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*ermodynamical attributes of non-Newtonian fluids over stretched surfaces have gained pervasive essence due to extensive
utilization in extruding plastic sheet procedures, liquid film condensation, glass blowing, paper production, biopolymer cylinder
coatings, and so forth. So, currently communication is aimed to candidly explicate flow characteristic of Prandtl fluid generated by
axial stretching of cylindrical surface. Mathematical modelling by using conservation laws of momentum, energy and con-
centration fields containing the aspects of magnetic field, convective heating, and chemical reaction are presented initially in the
form of partial differential expressions. Later on, these attained PDEs are transmuted into nonlinear ordinary differential
equations with implementation of similarity variables. Numerical approach renowned as shooting technique with improved
coefficient of the Runge–Kutta (R–K)method by Cash and Karp is used to access accurate solution. Linear curved fitting analysis is
also performed to analyze results. Influence of flow-controlling parameters on associated profiles is revealed through graphical
visualization. Stream line plots representing flow behavior of Prandtl fluid versus different magnitudes of the curvature parameter
are adorned. Variation in friction drag force at wall, heat flux, and concentration gradient are evaluated through numerical data
and with interpolation of linear curved fittings. It is deduced from results that increasing curvature parameter momentum and
temperature distributions enriches whereas skin-friction coefficient depicts reverse pattern. It is also inferred that temperature
shows incrementing deviation in the absence of chemical reaction whereas concentration profiles exhibit reduction with
consideration of influence of chemical reaction parameter. Magnetic field tends to reduce the velocity and create thinness of
boundary layer thickness.

1. Introduction

Analysis of non-Newtonian fluids has attained superb at-
tention of researchers due to numerous scientific imple-
mentations in multiple fields such as food mixing,
multigrade oils, composition of materials, wire drawing, hot

rolling, petroleum productions, metallurgical procedures,
manufacturing of materials, preventive coating, lubricating
products, polymerization processes, ink-jet printers, geo-
physical flows, liquid crystallizations, and several others.
Taking into consideration the aforementioned extensive
applicability in different technological and industrial
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frameworks, a lot of analysis has been conducted in this
direction in recent years. However,, the complexity about the
non-Newtonian model is its mathematical modelling on
behalf of different rheological features. Hence, there is no
single constitutive mathematical model which is present,
which expresses the fluid characteristics of all non-New-
tonian fluids single handedly. Consequently, non-New-
tonian fluid models are categorized into time-dependent,
time-independent, viscoelastic, and viscoinelastic fluids.
Among these subclasses, the most practicing fluids are
viscoinelastic fluids. Dunn [1] presented pioneering inves-
tigation on the properties of viscoinelastic fluids and
depicted behavior of strain of such fluids against application
of stress. In the literature, a lot of fluid models are presented
to elaborate characteristics of viscoinelastic fluids, but it is
found that Prandtl fluid is the most fittest to explicate
features of viscoinelastic fluids. Peristaltic movement of
Prandtl fluid in endoscope was investigated by Nadeem et al.
[2] by calculating perturbation solution of modelled prob-
lem with implementation of analytical approach. Akbar [3]
considered blood as viscoinelastic fluid and delineated flow
features in stenosed tapered arteries by computing pertur-
bation solution. Jothi et al. [4] discussed the physical aspects
of magnetically effected Prandtl fluid flow in a symmetric
channel. Nazari et al. [5] analyzed convective heat transfer of
Prandtl nanofluid flow saturated in lid-driven enclosure.
Hossainy et al. [6] discussed the influence of yielding stress
on magneto hydrodynamic boundary layer fluid flow of 3D
Casson nanofluid over stretched surface entrenched in a
porous medium. Bilal et al. [7] adumbrated flow features of
the Prandtl fluid model over stretching sheet along with
effectiveness of double-diffusive heating.

