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We considered the spacelike sweeping surface with rotation minimizing frames at Minkowski 3-space E3
1. We presented the new

geometric invariant to demonstrate geometric properties and local singularities for this surface. 'en, we derived sufficient and
necessary conditions of the surface to become developable ruled surfaces. Additionally, its singularities are studied. Finally,
examples are illustrated to explain the applications of the theoretical results.

1. Introduction

'e vision of the computer is the automatical analysis of image
sequences in order to build the 3-dimensional surface form.
Recently, variousmajors of mathematics are used for computer
vision and medical imaging. Projective geometry, as an old
mathematical subject, still used to characterize connections
between both lines and points in several images to the same
theme. In addition, differential geometry is used to characterize
the shape of the curve and surface in engineering. Both Rene
'om, French mathematician, and Hassler Whitney intro-
duced some developments in mathematical thinking and
methods, especially the concept of singularity theory that
contains catastrophes and bifurcations. Singularity theory now
as the direct application of differential calculus is important to
gain vital results in many subjects as computer vision and
medical imaging (e.g., [1–7]).

A canal surface is the surface that can be generated by the
one-parameter set of spheres determined by a radius
function and center curves: in case a radius function is a
constant function, the canal surface is the envelope of the
moving sphere and named the sweeping surface. Some well-

known examples of the sweeping surface are circular cyl-
inder and circular cone (radius of spheres is not constant),
surface of revolution, and Dupin cycloids. More specific, the
sweeping surface named the tubular surface in case the
radius of the generating spheres is constant. Sweeping
surfaces are very important for descriptive geometry, es-
pecially for solid and surface modeling at computer-aided
design, computer-aided manufacturing (CAD/CAM), and
the design of trajectory movement for robots [8–14]. It is a
fact that a sweeping surface can be a developable surface.'e
developable surface defines the surface that can become
unfolded (or developed) to the plane with the absence of any
stretch or tear. As known at differential geometry, with
considering sufficient differentiability, the developable
surface defines the plane, conical surface, cylindrical surface,
or tangent surface of the curve or the structure of one of
those kinds. 'erefore, the developable surface is considered
as the ruled surface, such that every point at the same ruling
shares the common tangent plane. 'e rulings are principal
curvature lines which vanish normal curvature and Gaussian
curvature that is vanishing at every point. As a result, the
developable surface is a significant surface in (CAD/CAM)
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and geometric modeling as it is used for motion analysis or
designing cars and ships [15–19].

'e essential tool to analyze the curve and surface at
differential geometry is the Serret–Frenet frame that is the
most used frame at Euclidean 3-space and Minkowski 3-
space [16–20].'emain apparatus in the previous literatures
are Serret–Frenet formulas and some linked functions on the
curve as a distance-squared function in addition to the
height function. Based on Serret–Frenet formulas, the sin-
gularity of those functions can be studied from the view of
extrinsic differential geometry. Because the Serret–Frenet
will not be defined everywhere, there is a need for a new
mathematical tool to be used for analysis purposes. In [20],
Bishop gave the alternative moving frame to points on the
curve at Euclidean 3-space using parallel vector fields. It
named rotationminimizing frame (RMF) or Bishop frame of
the curves [19–21]. Analogous to Bishop frame in Euclidean
3-space, there is a similar Lorentzian frame which named
Lorentzian Bishop frame, constructed along the curve at
Lorentzian space, and it is the analog of the Bishop type
frame as applied to Lorentzian geometry. At Lorentzian
space, using Minkowski Bishop frame through the curve as a
basic tool is preferred than using Serret–Frenet frame
[21–23].

In fact, there is no more literature review regarding
singularities of sweeping surfaces relating to the Minkowski
Bishop frame. 'erefore, this study aims to cover some
needs, where it is inspired by the study of Izumiya et al. [7]
and Bishop [19]. At this study, we establish the Lorentzian
Bishop frame along the unit speed spacelike curve with
timelike principal normal and develop the local differential
geometry of spacelike sweeping surfaces at Minkowski 3-
space. Using unfolding theory at singularity theory in this
study, generic singularities of this sweeping surface are
classified. A new invariant relating to singularities of this
sweeping surface is presented. It is founded that generic
singularities of this sweeping surface are cuspidal edge and
swallowtail, and these kind of singularities can be charac-
terized by this invariant, in the same order. Afterward, we
solved this problem of requiring the surface which is the
spacelike sweeping surface and, at the same time, the
spacelike developable surface. Some examples are intro-
duced in order to demonstrate theoretical results.

