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The local behavior with topological classifications, bifurcation analysis, chaos control, boundedness, and global attractivity of the
discrete-time Kolmogorov model with piecewise-constant argument are investigated. It is explored that Kolmogorov model has
trivial and two semitrival fixed points for all involved parameters, but it has an interior fixed point under definite parametric
condition. Then, by linear stability theory, local dynamics with different topological classifications are investigated around trivial,
semitrival, and interior fixed points. Further for the discrete Kolmogorov model, existence of periodic points is also investigated. It
is also investigated the occurrence of bifurcations at interior fixed point and proved that at interior fixed point, there exists no
bifurcation, except flip bifurcation by bifurcation theory. Next, feedback control method is utilized to stabilize chaos existing in
discrete Kolmogorov model. Boundedness and global attractivity of the discrete Kolmogorov model are also investigated. Finally,

obtained results are numerically verified.

1. Introduction

L1. Motivation and Literature Review. There are many
symbiotic interactions existing in nature between two or
more species in an ecosystem. Mutualism is an example of
such interaction where interacted species get benefit from
each other. For example, termites eat cellulose of wood but
cannot digest it, and flagellates reside in the termite’s gut
decomposing the cellulose of food and thus providing nu-
trients to termites. On the other hand, termite’s gut provides
food and shelter to flagellates. It is pointed out that in
theoretical ecology, mutualist behavior of symbiosis or
mutualism is very significant [1]. This field is not widely
studied as the other fields of mathematical biology even for
two species, although its importance is equal to the other
competitive interactions such as host-parasitoid and prey-
predator interactions. So, this topic of mutualism system
seems interesting to study. For instance, May [2] suggested
the two-species hybrid continuous-time Kolmogorov model
represented by the following system of differential equations:

dx x (t)
T rlx(t)(l —ﬁil " txly([t])>’

dy _ @
dt rzy(t)(l By + ayx( [f])>,

where [f] represents the greatest integer in t, and parameters
71> > &y, B, and f3, are positive numbers. Moreover, due
to the effect of piecewise-constant argument, we have in-
tegrated both sides of the Kolmogorov model, which is
depicted in (1). On interval t € [n,n+ 1), (1) can be written
as

dx(®) - N (x (1)’
a YT T gy
, (2)
dy(t) r,(y (1)
LN )= —=2-""
dt ry(® B, + ayx(n)
where for n=0,1,..., and t — n+ 1 resulted in the fol-

lowing solution:
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It is important here to mention that discrete-time models
directed by difference equations are more appropriate than
the continuous ones in the case where populations have
nonoverlapping generations, and also these models provide
efficient computational results as compared to continuous
models. Due to that reason in recent years, many scholars,
researchers, and scientists have studied the dynamics of
biological systems such as ratio-dependent predator-prey
system, discrete hyperchaotic system, and host-parasitoid
model. For instance, Bhattacharya and Saha [3] studied the
dynamics characteristics of discrete Kolmogorov system.
Cheng and Cao [4] explored dynamic characteristics of a
discrete ratio-dependent prey-predator model. Jing and
Yang [5] explored the dynamic characteristics of discrete
prey-predator model. Kangalgil and Topsakal [6] explored
dynamics characteristics of a discrete prey-predator system.
Ran et al. [7] explored the Neimark-Sacker bifurcation of a
stochastic discrete hyperchaotic system. Beddington et al. [8]
explored dynamic characteristics in prey-predator models.
Chen [9] studied the global dynamics and permanence of a
discrete multispecies system. Lu and Zhang [10] investigated
global attractivity and permanence of a discrete system with
Holling type-II functional response. Fang and Chen [11]
studied permanence of a discrete multispecies Lot-
ka-Volterra model with delays. Fang et al. [12] investigated
the dynamic characteristics of a discrete system. Jana and
Samanta [13] studied prey-predator system in discrete-time
scale using interval parameters.

1.2. Objective, Contributions, and Novelties. Motivated from
aforementioned studies, the objective of the present work is
to explore the global dynamics, bifurcations, and chaos in a
discrete Kolmogorov model with piecewise-constant argu-
ment (3). More precisely, our main finding in this paper
includes

Topological classifications at fixed points of the discrete
Kolmogorov model (3) by linear stability theory
Exploration of periodic points of the discrete Kolmo-
gorov model (3)

Flip bifurcation analysis at interior fixed point by bi-
furcation theory.

