Wk(x, y, z)􏼂 􏼃 ≈ w(x, y, z, t)

� 􏽘
∞

k�0

1
Γ(kα + 1)

Wk(x, y, z) t − to( 􏼁
kα

,

w(x, y, z, t) � 􏽘
∞

k�0

1
Γ(kα + 1)

zk

ztk
w(x, y, z, t)􏼢 􏼣

t�t0

.

(10)

/e inverse transform of the set of values of
[Uk(x, y, z)]n

k�0 gives the n-terms approximate solution as
follows:

un(x, y, z, t) � 􏽘
n

k�0
Uk(x, y, z)t

αk
. (11)

/erefore, the exact solution of the problem is given by

u(x, y, z, t) � lim
n⟶∞

un(x, y, z, t) � 􏽘

∞

k�0
Uk(x, y, z)t

αk
.

(12)
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Lemma 2. If w(x, y, z, t) � f(x, y, z)u(x, y, z, t), then
Wk(x, y, z) � f(x, y, z)Uk(x, y, z).

Proof. By Definition 3 and properties of FRDTM given in
Table 1, we have

Wk(x, y, z) �
1

Γ(kα + 1)

zkα

ztkαw(x, y, z, t)􏼢 􏼣
t�t0

,

Wk(x, y, z) �
1

Γ(kα + 1)

zkα

ztkαf(x, y, z)u(x, y, z, t)􏼢 􏼣
t�t0

,

Wk(x, y, z) � f(x, y, z)
1

Γ(kα + 1)

zkα

ztkαu(x, y, z, t)􏼢 􏼣
t�t0

,

Wk(x, y, z) � f(x, y, z)Uk(x, y, z).

(13)
□

Lemma 3. If w(x, y, z, t) � f(x, y, z)sin(αx + βy + μz+

ωt), then Wk(x, y, z) � f(x, y, z)(ωk/k!)sin(αx + βy + μz+

(πk/2)). α, β, μ, and ω are the constants.

Proof. By Definition 3 and properties of FRDTM given in
Table 1, we have

Wk(x, y, z) �
1

Γ(kα + 1)

zkα

ztkαw(x, y, z, t)􏼢 􏼣
t�t0

,

Wk(x, y, z) �
1

Γ(kα + 1)

zkα

ztkαf(x, y, z)sin(αx + βy + μz + ωt)􏼢 􏼣
t�t0

,

Wk(x, y, z) � f(x, y, z)
1

Γ(kα + 1)

zkα

ztkα sin(αx + βy + μz + ωt)􏼢 􏼣
t�t0

,

(14)

Wk(x, y, z) � f(x, y, z)(ωk/k!)sin(αx + βy + μz + (πk/2)).
α, β, μ, and ω are the constants. □

Lemma 4. If w(x, y, z, t) � f(x, y, z)cos(αx + βy + μz+

ωt), then Wk(x, y, z) � f(x, y, z)(ωk/k!)cos(αx + βy + μz+

(πk/2)). α, β, μ, and ω are the constants.
4e proof is similar to Lemma 3.
If α � β � μ � 0, then Lemma 4 reduces to Wk(x,

y, z) � f(x, y, z)(ωk/k!)cos(πk/2), where k � 0, 1, 2, . . ..

4. Solution of the Problem by FRDTM

/e steps to find the general solution of the governing
equation (1) subjected to initial conditions (2) by the pro-
posed method are as follows:

Applying the properties of FRDTM given in Table 1 to
equations (1) and (2), we obtain

Γ(α(k + 2) + 1)

Γ(kα + 1)
Uk+2(x, y, z) + μ(x, y, z)

z
4
Uk(x, y, z)

zx
4

+ λ(x, y, z)
z
4
Uk(x, y, z)

zy
4

+ η(x, y, z)
z
4
Uk(x, y, z)

zz
4 � Gk(x, y, z),

(15)

U0(x, y, z) � f0(x, y, z),

U1(x, y, z) � f1(x, y, z).
(16)

Solving for Uk+2(x, y, z) from equation (15), we get

Uk+2(x, y, z) �
− Γ(kα + 1)

Γ(α(k + 2) + 1)