2. Preliminaries

Some definitions and basic concepts are given which will be
used (for instance [8, 24, 25]). Suppose E3

1 is 3-dimensional
Minkowski space, the 3-dimensional real vector space R3

considers the metric

< dr, dr> � dr
2
1 + dr

2
2 − dr

2
3, (1)

where (r1, r2, r3) denotes the canonical coordinates in R3.
Any vector r of E3

1 named spacelike in case <r, r≫ 0 or r � 0,
timelike in case 〈r, r〉< 0, and lightlike or null in case
〈r, r〉 � 0 and r � 0. 'e timelike or lightlike vector at E3

1 is
named causal. Also, with the norm ‖r‖ �

������
|〈r, r〉|

√
, the vector

r is the spacelike unit vector if 〈r, r〉 � 1 and a timelike unit

vector if 〈r, r〉 � −1. 'erefore, we say that a smooth map
β: I⟶ E3

1 is spacelike, timelike, or lightlike, if its velocity
vector β′ is spacelike, timelike, or lightlike, in the same order.
Similarly, the surface is named spacelike, timelike, or
lightlike if its tangent planes are spacelike, timelike, or
lightlike, respectively. For any two vectors r, p ∈ E3

1, the
inner product is a real number 〈r, p〉 � −r1p1 + r2p2 + r3p3,
and the vector product is given as

r × p �

f1 f2 −f3
r1 r2 r3

p1 p2 p3





� r2p3 − r3p2( , r3p1 − r1p3( ,(

− r1p2 − x2p1( ,

(2)

where f1, f2, f3 are the canonical bases of E3
1. For a fixed

point p ∈ E3
1 and the positive number c> 0, hyperbolic and

Lorentzian (de Sitter space) spheres, in the same order, are
given as

H
2
+(p, c) � a ∈ E3

1|〈a − p, a − p〉 � −c
2

 ,

S
2
1(p, c) � a ∈ E3

1|〈a − p, a − p〉 � c
2

 .
(3)

We define

LC
∗
p � a ∈ E3

1|〈a − p, a − p〉 � 0  − p , (4)

and it is called the (open) lightcone at the vertex p. In case
p � 0 and c � 1, we define LC∗0 , H

2
+, in addition to S2

1, in the
same order.

Suppose β � β(s) is the unit speed spacelike curve with
timelike principal normal in E3

1, and suppose κ(s) and τ(s)

are the natural curvature and torsion of β(s), in the same
order. Suppose ζ1(s) , ζ2(s), ζ3(s)} is a Serret–Frenet frame
related to the curve β(s), then the Serret–Frenet formulas
read

ζ1′

ζ2′

ζ3′

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

0 κ 0

κ 0 τ

0 τ 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ζ1
ζ2
ζ3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ � ψ ×

ζ1
ζ2
ζ3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (5)

where ψ(s) � τζ1 − κζ3 is the Darboux vector of the Ser-
ret–Frenet frame. At this study, β′(s) denotes the derivatives
of β respecting to arc length parameter. 'e Serret–Frenet
vector fields satisfy the following relations:

〈ζ1, ζ1〉 �〈ζ3, ζ3〉 � 1, 〈ζ2, ζ2〉 � −1,

ζ1 × ζ2 � ζ3, ζ1 × ζ3 � ζ2, ζ2 × ζ3 � ζ1.
(6)

Definition 1. 'emoving pseudoorthogonal frame ξ1 , ξ3, ξ3},
along the nonnull space curve α(s), is rotation minimizing
frame (RMF) respecting to ξ1 in case its angular velocity ω
insures 〈ω, ξ1〉 � 0 or, similarly, the derivatives of ξ2 and ξ3 are
both parallel to ξ1. Analogously, characterization holds when ξ2
or ξ3 is selected to be the reference direction.