Investigation of chaos by feedback control method

To explore boundedness and global attractivity of
discrete Kolmogorov model

Validation of obtained results numerically

1.3. Paper Structure. The rest of the paper is structured as
follows: Section 2 relates with the investigation of topological
classifications of discrete Kolmogorov model (3) at fixed
points. In Section 3, periodic points of prime period-1 and
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period-2,3,...,n of the discrete Kolmogorov model (3) are
explored, whereas comprehensive analysis of the bifurcation
at fixed point S is explored in Section 4. In Section 5, chaos
control is explored by feedback control method, whereas
Section 6 is about the presentation of numerical simulations
to validate obtained results. In Section 7, boundedness and
global dynamics are explored. The conclusion and future
work are given in Section 8.

2. Topological Classifications of Discrete
Kolmogorov Model (3) at Fixed Points

Here, local dynamical properties with topological classifi-
cations at  fixed points are  explored in
R2 = {(x, y): x, y=>0}. For this, first it is easy to verify that
V1,15, 00,0, 31, B, discrete Kolmogorov model (3) has
trivial fixed point P = (0,0), boundary fixed points
Q= (0,B,),and R = (f3;,0), butif @; < (1/a,), then it has an
interior fixed point S=(((B; +a;5,)/ (1 - a,)), ((B,
+a,8,)/ (1 — a;,))). Additionally, the variational matrix V'
at fixed point (x, y) under the following map,

(f1> £2)7 (%ps1> Yur1)> (4)

where

[ i)
Bty + (et -1)x
(5)
i e
2B tax (e —1)y

is
e’ (B, + 0‘1)’)2 ae’ (erl - 1)x2

(Bi+any+ (" = D)x)" (B +ay+ (e = 1)x)’

1))’2 e (B, + “2x)2
(B, + oyx + (€~ 1))’)2 (B, + ayx + (€~ 1))’)2
(6)

aye’? (e -

Now, topological classifications at fixed points P,Q, R,
and S are explored for the completion of this section.

2.1. Topological Classifications at P. The variational matrix at

fixed point P is
v (erl 0 ) )
P\ o &)

whose eigenvalues are

A =e€l,
1= (8)

, =€

Thus, the topological classifications at P are summarized as
Table 1.
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TaBLE 1: Topological classifications at fixed point P.

TaBLE 2: Topological classifications at fixed point Q.

Properties Respective parametric conditions

Properties Respective parametric conditions

Source Since |A;| =€ >1 and |A,| =2 >1

Saddle M =e > 1,00 = (1/e2) <1

Remark 1. Fixed point P of the discrete Kolmogorov model
(3) is never sink, saddle, and nonhyperbolic.

2.2. Topological Classifications at Q. The variational matrix at
fixed point Q is

e’ 0
Vo= , 9
Q a(e?-1) 1 ®)
e’ e
whose eigenvalues are
A =e,
| (10)
/\2 = eTZ

So, the topological classifications at Q of the discrete
Kolmogorov model (3) can be summarized as Table 2.

Remark 2. Fixed point Q of the discrete Kolmogorov model
(3) is never sink, source, and nonhyperbolic.

2.3. Topological Classifications at R. The variational matrix at
fixed point R is

1 oa (e -1)
e e’
Vg = , (11)
0 e’
whose eigenvalues are
1
/11 = Tl,
¢ (12)
A, =e”

Based on eigenvalues A,,, we will summarize the to-
pological classifications at Q of the discrete-time Kolmo-
gorov model (3) as Table 3.

Remark 3. Fixed point R of the discrete Kolmogorov model
(3) is never sink, source, and nonhyperbolic.

2.4. Topological Classifications at S. The variational matrix at
fixed point S is

1 a (e" -1)
o eﬁ
Vg = , (13)
a,(e?-1) 1
e e

TasLE 3: Topological classifications at fixed point R.

Respective parametric conditions
A= (1/e") <L, =2 >1

Properties
Saddle

with corresponding characteristic equation of the form,

MV -gA+0,=0, (14)
where
- er+en
01 = W’
(15)
~ l-ao(e"-1)(e”-1)
92 = er1+r2 .

Finally, roots of (14) are

—0; = VA
. # (16)

where
~2 —~
A=, —40,
(17)

(e =€) +da aye ™ (€ 1) (e - 1) 0
(erl+r2)2 >

Since A >0, therefore it is important here to note that
fixed point S is never stable focus, unstable focus, and
nonhyperbolic. So, we will summarize the topological
classifications of discrete Kolmogorov model (3) at S as
follows.

3. Exploration of Periodic Points
In the following proposition, periodic points of prime pe-

riod-1 of the discrete Kolmogorov model (3) are explored.

Proposition 1. Fixed points P,Q, R, and S of the Kolmogorov
model (3) are periodic points of prime period-1.