μ(x, y, z)
z
2
Uk(x, y, z)

zx
2 + λ(x, y, z)

z
2
Uk(x, y, z)

zy
2 +

η(x, y, z)
z
4
Uk(x, y, z)

zz
4 − Gk(x, y, z)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (17)

When k� 0,1,2,3,... by iterative calculations, we obtain
the following successive terms:

U2(x, y, z) �
− 1
Γ(2α + 1)

μ(x, y, z)
z
4
f0(x, y, z)

zx
4 + λ(x, y, z)

z
4
f0(x, y, z)

zy
4 + η(x, y, z)

z
4
f0(x, y, z)

zz
4 − G0(x, y, z)􏼢 􏼣,

U3(x, y, z) �
− Γ(α + 1)

Γ(3α + 1)
μ(x, y, z)

z
2
f1(x, y, z)

zx
2 + λ(x, y, z)

z
2
f1(x, y, z)

zy
2 + η(x, y, z)

z
4
f1(x, y, z)

zz
4 − G1(x, y, z)􏼢 􏼣,

(18)
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and so on.
/us, the inverse transform of the set of values of

[Uk(x, y, z)]n
k�0 giving the n-terms approximate solution

un(x, y, z, t) � 􏽐
n
k�0 Uk(x, y, z)tαk and the FRDTM solution

of equation (1) subjected to the initial condition (2) is given
by

u(x, y, z, t) � lim
n⟶∞

un(x, y, z, t) � 􏽘
∞

k�0
Uk(x, y, z)t

αk

� fo(x, y, z) + f1(x, y, z)t
α

+
− 1
Γ(2α + 1)

· μ(x, y, z)
z
4
fo(x, y, z)

zx
4 + λ(x, y, z)

z
4
fo(x, y, z)

zy
4 η(x, y, z)

z
4
fo(x, y, z)

zz
2 − Go(x, y, z)􏼢 􏼣t

2α
+ · · · .

(19)

5. Illustrative Examples

Example 1. Consider the following partial differential
equation in three space variables

z
2α

u

zt
2α +

y + z

2 cosx
− 1􏼒 􏼓

z
4
u

zx
4 +

z + x

2 cosy
− 1􏼠 􏼡

z
4
u

zy
4

+
x + y

2 cos z
− 1􏼒 􏼓

z
4
u

zz
4 � 0, 0<x, y, z<

π
3

, 0< α≤ 1, t> 0,

(20)

subjected to the initial conditions

u(x, y, z, 0) � (x + y + z) − (cosx + cosy + cos z),

zu

zt
(x, y, z, 0) � cosx + cosy + cos z − (x + y + z).

(21)

When α � 1, equation (20) reduces to the classical (or
nonfractional) three-dimensional homogeneous parabolic
partial differential equation [35–37].

Applying the properties of FRDTM given in Table 1 and
Lemma 2 to equations (20) and (21), we get

Uk+2 �
− Γ(kα + 1)

Γ(α(k + 2) + 1)

y + z

2 cosx
− 1􏼒 􏼓

z
4
Uk

zx
4 +

z + x

2 cosy
− 1􏼠 􏼡

z
4
Uk

zy
4 +

x + y

2 cos z
− 1􏼒 􏼓

z
4
Uk

zz
4􏼢 􏼣,

U0(x, y, z) � x + y + z − (cosx + cosy + cos z),

U1(x, y, z) � cosx + cosy + cos z − (x + y + z).

(22)

When k� 0,1,2,. . ., we have

Table 1: /e basic properties of FRDTM are described below [33, 34].

/e original function Transformed form
w(x, y, z, t) � αu(x, y, z, t) ± βv(x, y, z, t) Wk(x, y, z) � αUk(x, y, z) + βVk(x, y, z)

w(x, y, z, t) � (zNα/ztNα)u(x, y, z, t) Wk(x, y, z) � (Γ[α(k + N) + 1]/Γ[kα + 1])Uk+N(x, y, z)

w(x, y, z, t) � f(x, y, z)u(x, y, z, t) Wk(x, y, z) � f(x, y, z)Uk(x, y, z)

w(x, y, z, t) � sin(αx + βy + μz + ωt) Wk(x, y, z) � (ωk/k!)sin(αx + βy + μz + (πk/2)), α, β, μ, and ω are the constants
w(x, y, z, t) � cos(αx + βy + μz + ωt) Wk(x, y, z) � (ωk/k!)cos(αx + βy + μz + (πk/2)), α, β, μ , and ω are the constants
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U2(x, y, z) �
1