Using Definition 1, it is observed that the Serret–Frenet
frame is RMF respecting to the principal normal ξ2 but not
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respecting to the tangent ζ1 and the binormal ζ3. Even though
the Serret–Frenet frame is not RMF respecting to ζ1, it is easy to
derive similar RMF from it. Newnormal plane vectors (N1,N2)
are determined along the rotation of (ζ2, ζ3) as

T1

N1

N2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

1 0 0

0 cosh θ sinh θ

0 sinh θ cosh θ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ζ1
ζ2
ζ3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (7)

with a certain Lorentzian timelike angle θ(s) ≥ 0.'e set T1 ,
N1, N2} is called RMF or Bishop frame. 'e RMF vector
insure the following relations:

〈T1,T1〉 �〈N2,N2〉 � 1, 〈N1,N1〉 � −1,

T1 × N1 � N2,T1 × N2 � N1,N1 × N2 � T1.
(8)

'erefore, the Bishop frame reads

T1′

N1′

N2′

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

0 κ1 κ2
κ1 0 0

−κ2 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T1

N1

N2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ � ω ×

T1

N1

N2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (9)

where ω(s) � −κ2N1 − κ1N2 is the Bishop Darboux vector.
Here, the Bishop curvatures are determined as
κ1(s) � κcoshϑ and κ2(s) � −κsinhϑ. Comparing equations
(5) and (9), it is observed that the relative velocity is

ψ(s) − ω(s) � τζ1. (10)

One can show that

κ21 − κ22 � κ2, and ϑ � −tanh−1 κ2
κ1

 ; κ1 ≠ 0,

θ(s) � − 
s

s0

τ ds + θ0, θ0 � θ(0).

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(11)

As a consequence, both Serret–Frenet frame and RMF
identical iff β(s) is the planar, which means τ � 0.

'e spacelike vector is defined as

ω(s) � −
κ2
κ1
N1 − N2, (12)

and we name it the modified Bishop Darboux vector through
β(s). A Bishop spherical Darboux image e(s): I⟶
S2
1(0, 1) is defined by

e(s) �
ω(s)

‖ω(s)‖
�

−κ1������

κ21 − κ22


κ2
κ1
N1 + N2 . (13)

'erefore, we consider a new geometric invariant
ρ(s) � κ2κ1′ − κ1κ2′.

Definition 2. 'e sweeping surface through β(s) is the
surface given as

M: R(s, u) � β(s) + F(s)x(u)

� α(s) + x1(u)N1(s) + x2(u)N2(s),
(14)

where β(s) named the (at least C1-continuous) spine curve,
0≤ s≤T, and s is the arc length parameter. x(u) is the planar
profile (cross-section) curve defined as parametric presen-
tation, x(u) � (0x1(u), x2(u))T, “T” refers to transposition,
and u ∈ I⊆R. 'e semiorthogonal matrix F(s) � T1(s) ,
N1(s) , N2(s)} specifies the RMF through β(s).

Kinematically, the sweeping surface R(s, u) is generating
by the moving of the profile curve x(u) through the spine
curve β(s) with the orientation as introduced by F(s). 'e
profile curve x(u) is in the 2D or 3D space that passes
through the spine curve β(s) during sweeping. Interestingly,
RMF allows for a simple characterization of spine curve.

Definition 3. 'e surface at Minkowski 3-space E3
1 named

the timelike surface in case the induced metric at the surface
is the Lorentz metric and also it named the spacelike surface
in case the induced metric at the surface is a positive definite
Riemannian metric, which means the normal vector on
spacelike (timelike) surface is the timelike (spacelike) vector.

3. Spacelike Sweeping Surface and
Its Singularities

We present the spacelike sweeping surface at Minkowski 3-
space E3

1. Consider the planar profile (cross-section) that is
defined as x(u) � (0, cosh u, sinh u). Using equation (14),
we obtain

M: R(s, u) � β(s) + cosh uN1 + sinh uN2. (15)

Using equation (9) resulted in

Ru(s, u) � sinh uN1 + cosh uN2,

Rs(s, u) � 1 + κ1cosh u − κ2sinh u( T1.
. (16)

'e unit normal vector of M is

N(s, u) �
Rs × Ru

Rs × Ru

����
����

� cosh uN1 + sinh uN2. (17)

'e main aim of this study is given in the following
theorem:

Theorem 1. Suppose β: I⟶ E3
1 is the unit speed spacelike

curve with a timelike principal normal, and κ21 − κ22 ≠ 0. <en,
for any fixed x ∈ S2

1(0, 1), one has the following:

A.
(1) <e image of Bishop spherical Darboux is locally

diffeomorphic to the line {0}×R at s0 iff ρ(s0)≠ 0
(2) <e image of Bishop spherical Darboux is locally

diffeomorphic to a cusp C × R at s0 if ρ(s0) � 0, as
well ρ′(s0)≠ 0
B.