Proof. From (3), defining
Fi=(fu f2); (18)

where f, and f, are defined in (5), after some computations,
one gets

F|P:(0,O) = P, (19)
Flo~(op) = @ (20)

F|R:(ﬁ1,0) =R, (21)



Flso(((Br+arps)) (1-aya))s ((Brracfy ) (1-mar))) =S (22)

From (19)-(22), one can summarize that P, Q, R, and S of
the Kolmogorov model (3) are periodic points of prime
period-1. O

In the following proposition, periodic points of period-

2,3,...,n of the discrete-time Kolmogorov model (3) are
explored.

' fi(Bi+af,)

e fr (B + arf1)
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Proposition 2. Fixed points P,Q, R, and S of the Kolmogorov
model (3) are periodic points of period-2,3,...,n.

Proof. After some straightforward computations, from (18),
one gets

F :<[31+(x1f2+(er1—1)f1’ Br+oayfi+(e”-1)f,
¢ f3(B + aaf1)

" f1(B + o f3)

2
) ﬂF |P=(0,0) = P,

) <ﬁ1 +o f5+ (" -1)f] Bt fi+(e?-1)f

ST (Brafy)

erzf;_l(ﬁz + “sz_l)

2) =Flp00) = P,
2 (23)

F” = n-1 r n—1
Bi+afy +(e"=1)f]

From (23), one concludes the required statement.
Similarly, one can show that fixed points Q, R, and S of the
discrete Kolmogorov model (3) are periodic points of pe-
riod-2,3,...,n. O

4. Analysis of Bifurcation

It is easy to note that there exists no bifurcation at fixed
points P,Q, and R, but in the following subsection, we
explore that at S discrete, Kolmogorov model (3) un-
dergoes only flip bifurcation by bifurcation theory
[14-20].

4.1. Flip Bifurcation about S. From Table 4, it is noted that
equilibrium point S of the discrete Kolmogorov model (3)
is nonhyperbolic if a; = (1 +e" +e™ +e*")/(a, (e"1—
1)(e" —1)). Therefore, eigenvalues of Vg at
nonhyperbolic  condition «; = (1 +e +e™ +e1772)/
(ay (e —1)(e"> —1)) are computed and one gets
Al|o¢1:((1+e'1+e'2+e'1+rz)/(a2 (e"1=1)(e2-1))) — —1, but /\2
a=((1+erL+e"2 +er1+72)/ (a, (11 -1) (e12-1))) = ((e"r +e +en™)/
e"*)#1or — 1 which conclude that at fixed point S,
Kolmogorov model (3) undergoes flip bifurcation if
(ry, 75, a1, 0y, 31, B,) are located in the following set:

L+e +e?+e''™
Fls = ‘[(”1>”2’“1’“27ﬁ1’/32)’ o = a (en — 1)(6” _ 1)}
2

(24)

Hereafter, in the following, we will present compre-
hensive flip bifurcation analysis at S of the Kolmogorov
model (3).

By + "‘2]”1!71 +(e ~

SFp o = P.
-1 P=(0,0)
1) f; )

Theorem 1. If (7,75, a1, &y, 31, B,) € Fls, then the discrete
Kolmogorov model (3) undergoes the flip bifurcation.

Proof. It is recalled from Table 4 that if
a, = (L+e +e2+e*2)/(ay (e —1)(e? — 1)), then S is
nonhyperbolic where A = (((e" - en)? + 4o 0,772 (e -
) (e -1)/(e"*)*)>0. Moreover, at a = ((1+
e +e+e™)/(a, (e —1)(e"2 - 1))), one gets Allal
= ((1+e" +e2 +e*2)/(a, (e — 1) (e - 1)) = -1,
where as 1,|, = ((1+e™ +e +e"™)/(ay (e = 1) (e -
1))) = ((e" +e™ +e1*72)/ e™2) £ 10or — 1, which gives the
existence of flip bifurcation at S by choosing «; as a bi-
furcation parameter. So, if a; varies in a neighborhood of a7,
then model (3) takes the form,

e x, (By + (o1 +€)y,)

Xyl = L ,
s ﬁl + (al + €))/n + (eﬁ - 1)xn
(25)
S Elfra)
i ﬂZ T X, + (efz - 1)yn.
Now, it is noted that by using transformation,
u,=x,-x",
n n (26)

Vo =Vn— y*’
one can transform S to P where (25) takes the following form:
un+1 = D&llun + D—I\ZVH + ﬁﬁ?ui + 5;41/{”1/" + D—I\Evvfl
T Yo1Un€ + Vo2 Vi€ + Vos”fle T YoalhnVn€ + Vosvie’
+1 = Iizlun + 15;2Vn + 15;3“?1 + D;lunvn + 15;51%’

Vu

(27)
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TaBLE 4: Topological classifications at fixed point S.