Γ(2α + 1)
[x + y + z − (cosx + cosy + cos z)],

U3(x, y, z) �
− Γ(α + 1)

Γ(3α + 1)
[x + y + z − (cosx + cosy + cos z)],

U4(x, y, z) �
1

Γ(4α + 1)
[x + y + z − (cosx + cosy + cos z)],

U5(x, y, z) �
− Γ(α + 1)

Γ(5α + 1)
[x + y + z − (cosx + cosy + cos z)],

(23)

and so on. Continuing in this way, the remaining steps of the
FRDTM can be obtained. /en, by equation (19), we obtain
the following approximate solution:

u(x, y, z, t) � [(x + y + z) − (cosx + cosy + cos z)]

· 1 − t
α

+
1

Γ(2α + 1)
t
2α

−
Γ(α + 1)

Γ(3α + 1)
t
3α

􏼢

+
1

Γ(4α + 1)
t
4α

− · · ·􏼣.

(24)

/e exact solution of the classical form of Example 1 is
u(x, y, z, t) � (x + y + z − cosx − cosy − cos z)e− t as in
[35–37].

Example 2. Consider the following three-dimensional
nonhomogeneous fourth-order parabolic partial differential
equation:

z
2α

u

zt
2α +

1
4!z

􏼒 􏼓
z
4
u

zx
4 +

1
4!x

􏼒 􏼓
z
4
u

zy
4 +

1
4!y

􏼠 􏼡
z
4
u

zz
4

� −
x

y
−

y

z
−

z

x
+

1
x
5 +

1
y
5 +

1
z
5􏼢 􏼣cos t,

1
2
< x, y, z< 1,

0< α≤ 1, t> 0,

(25)

subjected to initial conditions

u(x, y, z, 0) �
x

y
+

y

z
+

z

x
,

z

zt
u(x.y, z, 0) � 0.

(26)

When α � 1, equation (25) reduces to the classical (or
nonfractional) three-dimensional nonhomogeneous para-
bolic partial differential equation [37].

Applying properties of FRDTM given in Table 1 and
Lemma 4 to equations (25) and (26), we get

Γ(α(k + 2) + 1)

Γ(αk + 1)
Uk+2(x, y, z) +

1
4!z

􏼒 􏼓
z
4
Uk(x, y, z)

zx
4 +

1
4!x

􏼒 􏼓
z
4
Uk(x, y, z)

zy
4 +

1
4!y

􏼠 􏼡
z
4
Uk(x, y, z)

zz
4 � −

x

y
−

y

z
−

z

x
+
1
x

+
1
y

+
1
z

􏼢 􏼣
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k!
cos

π
2

k,

(27)

U0(x, y, z) �
x

y
+

y

z
+

z

x
,

U1(x.y, z) � 0.

(28)

Solving for Uk+2(x, y, z) from equation (27), we have

Uk+2(x, y, z) �
− Γ(αk + 1)

Γ(α(k + 2) + t1)

1
4!z

􏼒 􏼓
z
4
Uk(x, y, z)

zx
4 +

1
4!x

􏼒 􏼓
z
4
Uk(x, y, z)

zy
4 +

1
4!y

􏼠 􏼡
z
4
Uk(x, y, z)

zz
4 −

−
x

y
−

y

z
−

z

x
+

1
x
5 +

1
y
5 +

1
z
5􏼢 􏼣

1
k!
cos

π
2

k

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (29)

Now, when k� 0, 1,3,. . .,
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U2(x, y, z) �
− 1
Γ(2α + 1)

x

y
+

y

z
+

z

x
􏼢 􏼣,

U3(x, y, z) � 0,

U4(x, y, z) �
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1
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+
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1
y
5 +

1
z
5􏼢 􏼣
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(30)

and so on. Continuing in this way, the remaining steps of the
FRDTM can be obtained. /en, by equation (19), we obtain

u(x, y, z, t) �
x

y
+

y

z
+

z

x
􏼠 􏼡 −

x

y
+

y

z
+

z

x
􏼠 􏼡

1
Γ(2α + 1)

t
2α

+
− Γ(2α + 1)

Γ(4α + 1)

·
− 1
Γ(2α + 1)

1
x
5 +

1
y
5 +

1
z
5􏼠 􏼡 + −

x

y
−

y

z
−

z

x
+

1
x
5 +

1
y
5 +

1
z
5􏼢 􏼣

1
2!