(1) M is locally diffeomorphic to cuspidal edge CE at
(s0, u0) iff x � ±e(s0), as well ρ(s0)≠ 0

(2) M is locally diffeomorphic to swallowtail SW at
(s0, u0) iff x � ±e(s0), ρ(s0) � 0, as well ρ′(s0) � 0

Mathematical Problems in Engineering 3



Here, C × R � (x1, x2)|x
2
1 � x3

2  × R, CE � (x1, x2,

x3)|x1 � u, x2 � v2, x3 � v3}, and SW � (x1, x2,

x3)|x1 � u, x2 � 3v2 + uv2, x3 � 4v3 + 2uv}. <e pictures of
C × R, CE, and SW are shown in Figures 1–3.

3.1. Lorentzian Bishop Height Functions. We will introduce
two different families of Lorentzian Bishop height functions
that will be useful to study singularities ofM as follows [1–3]:
H: I × S2

1⟶ R, by H(s, x) � 〈β(s), x〉. It is called Lor-
entzian Bishop height function. 'e notation
hx(s) � H(s, x) will be used for all fixed x ∈ S2

1. In addition,
it is defined H: I × S2

1 × R⟶ R, using H(s, x, w) �

〈β, x〉 − w. It is called extended Lorentzian Bishop height
function of β(s). It is denoted that hx(s) � H(s, x). From
here, parameter s will not be written.

We have the following proposition:

Proposition 1. Let β: I⟶ E3
1 be the unit speed spacelike

curve with a timelike principal normal, with κ21 − κ22 ≠ 0.<en,

A.
(1) hx′(s) � 0 iff x � a1N1 + a2N2, and −a2

1 + a2
2 � 1.

(2) hx′(s) � hx
″(s) � 0 iff x � ± e(s)

(3) hx′(s) � hx
″(s) � hx″′(s) � 0 iff x � ± e(s), and

ρ(s) � 0
(4) hx′(s) � hx

″(s) � hx″′(s) � h(4)
x (s) � 0 iff x � ± e(s),

and ρ(s) � ρ′(s) � 0
(5) hx′(s) � hx

″(s) � hx″′(s) � h(4)
x (s) � h(5)

x (s) � 0 iff
x � ± e(s), and ρ(s) � ρ′(s) � ρ″(s) � 0
B.

(1) hx(s) � 0 iff there is 〈β, x〉 � w

(2) hx(s) � hx
′(s) � 0 if there are a1, a2 ∈ R, that is,

x � cosh uN1 + sinh uN2, and 〈β, x〉 � w

(3) hx(s) � hx′(s) � hx
″(s) � hx

″(s) � 0 iff x � ± e(s),
〈β, x〉 � w, and ρ(s) � 0

(4) hx(s) � hx′(s) � hx
″(s) � hx

″(s) � h
″′
x(s) � 0 iff

x � ± e(s), 〈β, x〉 � w, and ρ(s) � ρ′(s) � 0
(5) hx(s) � hx′(s) � hx

″(s) � hx
″(s) � h

″′
x(s) � h

(4)

x (s) � 0
iff x � ± e(s), 〈β, x〉 � w and ρ(s) � ρ′(s) �

ρ′′(s) � 0
(6) hx(s) � hx′(s) � h

′′
x(s) � h

′′
x(s) � h

″′
x(s) � h

(4)

x (s) �
h

(4)

x (s) � 0 iff x � ± e(s), 〈β, x〉 � w, and
ρ(s) � ρ′(s) � ρ″(s) � ρ″′(s) � 0

Proof. Using equation (9) results in that ‖T1′‖
2 ≠ 0 iff

κ21 − κ22 ≠ 0.

A.

(1) Because hx′(s) � <T1, x > and T1 , N1, N2} is RMF
through β(s), then there are a1, a2 ∈ R such that
x � a1N1 + a2N2. Because of x ∈ S2

1, we have
−a2

1 + a2
2 � 1. 'e opposite holds as well.

(2) Because hx″(s) � <T1′, x > � < κ1N1+ κ2N2, x > � 0,
we have that − a1κ1 + a2κ2 � 0. It follows from the
fact −a2

1 + a2
2 � 1 that a1 � ∓κ2/

������

κ21 − κ22


and

a2 � ± κ1/
������

κ21 − κ22


. 'erefore, we obtain

x � ∓
κ1������

κ21 − κ22


κ2
κ1
N1 + N2 ⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠(s) � ± e(s). (18)

'erefore, hx′(s) � hx
″(s) � 0 iff x � ± e(s).

(3) Because hx″′(s) � <T1″, x> � < (κ21 − κ22)T1+

κ1′N1 + κ2′N2, x > � 0, using conditions of (2), we
obtain

±
κ1������

κ21 − κ22


κ2κ1′ − κ1κ2′
κ1

 (s) � ±
κ1������

κ21 − κ22


ρ
κ1

 (s) � 0.