*e mass transport phenomenon in many scientific
disciplines involves molecular and convective transport of
atoms and molecules. *e driving force for producing such
type of molecular diffusion is the concentration differences
which can generate to application of chemical reaction
within flow domain. *e process of chemical reaction arises
with addition of multiple dissimilar natured particles, and an
outcome interaction of particles is produced. Mass transport
procedures with effectiveness of chemical reactions have
many practical applications, e.g., combustion system, met-
allurgy, distribution of fertilizers in agriculture field, nuclear
reactor safety, and many more. In view of such extensive
applications several interesting studies are conducted. For
the sake of brevity, some of them are mentioned. Effect of
chemical reactions on viscous fluid flow over horizontal
plate was discussed by Anjalidevi and Kandasamy [8]. Zhang
and Zheng [9] reported influence of chemical reactive
species in thermosolutal Marangoni flow of electrified vis-
cous fluid and predicted reduction in nanoparticle con-
centration with respect to uplift in chemical reaction
magnitude. Chaudhary and Merkin [10] investigated ther-
mophysical attributes of viscous fluid influenced by chemical
reaction effects. Nandkeolyar et al. [11] described stagnant
dissipative nanofluid in the attendance of chemically reac-
tion and magnetic field. Hossainy and Eid [12] analyzed
hydrothermal efficiency of non-Newtonian hybrid nanofluid
in a heat-exchange channel by generation of chemical

reactions in domain. Eid and Makinde [13] studied col-
laborative aspects of radiative heat energy and chemical
reaction on electrically conducting nanofluid flow over a
stretching sheet immersed in a permeable medium. *e
effects of slip velocity and chemical reaction generated in
stagnant flow of nanofluid over a stretching sheet embedded
in a porous medium were studied by Eid [14]. In precise,
investigators are still working to explore hidden features of
chemical reaction on Newtonian and non-Newtonian flows
[7, 15, 16].

In the today technological world, nanotechnology is
considered one of momentous inventions which have
brought advancement in industrial rebellion. Nanotech-
nology based on nanofluids is engineered colloidal sus-
pension of nanometer-sized particles in host fluids. Before
the discovery of nanoparticles, liquids with low thermo-
physical characteristics are capitalized in multiple proce-
dures which produce deficiencies in output. So, Choi [17]
proposed the idea of nanofluids by experimentally mea-
suring their intrinsic features possessed by nanoparticles.
Buongiorno [18] evaluated enhancement in thermal con-
ductance of ordinary fluids with the induction of nano-
particles. Flow analysis of viscous fluid generated by an
exponential stretching of surface by adding nanoparticles
was probed by Nadeem et al. [19]. Reza et al. [20] inter-
rogated influence of carbon nanotubes in peristaltic
movement of water in a permeable channel under the impact
of magnetic field. Peyghambarzadeh et al. [21] disclosed
application of nanofluids in increasing automotive cooling.
In recent years, extensive work on nanofluid flow analysis in
numerical computational domains along with applications
was manifest. So, for interest of readers and getting their
motivation in this work few references are mentioned.
Alaidrous and Eid [22] adumbrated nanofluid flow of non-
Newtonian liquid under impedance of electromagnetic ra-
diations and highly rated reactions. Eid and Mabood [23]
irreversibility entropy generated aspects of carbon nanotube
(CNT) placement in micropolar dusty fluid mixed with
kerosene oil. *e uplift in thermal characteristics of blood
flow with induction of gold plated hybridized nanoparticles
past a stretching sheet was analyzed by Eid [24]. Also,
[25–30] presented the literature discusses by various re-
searchers on nanoliquids.

Analysis of fluid flows under impression of magnetic
field has been demanding research area among researchers
due to overwhelming implications in industry, engineering,
medical technology, and so many. In recent years, magneto
hydrodynamics of electrically conducting flows has been
investigated extensively in multiple physical configurations.
Likewise, Lahmar et al. [31] examined transportation of an
unsteady ferro magnetic nanofluid between two parallel
plates by considering thermal heat conduction as a function
of temperature in the presence of magnetic source. Some
recent investigations in this direction are enclosed in
[32, 33].

*e abovementioned literature survey reflects promi-
nence about thermophysical features of non-Newtonian
fluid flow. However, it is seen that analysis of the Prandtl
fluid model in the presence of chemical reaction and
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magnetic field over melted heating cylinder has not been
scrutinized yet. So, current effort is made to fill this gap. In
this regards, mathematical modelling of the non-Newtonian
fluid rheological model with heat transfer aspects is attained
in the form of partial differential equations by applying
boundary layer approach. Afterwards, suitable scaling
transformations are used for conversion into ordinary dif-
ferential expressions. Improved numerical simulations by
means of the Runge–Kutta method with improved coeffi-
cients presented by Cash and Karp are used. Computed
results are presented through graphical and tabular
manners.