􏼢 􏼣t
4α

+ · · · .

(31)

/e exact solution of the classical form of Example 2 is
u(x, y, z, t) � ((x/y) + (y/z) + (z/x))(1 − (1/2!)t2 + (1/4!)

t4 − · · ·) � ((x/y) + (y/z) + (z/x))cos t as in [37].

6. Numerical Results and Discussion

In this section, the numerical values of the function u (x, y, z,
t) of Examples 1 and 2 are computed for various values of the
fractional order α, and the exact solutions for the variables x,
y, z, and t are presented in tables and figures.

Tables 2 and 3 exhibit the behavior of FRDTM solu-
tions for different values of fractional order α and the
absolute errors (E) approximated in the 5th and 6th order
at different values of the independent variables x, y, z, and
time t of equations (20) and (25), respectively. As it can be
seen from these tables, when the value of the fractional
order α becomes close to 1, the obtained FRDTM solu-
tions of Examples 1 and 2 are close to the exact solutions
of its respective classical (nonfractional) equations ob-
tained by different methods. In particular, when α� 1, the
FRDTM solutions of the mentioned examples are in

excellent agreement with the exact solutions of their
corresponding classical (nonfractional) form, for details,
see [35–37].

Figures 1(a)–1(d) show the evaluation results of the
approximate analytical solution of equation (20). /ese
figures also show the behavior of the approximate solution
obtained by the proposed method at fixed values x� 0.6 and
y� 0.7 and for different values of the fractional order α� 0.5,
0.7, 1 and the exact solution.

Figures 2(a) and 2(b) demonstrate the solutions u (x, y, z, t)
verses t of equation (20) for a fixed value of x, y, and z. In
Figure 2(a), the FRDTM solutions at α� 0.7, 0.8, 1 and the
exact solution are compared for a fixed value x� y� z� 0.4. In
Figure 2(b), the FRDTM solutions at α� 0.7, 0.8, 1 and the
exact solution are compared for a fixed value x� y� z� 0.6.

Figures 3(a)–3(d) show the evaluation results of the
approximate analytical solution of equation (25). /ese
figures also depict the behavior of the approximate solutions
obtained by the proposed method at fixed values x � 0.6 and
y � 0.7 and for a different time-fractional order
α � 0.5, 0.7, 1 and the exact solution.
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Table 2: Fifth-order approximate numerical solution of equation (20) at different values of the fractional order α and the absolute error E� |
uexact –uα � 1 | for u (x, y, z, t) by FRDTM.

x y z t
FRDTM for different values of α

uexact Error (E)
α� 0.5 α� 0.7 α� 0.9 α� 1

0.1 0.3
0.2 0.3 − 1.57206 − 1.61233 − 1.68227 − 1.72641 − 1.72641 0

0.5 − 1.47993 − 1.43721 − 1.41053 − 1.41342 − 1.41346 4E − 05

0.8 0.3 − 0.97616 − 1.00116 − 1.04459 − 1.072 − 1.072 0
0.5 − 0.918948 − 0.892426 − 0.875856 − 0.877649 − 0.877679 3E − 05

0.4 0.6
0.2 0.3 − 1.02973 − 1.05611 − 1.10192 − 1.13083 − 1.13083 0

0.5 − 0.969381 − 0.941403 − 0.923924 − 0.925816 − 0.925847 3.1E − 05

0.8 0.3 − 0.43383 − 0.444942 − 0.464243 − 0.476422 − 0.476423 1E − 06
0.5 − 0.408403 − 0.396616 − 0.389252 − 0.390049 − 0.390062 1.3E − 05