Properties

Respective parametric conditions

Stable node
Unstable node
Nonhyperbolic

a, > ((L+e +e2 +e*2)/ (o, (e = 1) (e - 1))
O<oa; < ((L+er+e=+e™)/(a, (e —1)(e? - 1)))
a, = ((1+e +e2+e*2)/(a, (e —1) (e - 1)))

where

b= e (B+ary’)

Y Biray (@ - D)x)
. erl(x* erl -1 x*2
D12 _ 1 ( )

(By+aiy +(e" = 1)x7)”

~ __ (=1 (B rary)

5 o (e - (B +ary)x”

15?5 ) 0(1* Zerl (erl _ l)x*Z
(B +ayy" +(e" = 1)x")’
oy = 2¢" (B +ayy”)y”
* % r VA
(Bi+ayy” + (" = 1)x7)
yoz _ er1 (erl _ l)x*Z
* ok 1 Vi
(Bi+oayy” +(e" - 1)x7)
vos = 2¢" (" 1) (B +ay7)y
% % r %13°
(Bi+ay” + (" = 1)x7)
D) By 20y
B eyt (e - D)
Vos = 2" (e - 1)x*
* ok 1 %13
(Bi+ayy” + (" = 1)x7)
5 = e (e —1)y*?
* r, 127
(B, +arx” + (2 = 1)y7)
D, = ¢ (B, + apx”)’
* 7, %12
(B, + o x” + (e = 1)y7)
B, - ade (e —1)y*?

(B + ax™ + (e - 1))’*)3,
— _me(e” —1) (B, + apx")y”

(B, +apx™ + (e - 1))’*)3

= __ (=) (Bt )

(B, + arx™ + (e - 1))’*)3.

>
I

(B +aiy +(e" - 1x)”

(B +ayy +(e" = Dx')’

(28)
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Now, (27) takes the following form: where
X, -1 0\/X, P
)G () @
Yo 0 4 /\Y, Q(e)

Ple) = 51\3(/12 - 51\1) - DI/ZBB, 2 51\4(/\2 - 51\1) - 51\25;4;{ Y
Dy, (1+1,) " Dy, (1+1,) mn

DTS(AZ - D;) - D@zs 2 Y01(A2 - DTl) Yoz(Az - DTI)
— Vv, +— Uu,€+— v,€
Dy, (1+4,) Dy, (1+4,) Dy, (1+4,)

ol - DTl)uze + You{ha - DTl)u V€ + vos(h2 ~ Du)
Dyp(1+X4) ™ Dp(l+d) "7 Dp(l+h,)

2
ner

15;(1 +151\1) + D;B231 5 51\4(1 +15T1) +15T25;1u
5\12(1+/12) ! 51\2(1+/\2) n

Q(e) =

51\5(1+51\1)+D1/2—5252 V01(1+51\1)u€ Y02(1+51\1)V
Dy, (1+1,) " Dp(l+d,) " Dp(l+dy) "

V03(1+51\1)12 +Y04(1+51\1)1 Y05(1+5T1)V2

— u — U,V,€ + — €,
Di(1+4) " Dp(l+h) " Dp(1+4,) "

u? = D, (X2 42X,Y, + Y2), (30)
u,v, = —1/)72(1 +D])Xﬁ +(D;(A2 - f)Tl) —DTZ(1 + D;))XnYn
+ DTz(/\z - D;)Y;Zv
Vf, :(1 + 51\1)2Xi - 2(1 + 51\1)@2 - Bl\l)XnYn +()‘2 - 51\1)2Yfp

u,e = D, X,e+Dp,Y e

V€= (—1 - 151\1)Xn€ +()t2 - DTl)Yne,

u,zle = 151\22(Xfl€ +2X,Y, e+ Yfle),
u,v,€ = _51\2(1 + D/I\I)Xze +(51\2(Az - 51\1) - 51\2(1 + 51\1))Xnyn€