2. Mathematical Formulation

Assume 2-D, in-compressed, time-independent, and elec-
trified Prandtl nanoliquid persuaded by an axially stretch-
able cylinder. Let v and u be the velocity constituents along r
and x directions, respectively, as shown in Figure 1. *e
cylinder is stretched axially with linear velocity. *e mag-
netic field of strength B°is applied perpendicular to cylinder
axis. Furthermore, the generated magnetic field is very small
in comparison with applied one due to low magnetic
Reynolds number assumption.

Prandtl proposed the following rheological model [16]:
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A
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Accompanied to boundary conditions,

u � Uw(x) + L
zu

zr
,

v � 0,

k(T)
zT
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� − hw Tw − T􏼂 􏼃,

C � Cm(x), at r � R,

u⟶ 0,

T⟶ T∞(x),

C⟶ C∞, as r⟶∞.

(8)

In the above equations σ is the electrical conductance, κ
is the thermal conductivity, R is the radius of the cylinder,
_α � (υ/ρcp) denotes the thermal diffusivity, cp is the specific
heat at constant pressure, DB is Brownian motion diffusion
coefficient, DT is the thermophoresis diffusion coefficient, K
is chemical reaction rate constant,Uw(x) � ax is linear
stretching velocity, and wall heat flux coefficient is denoted
with hw.

*e stream function which satisfied the continuity
equation is mentioned as follows:
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Figure 1: Diagram of physical configuration of problem.
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Equations (4)–(7) can be transformed into nonlinearized
ordinary differential equation by employing the following
transmutations:
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After applying the abovementioned transformations, the
governing equations, i.e., equations (4)–(7), are transformed
into following form:
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*e associated boundary conditions take the following
form:
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where αis the fluid parameter, β is the elastic parameter,c is
the curvature parameter, Nb is the Brownian motion pa-
rameter, Mf is the magnetic strength parameter, Pr is the
Prandtl number, Re is the Reynolds number, Le is the Lewis
number, Nt is the thermophoresis parameter, and δc is the
chemical reactive parameter defined as follows:
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*e physical parameters of interest, i.e., coefficients of
wall drag, wall heat flux, and wall mass flux, are defined as
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where τw is the surface drag force, qwis the surface heat flux,
and jw is the surface mass flux given as follows:
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Coefficients of wall drag, thermal flux, and mass flux are
defined as

1
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3. Computational Algorithm

Shooting technique along with the Runge–Kutta–Fehlberg
method (by using Cash and Carp coefficients) is adopted to
solve flow-govern problem (Table 1). For this process, flow-
govern equations are transformed into

f″ �
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By letting a new set of variables,
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along boundary conditions

e1(η) � 0,

e2(η) � 1 + λe3(η),

e4(η) � − (1/k),

e5(η) − 1,

e6(η) � 1, at η⟶ 0,

e2(η)⟶ 0,

e4(η)⟶ 0,

e6(η)⟶ 0, as η⟶∞.

(26)

*e Runge–Kutta–Fehlberg method is applicable on
initial value problem, and in addition, Cash and Karp co-
efficients are used to raise the accuracy of solution. So, the
given boundary conditions are transformed into initial
conditions:

e1(0) � 0,

e2(0) � 1 + λe3(0),

e3(0) � ω1, (unknown initial condition),

e4(0) � −
1
k

􏼒 􏼓e5(0) − 1,

e5(0) � ω2, (unknown initial condition),

e6(0) � 1,

e7(0) � ω3, (unknown initial condition).

(27)

*en, initial value problem is solved and error is
computed by comparing given and calculated boundary
values. If error is larger than tolerance, i.e., 10− 6, then initial
values are modified with Newton’s method and process is
repeated unless differences are less than 10− 6.

4. Graphs and Tables

Impacts and influences of different variables in absence of
δc are shown in Figures 2–14.
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Figure 2: Impacts of α on f′(η)in absence/presence of δc.
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Figure 3: Influence of β on f′(η)in absence/presence of δc.
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Figure 4: c influences on f′(η)in absence/presence of δc.
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Figure 5: Mf impacts on f′(η)in absence/presence of δc.