(19)

'us, hx′(s) � hx
″(s) � hx″′(s) � 0 iff x � ± e(s),

and ρ(s).
(4) Since

h
(4)
x (s) � <T‴1 , x > � < 3 κ1κ1′ − κ2κ2′( T1 + κ1″ + κ1 κ21 − κ22  N1

+ κ2″ + κ2 κ21 − κ22  N2, x> � 0

⎫⎪⎬

⎪⎭
(20)

Figure 1: C × R.
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by the conditions of (3), we have that

±
κ1������

κ21 − κ22


κ2κ1′ − κ1κ2′( ′
κ1

 (s) � ±
1

������

κ21 − κ22
 ρ′(s) � 0.

(21)

'us, hx′(s) � hx
″(s) � h″

′
x(s) � h(4)

x (s) � 0 iff
x � ± e(s), and ρ(s) � ρ′(s) � 0.

(5) Since h(5)
x (s) � <T(4)

1 , x > 0, we have

< κ21 − κ22 
2

+ 4 κ2κ2″ − κ1κ1″(  + 3 κ′21 − κ′22  T1

+ κ″′1 + 5κ1 κ1′κ1 − κ2′κ2(  + κ2′κ
2
1 − κ1′κ

2
2 N1

+ κ″′2 + 5κ2 κ2′κ2 − κ1′κ1(  + κ1′κ
2
2 − κ2′κ

2
1 N2, x > � 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

.

(22)

By using the conditions of (4), we have

±
1

������

κ21 − κ22


κ1κ
‴
2 − κ2κ

‴
1 + κ2κ1′ − κ1κ2′(  κ21 − κ22 

κ1
⎛⎝ ⎞⎠ � 0.

(23)

'erefore, hx′(s) � h′
′
x(s) � h″

′
x(s) � h(4)

x (s) � h(5)
x � 0

iff x � ± e(s), as well ρ(s) � ρ′(s) � ρ″(s) � 0.
B
Using similar computation as in proof of A, we
obtain B (1).

Proposition 2. Suppose β: I⟶ E3
1 is the unit speed

spacelike curve with the timelike principal normal, and
κ21 − κ22 > 0. <en, we have ρ(s) � 0 iff

e(s) �
−κ1������

κ21 − κ22


κ2
κ1
N1 + N2 , (24)

is a constant vector.

Proof. Let κ21 − κ22 ≠ 0. Using simple calculations, we have
that

e′(s) �
ρ(s)

������

κ21 − κ22


 
3 κ1N1 + κ2N2( .

(25)

'us, e′(s) � 0 iff ρ(s) � κ2κ1′ − κ1κ2′ � 0. □

Proposition 3. Suppose β: I⟶ E3
1 is the unit speed

spacelike curve with the timelike principal normal, and
κ21 − κ22 > 0. <en, it is stated that

(a) β is the B-slant helix iff κ2/κ1 is a constant
(b) N2 is the part of circle at S2

1, and its center is the
spacelike constant vector e0.

Proof. (a) Lets have ρ(s) � κ2κ1′ − κ1κ2′ � 0. Hence, we can
write

κ2
κ1

 
′

�
κ1κ2′ − κ2κ1′

κ21
�

−ρ(s)

κ21
� 0. (26)

'is means that κ2/κ1 � constant, such that, β is the
B-slant helix.

(b) Suppose that κ21 − κ22 > 0. Since

〈e, N2〉 �
−κ1������

κ21 − κ22
 〈

κ2
κ1

N1 + N2 , N2〉

�
−1

��������

1 − κ22/κ
2
1

 � constant.

(27)

In other words, N2 is the part of circle at S2
1, and its

center is the constant spacelike vector e0(s). □

3.2. Unfolding of Functions by One-Variable. We use some
general results at the singularity theory for families of
function germs [1–3]. Suppose F: (R × Rr, (s0, x0))⟶ R

is the smooth function, and f(s) � Fx0
(s, x0). 'erefore, F

Figure 2: CE.