0.7 0.9
0.2 0.3 − 0.382167 − 0.391956 − 0.408958 − 0.419687 − 0.419687 0

0.5 − 0.359768 − 0.349384 − 0.342897 − 0.3436 − 0.343611 1.1E − 05

0.8 0.3 0.213737 0.219212 0.228721 0.234721 0.234722 1E − 06
0.5 0.20121 0.195403 0.191775 0.192167 0.192174 7E − 06

1 1
0.2 0.3 0.0939895 0.096397 0.100579 0.103217 0.103217 0

0.5 0.0884808 0.0859271 0.0843317 0.0845044 0.0845072 2.8E − 06

0.8 0.3 0.689893 0.707565 0.738258 0.757625 0.757626 1E − 06
0.5 0.649459 0.630714 0.619004 0.620271 0.620292 2.1E − 05

Table 3: Sixth-order approximate numerical solution of equation (25) at different values of the fractional order α and the absolute error
E� |uexact − uα � 1 | for u (x, y, z, t) by FRDTM.

x y z t
FRDTM for different values of α

uexact Error (E)
α � 0.5 α � 0.7 α � 0.9 α � 1

0.6 0.65
0.6 0.5 − 287.047 − 15.1344 2.09635 2.63837 2.63837 0

1 − 2317.74 − 321.166 − 16.9664 1.6243 1.62437 7E − 05

0.8 0.5 2.33312 2.50559 2.6387 2.69322 2.69322 0
1 1.65806 1.65806 1.65806 1.65806 1.65814 8E − 05

0.7 0.75
0.6 0.5 2.3115 2.48237 2.61425 2.66827 2.66827 0

1 1.6427 1.6427 1.6427 1.6427 1.64278 8E − 05

0.8 0.5 2.29114 2.46051 2.59122 2.64476 2.64476 0
1 1.62823 1.62823 1.62823 1.62823 1.6283 7E − 05

0.8 0.85
0.6 0.5 2.36272 2.53738 2.67217 2.72739 2.72739 0

1 1.6791 1.6791 1.6791 1.6791 1.67917 7E − 05

0.8 0.5 2.28352 2.45233 2.58261 2.63597 2.63597 0
1 1.62282 1.62282 1.62282 1.62282 1.62289 7E − 05

0.9 0.9
0.6 0.5 2.40744 2.5854 2.72275 2.77901 2.77901 0

1 1.71088 1.71088 1.71088 1.71088 1.71096 8E − 05

0.8 0.5 2.29129 2.46067 2.59139 2.64494 2.64494 0
1 1.62834 1.62834 1.62834 1.62834 1.62841 7E − 05
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Figure 1: Continued.
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Figure 1: 3D plots of FRDTM solutions of equation (20) for the different fractional order α and the exact solution.
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Figure 2: 2D plots of FRDTM solutions of equation (20) for the different fractional order α and the exact solution.
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Figures 4(a) and 4(b) demonstrate the solutions
u(x, y, z, t) verses t of equation (25) for a fixed value of
x, y, z. In Figure 4(a), the FRDTM solutions at α � 0.8, 0.9, 1
and exact solution are compared for a fixed value
x � y � z � 0.8. In Figure 4(b), the FRDTM solutions at α �

0.8, 0.9, 1 and exact solution are compared for a fixed value
x � y � z � 0.9.

7. Conclusion

In this study, we successfully employed the FRDTM to find
the approximate and exact solutions of three-dimensional
fourth-order time-fractional parabolic partial differential
equations with variable coefficients taking the fractional
derivative in Caputo sense. It is found that the results we
obtained in Examples 1 and 2 when α � 1 are in excellent
agreement with the exact solutions obtained by VIM [35],
ADM [36], and RDTM [37]. Also, the illustrated examples
demonstrate that the suggested technique can be observed as
a fast, simple, and efficient tool for computing three-di-
mensional fourth-order time-fractional parabolic partial

differential equations (PDEs). /e main advantage of the
method is that it can be applied to fractional PDE’s and
obtain approximate and exact solutions of fractional PDEs
without requiring any discretization, perturbation, or re-
strictive conditions. Moreover, the tables and graphs con-
structed in this work demonstrate the physical behavior of
the FRDTM solutions of the problems for different values of
α. As a result, we conclude that the FRDTM is very powerful,
straightforward, and effective to obtain approximate and
exact solutions of a wide variety problems related to frac-
tional PDEs applied in sciences such as mathematics,
physics, and engineering.
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Figure 3: 3D plots of FRDTM solutions of equation (25) for the different fractional order α and the exact solution.
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