Table 1: Numerical values of the coefficient given by Cash and Karp.

I Ai Bij Ci Di

1 – – – – – – (37/378) (2825/27648)

2 (1/5) (1/5) – – – – 0 0
3 (3/10) (3/40) (9/40) – – – (250/621) (18575/48384)

4 (3/5) (3/10) (− 9/40) (6/5) – – (125/594) (13525/55296)

5 1 (− 11/54) (5/2) (− 70/27) (35/27) – 0 (277/14336)

6 (7/8) (1631/55296) (175/512) (575/13824) (44275/110592) (253/4096) (512/1771) (1/4)
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5. Straight Line Curve-Fitting Analysis

*ebehavior of wall drag, wall heat flux, and wall mass flux is
analyzed via straight linearized curved fitting for Prandtl
fluid parameter, elastic parameter, curvature parameter,
velocity slip, magnetic field, Prandtl number, thermopho-
retic, Brownian motion, Biot number, Lewis number, and
chemical reactive parameters. *e Guass and Legendre

method was adopted. *e expressions for linear approxi-
mations are defined such as

na0 + a1 􏽘 χi � 􏽘 ξi,

a0 􏽘 χii + a1 􏽘 χ2i � 􏽘 χiξi.
(28)

We trace out linearized fitting for wall drag coefficient
towards Prandtl fluid, elastic, curvature, velocity slip, and
magnetic parameters, i.e., α, β, c, λ, andMf. Let χi � (α)i

and ξi � (αf″(0) + (αβ/3)(f″(0))3)i, then we get
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􏽘(α)i � 0.7,

􏽘(α)i
2

� 0.25,

􏽘 αf″(0) +
αβ
3

f″(0)( 􏼁
3

􏼠 􏼡
i

� − 1.3085,

􏽘(α)i αf″(0) +
αβ
3

f″(0)( 􏼁
3

􏼠 􏼡
i

� − 0.4826.

(29)

For straight line approximation, we inserted above ex-
pressions in equation (23) and got

2a0 + 0.7a1 � − 1.3085,

0.7a0 + 0.25a1 � − 0.4826.
(30)

By evaluating systemized expression given by (24), we
get

αf″(0) +
αβ
3

f″(0)( 􏼁
3

� a0 + a1α, (31)

where a0 � 1.0694 and a1 � − 4.9249.

Linearized curve fitting for wall shear stress versus elastic
parameter β is found such as

η
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Figure 10: Nb impacts on ϕ(η)in the absence/presence of δc.
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􏽘(β)i � 0.7,

􏽘(β)i
2

� 0.29,

􏽘 αf″(0) +
αβ
3

f″(0)( 􏼁
3

􏼠 􏼡
i

� − 1.1708,

􏽘(β)i αf″(0) +
αβ
3

f″(0)( 􏼁
3

􏼠 􏼡
i

� − 0.4632,

2b0 + 0.7b1 � − 1.1708,

0.7b0 + 0.29b1 � − 0.4632.

(32)

*e linearized approximation for fluid elastic variable is
specified by

αf″(0) +
αβ
3

f″(0)( 􏼁
3

� P(β) � b0 + b1β, (33)

where b0 � − 0.1699 and b1 � − 1.1871.

*e straight line-curved fittedmodel for the dragged wall
number for curvature parameter c is disclosed as follows:

􏽘(c)i � 1.5,

􏽘(c)i
2

� 1.25,

􏽘 αf″(0) +
αβ
3

f″(0)( 􏼁
3

􏼠 􏼡
i

� − 1.5347,

􏽘(β)i αf″(0) +
αβ
3

f″(0)( 􏼁
3

􏼠 􏼡
i

� − 1.3299,

2c0 + 1.5c1 � − 1.5347,

1.5c0 + 1.25c1 � − 1.3299.

(34)
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Figure 14: (a) Stream lines against curvature parameter. (b) Stream lines against curvature parameter. (c) Stream lines against curvature parameter.
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*en, the linear approximations for the curvature pa-
rameter are given by

αf″(0) +
αβ
3

f″(0)( 􏼁
3

� P(c) � c0 + c1c, (35)

where c0 � − 0.3059 and c1 � − 1.4310.