+ DTz(/\z - DTl)YiQ

vie :(1 + ﬁ;l)zXfle - 2(1 + 5\11)(/12 - DTl)XnYne +(/\2 - 5\H)2Yfl€,

by A A Now, for (29), center manifold M“P about P is examined
<”n> 3 Dy, D,, (Xn) (31) in a small neighborhood of €, and therefore M°P can be
11— 51\1 A - 51\1 Y, ’ expressed as the following expression:
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M°P = {(Xn, Y,): Y, =he+ X2+ hX,e+ e + O<(|Xn| + |e|)3>}. (32)
Therefore, the computation yields Thus, the map (29) restricting to M°P is
hy = 0, F (%) = =%, + 712, + T3%,€ + V3x,€ + 73X,€°
X (34)
_ (1+D,,)[Dy,Dys - Dy(1+Dy,) - DDy 5,0, + V5%, +O((|Xn| +|€|)4>’
1= 2 2
1-1 =4 where
(1 + 51\1) [Dls(l + Du) + D12D25]
+
Byy(1-22)
- 15?2)’01(1 + D;) - Yoz(l + 15?1)2
2~ ~ 2
Dy(1-13)
hy=0
(33)
1 — _ N _ . 2
V= 1+L [D12D13(A2 - Du) _(1 + D11)(D14(/\2 - D11) - D12D24) - D122D23
(1 s Dl D)D)
Dy,
7 = [Y01 A n )’oz(Az DD )(1 +D11)]
12
[ Dk, D13 A - )—2]’?251\2252\3
2( 2~ D11) h; (1 + Du))(m()‘z - 5;1) - D&125;4) + ’;1}’01@2 - 5:1)
B 2;?2(1 + Djl)(/lz - Djl)@(/lz - Djl) - D\lzﬁ;) N hAlVoz(A/z: D\u)z N D12Yo3(A B 11) (35)
Dy, Dy,
1+ Dy, _
Vo4(1 + Du)(Az Du) + Vos( 511) (/\2 - D11)]
12
, _ A -Dy)
Vg = 1 +2)L2 Vm(Az - Dll) +V02( c Do 11)
12
Vs = 1 +1)L2 [2h1D12(D13(A2 _51\1) DTzf);s)
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In order to show (34) undergoes flip bifurcation, it is After calculating, one gets
required that Q;, Q, must be nonzero, i.e.,

O f 1ofdf
Ql‘(axnae+5$a_x§ lp

2 (36)
10°f (19°f
=\-=53tl335 P.
% <6 ox. +(2 ox2 |
Q = o, (erl — l)(ezrz - 1) 2([;2 + “Zﬂl) B 1+e? 20
L7 e 406 ™ B, a, (erl _ 1)(erz _ 1) +ﬁ2(1 Tl ten +er1+r2) l+e 12+ >
Q 2R (14 e e e (e -1)(e” - 1)
2~ erl +er2 +er1+rz /31“2 (er1 _ 1)(erz _ 1) +/32(1 +er1 +erz +er1+r2)
2(1-€") 1+€? 1+ 2(1+")(1+€™
X( ( a1 + Ty - 1y + ( 2 r)l( )>
e e e e?(e" -1)
el 2(1+et+e™+e"™) 1+e? 1+e 2(1+er1)(e2’2 —1)
Iﬂz + 062/))1 erl (erz - 1) B erl - erl - e?’z (1 + ei‘l + erz + er1+72)

N 4 e (l+e?)(e" —1)(1+e" +e?+e"™)
(e + e+ et 2) [ (Bray (e — 1) (e — 1) + B, (1 +e" +e™ +e"772))

. 1 (1+¢e + e + ent2)? :
By + a2y en—1 ’

(T+e)(1+er +e>+e) +(1+€7)

where

~ 2" (1+eM)(1+et +e? +e ') -1
hl: r1475\2 r r r1475\2 (062+1)
(€M) — (e + e+ ) By + ey
621’2 _eZ(rlJrrz)
+ezr1 (e =1)(e*-1)+(1+e" +e2+e™
1%, 2

28" (1+ e +e” +e)

o (e - 1)(e” - 1)2 (B, + “2/31)(62 (rier2) _ (" +e+ erl+r2)2>

2 (1 + erl )26r1+r2 (1 _ erz )le2
+
(62 (o) _ (" +e” + 671”2)2) [lel (B (e 1) (e - 1)+ (L+e" +e2 +e")B,)

~ 1+e" ]
a (e =1)(” - 1) (Bt apy)]

(38)

(39)
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In view of (38) and (39), if Q,#0, then as
(11,15 > 0, By, B;) € Flg, discrete Kolmogorov model (3)
undergoes a flip bifurcation. Additionally, period-2 points
from S are stable (respectively unstable), if Q,>0
(respectively Q, < 0). O

5. Chaos Control

This section is purely dedicated for the exploration of chaos
control in the sense of state feedback control method [21,
22]. After adding control force u,, discrete Kolmogorov
model (3) takes the form,

— erlxn (ﬁl + (len)
(By +a1y,) + (" —1)x,

X +u

n+1 n>
(40)
erzyn (ﬁz + “2’%)

(ﬁZ + aZ'xn) + (er2 - l)yn’

Yo =

where  u, =-I(x, - ((B; +a,5,)/ (1 —a)) — L (y, —
((By + ayB,)/ (1 — 1)) Tt is noted here that [}, 1, denotes
feedback gains. Moreover, V; for the controlled system (40)
is

1 a (e -1)
Fh gk
V§ = ) (41)
a, (e -1) 1
e e

If A, , denotes the characteristic roots of V§ at S, then

1 1
A1+A2=_11+871+672, (42)