Figure 3: SW.
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named the r-parameter unfolding of f(s). It is said that f(s)

has Ak singularity at s0 in case f(p)(s0) � 0 for every
1≤p≤ k, and f(k+1)(s0)≠ 0. Additionally, f has A⩾k singu-
larity (k⩾1) at s0. Suppose the (k − 1) jet of the partial
derivative zF/zxi at s0 is j(k− 1)(zF/zxi(s, x0))(s0) �


k−1
j�0Lji(s − s0)

j (without the constant term), for i � 1, . . . , r.
'erefore, F(s) named the p versal unfolding in case of the
k × r matrix of coefficients (Lji) from the rank k (k≤ r). So,
we write an important set about the unfolding relative to the
previous notations. 'e discriminant set of F is

DF � x ∈ Rr
|there exists swithF(s, x) �

zF

zs
(s, x) � 0 at (s, x) . (28)

'e bifurcation set of F is

BF � x ∈ Rr
| there exists swith

zF

zs
(s, x) �

z
2
F

zs
2 (s, x) � 0 at (s, x) . (29)

Similar to [1–3], we state the following theorem:

Theorem 2. Suppose F: (R × Rr, (s0, x0))⟶ R is the r-
parameter unfolding of f(s), with Ak singularity at s0.

Considering F is the p versal unfolding,

(a) In case k � 1, DF is locally diffeomorphic to
0{ } × Rr− 1, and BF � ∅;

(b) In case k � 2,DF is locally diffeomorphic toC × Rr− 2,
and BF is locally diffeomorphic to 0{ } × Rr− 1;

(c) In case k � 3, DF is locally diffeomorphic to
SW × Rr− 3, and BF is locally diffeomorphic to
C × Rr− 2.

Hence, we have the following proposition:

Proposition 4. Suppose β: I⟶ E3
1 is the unit speed

spacelike curve with the timelike principal normal, and
κ21 − κ22 ≠ 0.

(1) In case hx(s) � H(s, x) has the Ak singularity
(k � 2, 3) at s0 ∈ R, and H is the p versal unfolding of
hx0(s0)

(2) In case hx(s) � H(s, x, w) has the Ak-singularity
(k � 2, 3) at s0 ∈ R, and H is the p–versal unfolding of
hx0(s0)

Proof.

(1) Since x � (x0, x1, x2) ∈ S2
1, −x2

0 + x2
1 + x2

2 � 1, x0, x1,
and x2 cannot be all zero. Without the loss of
generality, suppose x2 ≠ 0. 'en, by
x2 �

���������

1 + x2
0 − x2

1



, we have

H(s, x) � −x0β0(s) + x1β1(s) +

���������

1 + x
2
0 − x

2
1



β2(s). (30)

'us, we have that

zH

zx0
� −β0(s) +

x0β2(s)
���������

1 + x
2
0 − x

2
1

 ,
zH

zx1
� β1(s) −

x1β2(s)
���������

1 + x
2
1 − x

2
2

 ,

z
2
H

zs zx0
� −β0′(s) +

x0β2′(s)
���������

1 + x
2
0 − x

2
1

 ,
z
2
H

zs zx1
� β1′(s) −

x1β2′(s)
���������

1 + x
2
1 − x

2
2

 .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(31)
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'erefore, the 2 jets of zH/zxi at s0 (i� 0, 1) are as
follows: let x0 � (x00, x10, x20) ∈ S2

1, and assume
x20 ≠ 0, then

j
1 zH

zx0
s, x0(   � −β0′(s) +

x00β2′(s)

x20
  s − s0( ,

j
1 zH

zx1
s, x0(   � β1′(s) −

x10β2′(s)

x20
  s − s0( ,

⎫⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(32)

j
2 zH

zx0
s, x0(   � −β0′(s) +

x00β2(s)

x20
  s − s0(  +

1
2

−β′′0 +
x00β
′′
2(s)

x20

⎛⎝ ⎞⎠ s − s0( 
2
,

j
2 zH

zx1
s, x0(   � β1′(s) −

x10β2′(s)

x20
  s − s0( 

1
2

β′′1(s) −
x10β
′′
2(s)

x20

⎛⎝ ⎞⎠ s − s0( 
2

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

. (33)

(i) In case hx0(s0) has the A2 singularity at s0, then
hx0
′ (s0) � 0. So, the (2 − 1) × 2 matrix of coefficients

(Lji) is

A � −β0′(s) +
x00β2′(s)

x20
β1′(s) −

x10β2′(s)

x20
 . (34)

If the matrix A has rank equal zero, then

β0′(s) �
x00β2′(s)

x20
, β1′(s) �

x10β2′(s)

x20
. (35)

Since ‖β′(s0)‖ � ‖T1(s0)‖ � 1, we have β2′(s0)≠ 0, so
that we have the contradiction as follows:

0 �〈 β0′ s0( , β1′ s0( , β2′ s0( ( , x00, x10, x20( 〉

� −β0′ s0( x00 + β1′ s0( x10 + β2′ s0( x20

� −
x
2
00β2′ s0( 

x20
+

x
2
10β2′ s0( 

x20
+ β2′ s0( x20

�
β2′ s0( 

x20
−x

2
00 + x

2
10 + x

2
20 

�
β2′ s0( 

x20
≠ 0.