Straight line curve fitting for wall drag coefficient against
velocity slip parameter λ is defined as

􏽘(λ)i � 0.4,

􏽘(λ)i
2

� 0.1,

􏽘 αf″(0) +
αβ
3

f″(0)( 􏼁
3

􏼠 􏼡
i

� − 0.6685,

􏽘(λ)i αf″(0) +
αβ
3

f″(0)( 􏼁
3

􏼠 􏼡
i

� − 0.1191,

2d0 + 0.4d1 � − 0.6685,

0.4d0 + 0.1d1 � − 0.1191.

(36)

*en, the straight line curves versus the curvature pa-
rameter are defined as follows:

αf″(0) +
αβ
3

f″(0)( 􏼁
3

� P(λ) � d0 + d1λ, (37)

where d0 � − 0.4802 andd1 � 0.7300.

Straight line curve fitting for skin-friction coefficient
towards velocity slip parameter λ is computed as

􏽘 Mf􏼐 􏼑
i
� 0.4,

􏽘 Mf􏼐 􏼑
i

2
� 0.1,

􏽘 αf″(0) +
αβ
3

f″(0)( 􏼁
3

􏼠 􏼡
i

� − 0.9699,

􏽘 Mf􏼐 􏼑
i
αf″(0) +

αβ
3

f″(0)( 􏼁
3

􏼠 􏼡
i

� − 0.2095,

2e0 + 0.4e1 � − 0.9699,

0.4e0 + 0.1e1 � − 0.2095.

(38)

*en, the straight line approximations towards the
curvature parameter are given by

αf″(0) +
αβ
3

f″(0)( 􏼁
3

� P Mf􏼐 􏼑 � e0 + e1Mf, (39)

where e0 � − 0.3297 and e1 � − 0.7759.

Now, to trace curve-fitted approximation for convec-
tional wall transfer against the curvature parameter, Prandtl

number, thermophoresis parameter, Brownian movement
parameter, and Biot number are calculated as follows:

􏽘(c)i � 1.5,

􏽘(c)i
2

� 1.25,

􏽘 − θ′(0)( 􏼁i � 0.5973,

􏽘(c)i − θ′(0)( 􏼁i � 0.4764,

2f0 + 1.5f1 � 0.5973,

1.5f0 + 1.25f1 � 0.4764.

(40)

After simplifying, we get

− θ′(0) � P(c) � f0 + f1c, (41)

where f0 � 0.1281 andf1 � 0.2274.

Wall heat flux straight line approximation towards the
Prandtl number is assessed as

􏽘(Pr)i � 3,

􏽘(Pr)i
2

� 5,

􏽘 − θ′(0)( 􏼁i � 0.6737,

􏽘(Pr)i − θ′(0)( 􏼁i � 2.8851,

2g0 + 8g1 � 0.6737,

8g0 + 34g1 � 0.4320.

(42)

After computing by usual algebraic practice, we attain

− θ′(0) � P(Pr) � g0 + g1Pr, (43)

where g0 � 4.8624 andg1 � 1.1314.

Linear approximation for heat transferal rate towards the
thermophoresis parameter is calculated by

􏽘(Nt)i � 0.1,

􏽘(Nt)i
2

� 0.2,

􏽘 − θ′(0)( 􏼁i � 0.4558,

􏽘(Nt)i − θ′(0)( 􏼁i � 0.0669,

2h0 + 0.3h1 � 0.4558,

0.3h0 + 0.05h1 � 0.0669.

(44)

After solving by common algebraic practice, we get

− θ′(0) � P(Nt) � h0 + h1Nt, (45)
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where h0 � 4.8624 and h1 � 1.1314.

Straight line approximation by varying thermophoresis
parameter for wall heat flux is found as

􏽘(Nb)i � 0.1,

􏽘(Nb)i
2

� 0.2,

􏽘 − θ′(0)( 􏼁i � 0.2417,

􏽘(Nb)i − θ′(0)( 􏼁i � 0.2212,

2j0 + 0.3j1 � 0.4829,

0.3j0 + 0.05j1 � 0.0644.

(46)

After simplifying, we get

− θ′(0) � P(Nb) � j0 + j1Nb. (47)

where j0 � 0.4825 and j1 � − 1.6070.