1 a,(e? -1
/\1/\2 = _eTlll +%12
1 (e -1)(e” - 1)

Tty T+,

(43)
+

e e

Now, the answer of A\, = + 1 and A;A, = 1 determines
the strains of marginal stability, and these prerequisites give
that |A,,| < 1. If A;A, = 1, then from (43), one gets

Ll: _e%ll + % (eerz_ 1)"2 + rll+r2 - h% (e :137)2(6 ~ l) -1=0.
e e
(44)
If A, =1, then from (42) and (43), one gets
1 a,(e” 1) 1 1
L2: (1 - eTl>ll + pp 12 + 1 - eTl
(45)
1 aa(e-1)(e” -1
- 1 2( )(e )+1:0'
erz erl+r2

Finally, if A, = —1, then from (42) and (43), one gets

9
1 a,(e?-1) 1 1 1
L;: —(1+671>ll+ D lz+er1”2+e71+e72
(46)
ooy (e —1)(e” - 1)
- 12 e +1=0.

Therefore, from (44)-(46), lines L,,L,, and L; in
(1;,1,)-plane give the triangular region, which further gives
the fact that [, ,| < 1.

6. Numerical Simulations

We present numerical simulations to validate the corre-
sponding obtained results. For instance, if r; =5.25,
r, =53,a, =04, =29,5,=29, then from non-
hyperbolic condition, one gets «; = ((1 + €1+ €™ + e"1772)/
(ay (6" — 1) (e —1))) = 2.5517238126301827. From theo-
retical discussion, S = (4.284090909090909,
4.613636363636363) of the discrete Kolmogorov model (3)
is a stable node if a; >2.5517238126301827. So, if one chose
the bifurcation value «; =2.652>2.5517238126301827,
then it is clear from Figure 1(a) that fixed point
S = (4.284090909090909, 4.613636363636363) of Kolmo-
gorov model (3) is a stable node. Moreover, for some more
parametric values, if o, = 2.6587,2.7,2.765 >
2.5517238126301827, then Figures 1(b)-1(d) also indicate
that the fixed point S = (4.284090909090909,
4.613636363636363) of Kolmogorov model (3) is also a
stable node. Further, if 0 <« <2.5517238126301827, then
fixed point S = (4.284090909090909,4.613636363636363)
becomes unstable and meanwhile flip bifurcation occurs, i.e.,
if &y =0.967 <2.5517238126301827, then by mathematical
computation from (37), one gets Q, =
—0.19445133540974902 # 0. Moreover, from (38), one gets
Q, = 0.5853373936670135 > 0, which indicates the fact that
stable period-2 points bifurcate from S, and hence flip bi-
furcation diagram along with maximum Lyapunov expo-
nents are plotted and presented in Figure 2. Moreover, 3D
flip bifurcation diagrams are presented in Figure 3. Finally,
Figure 4 shows the complex dynamics with orbits of period-
8,9, 10, 14.

Hereafter, we will prove the validity of obtained results in
Section 5. For instance, if r; =5251,=53,a =
1.98,a, = 0.4, 3, =2.9,5, = 2.9, then from (44)-(46), one
gets

L: —2.179602154437681 — 0.005332258840143003/,

+0.39797080983049231, = 0,
(47)

L,: —0.19000738870159323 + 0.9946677411598571,
+0.3979708098304923/, = 0,
(48)

L;: —0.16919692017376872 — 1.005332258840143!,
+0.39797080983049231, = 0.
(49)
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55
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FIGURE 1: Stable focus of the Kolmogorov model (3). (a) &; = 2.652 with (0.24, 0.25), (b) &; = 2.6587 with (0.294, 0.285), (c) &; = 2.7 with

(0.09, 0.09), and (d) a; = 2.765 with (0.092, 0.093).
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a
(c)

FIGURE 2: (a, b) Flip bifurcation diagram of the Kolmogorov model (3) with «; € [0.01,2.9]. (¢) Maximum Lyapunov exponents cor-

responding with (0.14,0.15).
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Figure 3: 3D flip bifurcation diagram of the Kolmogorov model (3) with «, € [0.01,2.9].
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F1GURE 4: Complex dynamics of the Kolmogorov model (3). (a) a; = 0.967 with (2.9, 3.8), (b) «; = 1.235 with (3.7, 3.8), (¢) a; = 1.7 with
(2.9, 1.8), and (d) &, = 1.956 with (3.7, 3.8).
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Hence, lines that are presented in (47)-(49) determine
triangular region that gives |, ,| < 1(see Figure 5).

7. Boundedness and Global Attractivity of the
Kolmogorov Model (3)

Boundedness with construction of invariant rectangle and
global dynamics at interior fixed point of the discrete
Kolmogorov model (3) are explored in this section.