(36)

'en, rank (A) � 1, as well H is the p versal
unfolding of hx0 at s0.

(ii) In case hx0(s0) has the A3 singularity at s0 ∈ R, then
hx0
′ (s0) � hx0

″ (s0) � 0, and using Proposition 1,

e s0(  �
κ1������

κ21 − κ22


κ2
κ1
N1 + N2 , (37)

where κ21 − κ22 > 0, ρ′(s0) � 0, and ρ′′(s0)≠ 0. So the
(3 − 1) × 2 matrix of the coefficients (Lji) is

B �
L11 L12

L21 L22

⎛⎝ ⎞⎠ �

−β0′(s) +
x00β2(s)

x20
β1′(s) −

x10β2′(s)

x20

−β′′0 +
x00β2″(s)

x20
β′′1(s) −

x10β2″(s)

x20

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(38)

It is required that the 2 × 2 matrix B is a nonsingular
matrix. Clearly, this matrix determinate at s0 is

det(B) �
1

x20

−β0′ β1′ β2′

−β0″ β1″ β2″

x00 x10 x20





�
1

x20
〈β′ × β″, e0〉

� ∓
κ1

x20

������

κ21 − κ22
 〈β′ × β″,

κ2
κ1
N1 + N2 〉.

(39)

Since β′ � T1, we have β′′ � κ1N1 + κ2N2.
Substituting these relations to the previous equality,
we obtain

det(B) � ∓

������

κ21 − κ22


x20
≠ 0, (40)
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which resulted in rank (B) � 2.
(2) Using similar notations as in (1), we get

H s, x, x2(  � −x0β0(s) + x1β1(s) +

���������

1 + x
2
0 − x

2
1



β2(s) − x2.

(41)

We require the 2 × 3 matrix,

G �

−β0′(s) +
x00β2(s)

x20
β1′(s) −

x10β2′(s)

x20
−1

−β′′0 +
x00β
′′
2(s)

x20
β′′1(s) −

x10β
′′
2(s)

x20
0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (42)

to have the maximal rank. Using case (1) in equation (38),
the second raw ofG will not be zero; then, rank (G) � 2. □

Proof of <eorem 1. (1) Using Proposition 1, the bifurcation
set of H(s, x) is

BH �
κ1������

κ21 − κ22


κ2
κ1
N1 + N2 |s ∈ R|s ∈ R

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (43)

'e assertion (1) of'eorem 1 follows from Propositions
1 and 4 and 'eorem 2. 'e discriminant set of H(s, x) is
written as

DH � x0 � β + cosh uN1 + sinh uN2|s ∈ R . (44)

'e assertion (1) of'eorem 1 follows from Propositions
1 and 4 and 'eorem 2. □

Example 1. Consider this spacelike helix:

α(s) �

�
3

√

2
sinh s,

s

2
,

�
3

√

2
cosh s , −1≤ s≤ 1. (45)

It is easy to show that

ζ1(s) �

�
3

√

2
sinh s,

1
2
,

�
3

√

2
cosh s ,

ζ2(s) � (sinh s, 0, cosh s),

ζ3(s) �
1
2
cosh s, −

�
3

√

2
,
1
2
sinh s ,

κ(s) �

�
3

√

2
, and τ(s) �

1
2
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (46)

Taking θ0 � 0, we obtain θ(s) � −1/2s. By the use of
equation (9), we have

κ1(s) � cosh
s

2
, and κ2(s) � −sinh

s

2
. (47)

Hence, the geometric invariant is

ρ(s) �
1
2
. (48)

'erefore, the transformation matrix is written as

T1

N1

N2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

1 0 0

0 cosh
s

2
−sinh

s

2

0 −sinh
s

2
cosh

s

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ζ1

ζ2

ζ3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (49)

From this, we have

N1 �

N11

N12

N13

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

cosh
s

2
sinhs −

1
2
sinh

s

2
coshs

�
3

√

2
sinh

s

2

cosh
s

2
coshs −

1
2
sinh

s

2
sinhs

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

N2 �

N21

N22

N23

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

1
2
cosh

s

2
coshs − sinh

s

2
sinhs

−

�
3

√

2
cosh

s

2

1
2
cosh

s

2
sinhs − sinh

s

2
coshs

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(50)