Straight line approximations of wall heat flux against the
Biot number are found as

􏽘(k)i � 0.4,

􏽘(k)i
2

� 0.1,

􏽘 − θ′(0)( 􏼁i � 0.2417,

􏽘(Nb)i − θ′(0)( 􏼁i � 0.2212,

2l0 + 0.4l1 � 1.2262,

0.4l0 + 0.1l1 � 0.2257.

(48)

After computing by usual algebraic practice, we attain

− θ′(0) � P(k) � l0 + l1k, (49)

where l0 � 1.0694 and l1 � − 4.9242.

Wall mass flux straight line approximations versus Lewis
number, Prandtl number, thermophoresis parameter,
Brownian motion parameter, and chemical reaction pa-
rameter are examined as follows:

􏽘(Le)i � 1.5,

􏽘(Le)2i � 1.25,

2m0 + 1.5m1 � 1.3397,

1.5m0 + 1.25m1 � 1.0665.

(50)

After simplifying, we get

− ϕ′(0) � P(Le) � m0 + m1k, (51)

where m0 � 0.2995 andm1 � 0.4938.

Straight line approximation for surface mass flux for the
Prandtl number is calculated as

􏽘(Pr)i � 1.5,

􏽘(Pr)i
2

� 1.25,

􏽘 − ϕ′(0)( 􏼁i � 1.1471,

􏽘(Pr)i − ϕ′(0)( 􏼁i � 0.8739,

2n0 + 1.5n1 � 1.2262,

1.5n0 + 0.1n1 � 0.8739.

(52)

After computing by usual algebraic way, we attain

− ϕ′(0) � P(Pr) � n0 + n1Pr, (53)

where n0 � 0.4921 and n1 � 1.0847.

Linear approximation for mass flux towards thermo-
phoresis variable is scrutinized as follows:

􏽘(Nt)i � 0.3,

􏽘(Nt)i
2

� 0.05,

􏽘 − ϕ′(0)( 􏼁i � 1.1587,

􏽘(Nt)i − ϕ′(0)( 􏼁i � 0.1771,

2q0 + 0.3q1 � 1.1587,

0.3q0 + 0.05q1 � 0.1771.

(54)

After computing by usual algebraic way, we attain

− ϕ′(0) � P(Nt) � q0 + q1Nt, (55)

where q0 � 0.4825 and q1 � 0.6589.

Surface mass flux straight line approximation for
chemical reaction parameter is computed as

􏽘 δc( 􏼁i � 0.3,

􏽘 δc( 􏼁i
2

� 0.05,

􏽘 − ϕ′(0)( 􏼁i � 1.1505,

􏽘 δc( 􏼁i − ϕ′(0)( 􏼁i � 0.1754,

2s0 + 0.3s1 � 1.1505,

0.3s0 + 0.05s1 � 0.1754.

(56)

After simplifying, we get

− ϕ′(0) � P δc( 􏼁 � s0 + s1δc, (57)

where s0 � 0.4905 and s1 � 0.5649.

6. Physical Outcomes

*is section is fascinated to examine impact of embedded
parameters on fluid concerning profiles. Moreover, physical
quantities of interest, i.e., coefficients of wall friction, wall
heat flux, and wall mass flux, are reported by means of both
straight line curve fitting and tabular structure. In detail,
impacts of α and β on fluid velocity in the absence/presence
of δc are presented in Figures 1–3, respectively. From
graphical trends, it is seen that both α and β cause decli-
nation in momentum of fluid flow and associated boundary
layer thickness. *e reason behind this variation is that with
increase in α and β, viscosity of fluid increases, and hence,
movement of fluid decays. It is also divulged that flow regime
depicts higher magnitude in the absence of chemical reac-
tion as compared to the presence of chemical reaction.*ese
trends in similar were reported by Eid et al. [14] and Nadeem
and Lee [19]. Figure 4 reveals the variation of fluid velocity
towards c. *e fluid velocity accelerated by increasing c (see
Figure 4) because larger values of c correspond to reduce
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cylindrical radius which in turn reduces surface area; hence,
fluid particles experienced less resistance due to which
motion is accelerated. Figure 5 elucidates the impact of Mf