7.1. Boundedness Along with Construction of Invariant
Rectangle

Theorem 2. Every positive solution {(x,,y,)}.c of the
Kolmogorov model (3) is bounded if
(e =1)(e"” - 1). (50)

0< % < er1+r2

Proof. If {(x,, y,)}iep is positive solution of the discrete
Kolmogorov model (3), then

rl

Xpp1 < —erl _ (/31 + ‘xlyn)
(51)
e
Y+ Sm (/32 + 0‘2’%)'
From 2" inequality of (51), one gets
e’
InS— 7 e -1 (/31+a2xn 1) (52)

Utilizing (52) in the 1 inequality of (51), one gets

r T+,
n+lgéle ralﬁe T + T
ST @ -nE - (@

Tty
o aye

-1)(e” -1

X

which further gives the following solution:
n
al‘xzefl‘frz
B =\ \(en - 1) en - 1)
1t "
o o,e 2
+ e e
CZ( (@ - e -1 )

B = 1)+ @ (1) - 1)
1—(a;ae™ ™/ (e = 1) (e™ - 1)))

(54)
Now, from the 1% inequality of (51), one gets

1
e
X, < n_ 1

e

(B + & Y1) (55)

Utilizing (55) in the ond inequality of (51), one gets

Mathematical Problems in Engineering

2 T T T
L1
Region of stable
1 eigenvalues i
L2
0 F =
1F 4
L3
-2 1 1
-2 -1 0 1 2
FIGURE 5: Region of stability where |A,,] <1.
- ﬂzerz + a2ﬂ1€r1+r2 s (xlazerl+r2
Y1 —er2 _ (er1 _ 1)(672 _ 1) (erl _ 1)(672 _ l)yn—l’
(56)

whose solution is

‘xlazerl+r2 i
< - s
Int1S63 (e - 1)(en- 1)

alazerlJrrz n
“‘*(_ (e — 1) (e - 1))
(/3 e?/(e? - 1)) + (afre/((e" - 1) (e - 1)))‘

1= (ayoe™ ™2/ ((e" -

1)(e” - 1))
(57)
If (50) holds, then from (54) and (57), one gets
(Bie"/(e" = 1)) + (o (" — 1) (™ — 1)))
I-(@ae (@ - D)E D)

L B/ (e — 1)) + (@™ /(" ~ 1) (¢ ~ 1))
1 (ayope™ ™2/ (" = 1) (e - 1))) ’

0<x n <

(58)
O

Theorem 3. For the discrete Kolmogorov model (3), the
invariant rectangle is [0, (((B,e"/(e" — 1)) + (a; e *"2/
(e =1) (e = 1))/ (1 = (ayape™ ™2/ ((e" — 1) (e-
DIN] % [0, (((Be/ (e = 1)) + (afre™ "2/ ((e" = 1) (e™ -
D))/ (1 = (ayae™™2/ ((e" = 1) (e = 1))))].

Proof. Followed by induction. O
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7.2. Attractivity at S. From (5), it is noted that f, is in-
creasing in x € [0, (((B,e"/(e" = 1)) + (o B,e"*"2/ ((e" -
D(e? = DN/ (1~ (aya,e*2/((e" — 1) (e — 1)))))] (resp -
ye [0, (((Be>] (e7—1)) + (ayf,e""2/((e" —1) (e —
DN/ (1 - (aye,e 2/ ((e" — 1) (e> — 1)))))]) for some fix-
ed ye [0, (((Bye/ (e —1))+ (e "2/ ((e" — 1) (e —
D/ (1 = (ayoye™ ™/ ((e" = 1)(e™ = 1)))))] (resp-x € [0,
(((Bre /(e = 1)) + (a e/ ((e" = 1) (e =1))))/(1-
(o aye1*2/ ((e" = 1) (e — 1)))))]). Also, f, is increasing in
x € [0, (((Bre"/ (e = 1)) + (ayB,e*"2/ ((e" - 1) (e -
DI/ (1 = (eya,e*2/((e"r = 1) ("2 —1)))))] (xresp- y € [0,
((Bye™/ (e — 1)) + (ayBe" ™/ (e = 1) (" — D))/ (1 -
(oyeye" ™2/ ((e" — 1) (e — 1)))))]) for fixed y € [0, (((B,
€2/ (e = 1)) + (e 2/ (e — 1) (e = D))/ (1 - (@
ent2/((en - 1)(e? - 1))] (resp-x € [0, (((B,e/(e" -
1)+ (B "2/ ((e" - 1) (e = 1)IN/ (1 = (g ™2/
((e" = 1)(e™ - 1))))]). This motivates the study of global
attractivity at S of discrete Kolmogorov model (3), as follows.