Hence, the Bishop spherical Darboux image (Figure 4)

e(s) � sinh
s

2

N11

N12

N13

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
− cosh

s

2

N21

N22

N23

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (51)

'e spacelike sweeping surface (Figure 5) is

M: R(s, u) �

�
3

√

2
sinh s,

s

2
,

�
3

√

2
cosh s  + cosh u

N11

N12

N13

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ sinh u

N21

N22

N23

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(52)
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3.3. Singularities ofDevelopable Surfaces. It is known that the
developable surface is a special case of ruled surface. 'is
kind of surfaces is used extensively in manufacture of au-
tomobile body parts, airplane wings, as well some ship parts.
As a result, we analyze the case that the profile curve x
degenerates to the line.'erefore, we have the next spacelike
developable surface:

M: Q(s, u) � β(s) + uN2(s), u ∈ R. (53)

Moreover, we have the following timelike developable
surface:

M
⊥

: Q⊥(s, u) � β(s) + uN1(s), u ∈ R. (54)

Clearly, Q(s, 0) � α(s) (respectively, Q⊥(s, 0) � α(s)),
0≤ s≤ L, such that, the surface M (respectively, M⊥) in-
terpolates the curve α(s). We also have

M: Qs × Qu � 1 − uκ2( N1(s), (55)

as well

M
⊥

: Q⊥s × Q⊥u � 1 + uκ1( N1(s). (56)

'erefore, we obtain M (respectively, M⊥) that is
nonsingular at (s0, u0) if and only if 1 − u0κ2(s0)≠ 0 (re-
spectively (1 + u0κ1(s0)≠ 0)). Hence, we can classify the
singularities of developable surface M by using κ2.

Theorem 3. Suppose M is the spacelike developable given as
in equation (53). <erefore, we have

(1) M is locally diffeomorphic to cuspidal edge at (s0, u0)

iff κ2(s0) � 0 and κ2′(s0)≠ 0
(2) M is locally diffeomorphic to swallowtail at (s0, u0) iff

κ2(s0)≠ 0 and κ2′(s0)/κ22(s0)≠ 0

Proof. If there is a parameter s0, that is, κ2(s0) � 0, and u0′ �
κ2′(s0)/κ22(s0)≠ 0 (κ2′(s0)≠ 0), M is locally diffeomorphic to
the cuspidal edge at (s0, u0). As a result, assertion (1) holds.
In addition, in case there is a parameter s0, that is,
u0 � 1/κ2(s0)≠ 0, u0′ � κ2′(s0)/κ22(s0) � 0, and (1/κ2(s0))″ ≠
0, and M is locally diffeomorphic to swallowtail at (s0, u0),
assertion (2) holds. □

Example 2. By making using of Example 1, we have

(1) If s0 � 0, then κ2(s0) � 0 and κ2′(s0)≠ 0. 'e timelike
developable surface

M: Q(s, u) �

�
3

√

2
sinh s,

s

2
,

�
3

√

2
cosh s  + u

1
2
cosh

s

2
cosh s − sinh

s

2
sinh s

−

�
3

√

2
cosh

s

2

1
2
cosh

s

2
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, (57)

Figure 4: Bishop spherical Darboux image has a cusp as s� 0.

Figure 5: Spacelike sweeping surface with spacelike helix singu-
larity curve.

Figure 6: 'e timelike developable surface.
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where u ∈ R is locally diffeomorphic to the cuspidal
edge (Figure 6).

(2) In case s0 � 0, κ1(s0)≠ 0 and κ2′(s0) � 0. 'e
spacelike developable surface is
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (58)

where u ∈ R is locally diffeomorphic to swallowtail
(Figure 7).

4. Conclusion

In this study, we introduced the notion of spacelike sweeping
surfaces with rotation minimizing frames at Minkowski 3-
space E3

1. Using the singularity, we classified the generic
properties and present a new geometric invariant related to
the singularities of this spacelike sweeping surface. It leads to
that the generic singularities of this sweeping surface are
cuspidal edge and swallowtail, and the types of these sin-
gularities can be characterized by this geometric invariant, in
the same order. Subsequently, we derived the sufficient and
necessary conditions for the surface to be developable ruled
surfaces. At the end, some examples are introduced in order
to clarify the theoretical results.
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