on velocity. It is clear from these curves that the fluid velocity
shows decline trend because an increase inMf leads to an
increase in Lorentz force and it has tendency to resist the
movement of fluid particles, so that velocity decreases.
Figure 6 interprets the variations in temperature profile by
varyingc. *is figure predicts that the fluid temperature
increases by enlarging the curvature parameter. *is is due
to the fact that when c enlarges, the surface heat flux in-
creases due to which temperature drops adjacent to the
cylindrical surface but temperature away from the cylin-
drical surface enhances. Figure 7 shows impact of Pr on fluid
temperature. *e graphical plotting depicts decrement in
temperature distribution against Pr. It is also noticed that
δc � 0 (in absence of chemical reactions), and fluid tem-
perature declines by enlarging the values of Pr, but for δc > 0,
the decline in fluid temperature is more rapid by enlarging
the values of Pr. Figure 8 deliberates the fluctuations in fluid
temperature by varying Nb in the absence/presence of the
chemical reaction phenomenon. Since Brownian motion
accelerates the particle movement, thus collision process is
expedited and hence produces more thermal energy (which
can be observed from the graph that fluid temperature rises
for larger values of Nb in both cases). On the other hand,
presence of chemical reactive species drops the fluid tem-
perature. Figure 9 shows the temperature profile variations
versus Nt in the absence/presence of chemical reaction.
Temperature profile shows increase versus Nt both zero and
nonzero δc. Figure 10 displays the variations in concen-
tration profile versus combined effect of Nb and δc. *is
graph reveals that the larger values of Nblessen the nano-
particle concentration because enhancement in Nb corre-
sponds to accelerate random motion of nanoparticles.
However, in presence of destructive chemical reaction case,
the concentration profile increases. Figure 11 reveals the
effect of Nt in absence and presence of the chemical reaction
parameter. It is clear from these curves that both parameters
have the same impact on nanoparticle concentration. Fig-
ure 12 divulges the influence of Le on nanoparticle volume
fraction in absence/presence of chemical reaction. *is
figure predicts that the concentration profile enlarges versus
Le irrespective of absence/presence of chemical reaction.
Figure 13 examines the physical significance of Pr on
concentration profile in absence/presence of chemical re-
action. It is evident that by increasing Pr and δc, nanoparticle
volume fraction increases significantly. Figures 14(a)–14(c)
are provided to inspect the flow pattern of Prandtl fluid over
the stretching cylinder by sketching stream lines against
curvature parameter c. From stream line plots, it is seen that
intensification in magnitude of lines is found with increase
in c because as curvature parameter c increases, contact of
fluid particles reduces, and as an outcome, less resistance is
provided. So, rapid movement in fluid is observed versus c.
Furthermore, these curves show that cenhances the fluid
momentum versus positive alteration in velocity. Figure 15
deliberates variation in skin-friction coefficient
againstα, β, c, λ, andMf. It is observed that with increase in

α, β, andMf, wall shear stress increases because all of these
mentioned parameters uplift the viscosity forces for re-
duction in velocity whereas reverse pattern is depicted in
case of λ and c. *e reason behind increase in skin friction is
the uplift of viscosity force in flow domain against these
mentioned parameters. Figure 16 displays fluctuations in
wall heat flux by varying c,Pr while Nt, Nb, and k. It is
found that wall heat flux coefficient increases by enhancing
c,Pr while forNt,Nb and k reduce. *e reason behind
enhancement in temperature gradient at wall against
c andPr is due to the fact that by increasing these param-
eters, resistance is provided by surface to molecules decrease,
and hence, average kinetic energy of molecules increases
which raise thermal flux. Figure 17 explicates variation in
mass flux against Le,Pr,Nt,Nb, and δ c. It is seen that all
mentioned parameters diminish concentration distribution
and create motion in fluid molecules, which raises the mass
flux with in flow domain. Table 2 delineates the variations in
wall friction coefficient versusα, β, c, λ, and,Mf and in-
creasing pattern of wall friction coefficient against α, β, c

while both λ andMf decrease it. Table 3 is designed to
explain the fluctuations in wall heat flux by varying gov-
erning parameters. Wall heat flux coefficient increases by
enhancing c,Pr while Nt, Nb, and k reduce it. Table 4 de-
picts the variations in the local Sherwood number
viaLe,Pr,Nt,Nb, and δ c, and we observed that with respect
to defined parameters, enhancement in the local Sherwood
number is manipulated. Tables 5 and 6 provide comparison
with the previously published literature and given assurance
about collected values in this work.