Theorem 4. S of discrete Kolmogorov model (3) is the global
attractor.

Proof. Sincef, and f,satisfied the above monotonic
characteristics and so if (m,, M, m,, M,)is the solution of
following system:

my = f, (ml’mZ)’

M, = fl (MI’MZ)’

(59)
m, = f, (ml’mZ)’
M, = fz (MI’MZ)'
In view of (3) and (59), one gets
_ o etmy(By + aymy)
ml - r >
By +aym, + (e = 1)m,
(60)
e"M, (B, + o, M,)
Ml = o >
By + oM, +(e" —1)M,
_eemy(By + aymy)
m2 - T >
B, + aymy + (e — 1)m, (61)
M. = e M, (ﬁz + “2M1)
2By aM, + (e - 1)M,
From (60), one has
By +aymy + (e = )my =€ (By + aymy), (62)
B+ oM, + (e = 1)M, =" (B, + a; M,).
From (61), one has
By + aymy + (e = 1)m, = € (B, + aymy), (63)
By + My + (e = 1)M, = € (B, + a,M;).
From (62), one gets
m; — M, = a; (m, — M,). (64)

Similarly, from (63), one gets
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my, — M, = a, (m; — M,). (65)

Form (64) and (65), one gets (a,a, —1)(m, — M) =0,
which implies that m; = M,. Finally, from (65), one gets
m, = M,. So, S of discrete Kolmogorov model (3) is a global
attractor by Theorem 1.16 of [23]. O

8. Conclusion and Future Work

The work is about the local dynamical characteristics at fixed
points, existence of periodic points, boundedness, global
attractivity, chaos control, and bifurcations of a discrete
Kolmogorov model with piecewise-constant argument. By
existing linear stability theory, it is proved that fixed point P
is never sink, saddle, and nonhyperbolic, but it is a source; Q
is never sink, source, and nonhyperbolic, but it is a saddle; R
is never sink, source, and nonhyperbolic, but it is a saddle;
and finally, S is a stable node if a;> ((1+
e +en +e™)/(a, (e — 1) (e — 1)), unstable node if
O<o; < ((1+er+e2+e1%2)/(a,(e" —1)(e> —1))), and
nonhyperbolic if «a; = ((1+e" +e2+e1*2)/(a, (-
1) (e™ — 1))), but it is never stable focus, unstable focus, and
nonhyperbolic. Further, it is proved that fixed points P, Q, R,
and S are periodic having prime period-1. Then, in order to
understand under consideration model deeply, we also
explored the occurrence of bifurcations at S. It is proved that
at S, the model wundergoes flip bifurcation if
(g, 0y, 71579, B1> B2) € Fg. Further, state feedback control
method is utilized in order to stabilize chaos existing in
discrete Kolmogorov model (3). Moreover, numerical
simulations are also presented to validate obtained results.
Finally, boundedness and global attractivity of the Kolmo-
gorov model (3) at S are also explored. The use of robust
control to improve the control process and stabilization for
the two-species hybrid Kolmogorov model are our next aim
to study.

Appendix

A. Derivation of (3) from (2)

Dividing the 1*' equation of system (2) by — (x(t))? and the
ond equation of system (2) by —( y(t))z, one gets

1 dx(t) rp 8

Tx@) A x(®) Biraymy
(A.1)
1 dy (t) 7, T,

TGOE Ay B rax)

Now, putting (1/x(t)) = v in the 1** equation of system
(A1) and (1/y(t)) = z in the 2" equation of system (A.1),
one gets

ﬂ+r y=— 1

a VB +ayny a2
A2

dt 27 By +ayx(n)



14

Moreover, multiplying the 1% equation of system (A.2)
by integrating factor e"* and the 2" equation of system (A.2)
by integrating factor e”’, one gets
ret

1 PRALEN
d(x(n° ) By +a,y(n)

(A.3)
rye?

1
d ) = .
(y (1) ) B, + ay,x(n)

Now, integrating from n — t and t — n + 1, one gets

Jt d< 1 nﬁt) _ 7 Jt eitde
n \x(t) B, +ayy(n) Ja ’

Jt d 1 at _ 1"2 J-t erztdt
w \y() ) By+tax(n) Ja '

After some simplifications, the solution of (A.4) becomes

(A4)

erl'xn (ﬂl + oclyn)

Krrt = B+ oy, +(e" - l)xn’
(A.5)
y — e’"zyn (ﬁZ + aan)
e /32 + X, + (eTz - l)yn)
which can also be written as
.- e''x,
(- 1) (By + @y y,))x,) ne
ey,

Yur1 = 1+ ((67’2 — 1)/ (ﬁz + ‘szn))y”.
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