7. Key Results

*ecurrent study investigates themagnetic field influences on
partial slip flow of Prandtl nanofluid over the stretching
cylinder. *e fluid flow regime is manifested with the
chemical reaction phenomenon. *e modelled mathematical
equations are reduced in terms of the system of ODEs, and
then, the numerical method shooting is implemented to
interpret physical aspects of involved parameters. In the
presence or absence of the chemical reaction phenomenon,
the main findings of present analysis are itemized as follows:

(1) Prandtl fluid velocity reflects an inciting trend to-
wards both Prandtl fluid and elastic parameters

(2) Both fluid velocity and temperature are increasing
function of curvature parameter

(3) Magnetic field parameter declines both fluid velocity
and temperature

(4) Fluid temperature is increasing function of both
Brownian motion and thermophoresis parameters

(5) Nanoparticle concentration shows diminishing
variations towards Brownian motion parameter
while the opposite trend is noticed versus thermo-
phoresis parameter

(6) Nanoparticle concentration remarks inciting values
towards Lewis and Prandtl numbers
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(7) *e skin-friction coefficient shows increasing nature
for α, β, c, but opposite behavior is observed for
λ andMf

(8) Wall heat flux coefficient increases against c, Pr while
it decreases for Nt, Nb, and k

(9) *e local Sherwood number shows an inciting value
via Le, Pr, Nt, Nb, and δc

Nomenclature

Bo: Uniform magnetic field
f′(η): Dimensionless radial velocity profile
Cf: Skin-friction coefficient
θ(η): Dimensionless temperature profile
A and c: Dimensional fluid parameters
ϕ(η): Dimensionless concentration profile
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Figure 15: Straight line curve fitting for wall shear stress.
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Figure 16: Straight line curve fitting for heat transfer rate.
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Figure 17: Straight line curve fitting for wall mass flux.

Table 2: Numerical variation of wall friction coefficient for different parameters.

α β c λ Mf αf″(0) + (αβ/3)[f″(0)]3

0.3 0.2 0.5 0.1 0.1 − 0.4073
0.4 – – – – − 0.9012
0.5 – – – – − 1.4121
0.3 0.2 – – – − 0.4073
– 0.4 – – – − 0.6481
– 0.5 – – – − 0.7635
– 0.2 0.5 – – − 0.4096
– – 1 – – − 1.1251
– – 1.5 – – − 1.7481
– – 0.5 0.1 – − 0.4073
– – – 0.3 – − 0.2612
– – – 0.5 – − 0.1815
– – – 0.1 0.1 − 0.4073
– – – – 0.3 − 0.5626
– – – – 0.7 − 0.2253

Table 3: Numerical variation of HTR for different parameters.

c Pr Nt Nb k − θ′(0)

0.5 3 0.1 0.1 0.5 0.2417
1 – – – – 0.3556
1.5 – – – – 0.4517
0.5 3 – – – 0.2417
– 5 – – – 0.4320
– 7 – – – 0.7121
– 3 0.1 – – 0.2417
– – 0.2 – – 0.2141
– – 0.3 – – 0.1782
– – 0.1 0.1 – 0.2417
– – – 0.2 – 0.2212
– – – 0.3 – 0.2031
– – – 0.1 0.1 0.7104
– – – – 0.3 0.5158
– – – – 0.7 0.1715
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A1: First Rivlin–Ericksen tensor
υ: Kinematic viscosity
M: Magnetic parameter
μ: Dynamic viscosity
Pr: Prandtl number
ρ: Density
r, x: Cylindrical coordinate system
ρCP: Volumetric heat capacity
K: Dimensionless chemical reaction parameter
c: Curvature parameter
α: Fluid parameter
β: Elastic parameter
Nu: Nusselt number
Nb: Brownian motion parameter

Nt: *ermophoresis parameter
δc: Dimensionless chemical reaction parameter

Greek symbols

_α: *ermal diffusivity [m2/s]
η: Independent similarity variable.
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