
Research Article
Fast and Accurate Numerical Solution of Allen–Cahn Equation

Yongho Kim,1 Gilnam Ryu,2 and Yongho Choi 2,3

1Faculty of Mathematics, Otto Von Guericke University Magdeburg, Universitatsplatz 2, Magdeburg 39106, Germany
2Department of IT Convergence Engineering, Daegu University, Gyeongsan-si, Gyeongsangbuk-do 38453, Republic of Korea
3Department of Mathematics and Big Data, Daegu University, Gyeongsan-si, Gyeongsangbuk-do 38453, Republic of Korea

Correspondence should be addressed to Yongho Choi; yongho_choi@daegu.ac.kr

Received 20 May 2021; Revised 3 September 2021; Accepted 21 October 2021; Published 6 December 2021

Academic Editor: José M. Domı́nguez

Copyright © 2021 Yongho Kim et al. -is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Simulation speed depends on code structures. Hence, it is crucial how to build a fast algorithm.We solve the Allen–Cahn equation
by an explicit finite difference method, so it requires grid calculations implemented by many for-loops in the simulation code. In
terms of programming, many for-loops make the simulation speed slow. We propose a model architecture containing a pad and a
convolution operation on the Allen–Cahn equation for fast computation while maintaining accuracy. Also, the GPU operation is
used to boost up the speed more. In this way, the simulation of other differential equations can be improved. In this paper, various
numerical simulations are conducted to confirm that the Allen–Cahn equation follows motion by mean curvature and phase
separation in two-dimensional and three-dimensional spaces. Finally, we demonstrate that our algorithm is much faster than an
unoptimized code and the CPU operation.

1. Introduction

-e Allen–Cahn (AC) equation is a reaction-diffusion
equation composed of the reaction term −F′(ϕ(x, t))/ϵ2 and
the diffusion term Δϕ(x, t):

ϕt(x, t) � −
F′(ϕ(x, t))

ϵ2
+ Δϕ(x, t), x ∈ Ω, t> 0, (1)

where ϕ(x, t) is the order parameter which is defined as the
difference in concentration of the two components in a
mixture; F(ϕ) is double well potential energy function with
minimum values at −1 and 1, and its form is
F(ϕ) � 0.25(ϕ2 − 1)2. ϵ is the thickness of the transition
layer which is a small positive constant value. -e AC
equation is first introduced in a research on the phase
separation of binary iron alloys [1]. -e AC equation was
studied and applied to various fields such as image
inpainting [2–4], image segmentation [5, 6], and crystal
growth [7–9]. Also, there are various methods for numer-
ically solving the reaction-diffusion type equations. In
[10–12], the authors use the fourth-order exponential time
differencing Runge–Kutta method to solve reaction-diffu-
sion type equation as Burgers–Huxley and Gray–Scott

model, respectively. -ere is a study of solving equations
using an adaptive method [13–15]. -e authors of [16, 17]
considered the Fourier spectral method to solve system
equations.

With the development of computer hardware such as
GPU (graphics processing unit) and memory cards, neural
networks are applied in a wide range of research areas such
as computer vision, natural language processing, and nu-
merical analysis. As GPU operations outperform CPU
(central processing unit) performance in multitasks and
high-dimensional problems, open source machine learning
libraries such as Pytorch provide a variety of neural networks
using GPU and are useful to build the architecture combined
with neural networks and numerical methods. -us, many
research studies use machine learning libraries. Raissi et al.
[18] proposed physics-informed neural networks combined
by multilayer perceptrons and numerical methods to solve
nonlinear partial differential equations. Karumuri et al. [19]
introduced a solver-free approach for stochastic partial
differential equations, and Yang et al. [20] proposed a
Bayesian physics-informed neural network. In this paper, we
propose a structure using padding and convolution oper-
ation for the GPU calculation of the AC equation and

Hindawi
Mathematical Problems in Engineering
Volume 2021, Article ID 5263989, 12 pages
https://doi.org/10.1155/2021/5263989

mailto:yongho_choi@daegu.ac.kr
https://orcid.org/0000-0002-0357-5753
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/5263989

demonstrate the validity of the proposed structure by ver-
ifying the result with the Python code that has the same
mathematical meaning.

-is paper is organized as follows. In Section 2, we
present an explicit finite difference method to solve the AC
equation which is implemented by CPU and GPU algo-
rithms. In Section 3, the numerical simulations including a
motion by mean curvature, phase separation, and temporal
evolutions of various initial shapes are introduced as well as
the runtime results between CPU and GPU operations are
compared. Finally, conclusions are drawn in Section 4.

2. Numerical Solutions

In this section, we present an explicit finite difference
method to solve AC equation (1). Also, we give an expla-
nation of each algorithm for CPU and GPU computing. For
simplicity of expression, we describe a numerical scheme for
the AC equation in two dimensions (2D), and the definition
in the three-dimensional (3D) space can be easily extended
and considered. A computational domain is defined using a
uniform grid of size h � 1/Nx andΩh � (xi, yj)􏽮 � (a + (i −

0.5)h, c + (j − 0.5)h)} for 1≤ i≤Nx, 1≤ j≤Ny is the set of
cell centers. Here, Nx andNy are mesh sizes on computa-
tional domain (a, b) × (c, d). For the definition of the
boundary condition, we define the extended computational
domain as follows:

Ωh � xi, yj􏼐 􏼑 � (a +(i − 1.5)h, c +(j − 1.5)h)􏽮 􏽯, (2)

for 1≤ i≤Nx + 2 and 1≤ j≤Ny + 2. Let ϕn
ij be approxi-

mations of ϕ(xi, yj, nΔt), where Δt � 0.1h2 is the temporal
step size, T is a final time, and Nt is the total number of time
steps. -e boundary condition is zero Neumann boundary
condition:

ϕn
i,1 � ϕn

i,2, ϕn
i,Ny+2 � ϕn

i,Ny+1, 1≤ i≤Nx,

ϕn
1,j � ϕn

2,j, ϕn
Nx+2,j � ϕn

Nx+1,j, 1≤ j≤Ny.
(3)

We define the thickness of the transition layer ϵ in
equation (1) as ϵm [21]:

ϵm �
hm

2
�
2

√
tanh−1

(0.9)
, (4)

where m is the number of grids representing the thickness.

2.1. Numerical Solutions on CPU (Baseline). -e AC equa-
tion (1) is discretized using the explicit finite difference
method as

ϕn+1
ij − ϕn

ij

Δt
�
ϕn

ij − ϕn
ij􏼐 􏼑

3

ϵ2
+ Δhϕ

n
ij,

ϕn+1
ij � ϕn

ij + Δt
ϕn

ij − ϕn
ij􏼐 􏼑

3

ϵ2
+ Δhϕ

n
ij

⎛⎝ ⎞⎠,

ϕn+1
ij � (1 + α)ϕn

ij − α ϕn
ij􏼐 􏼑

3
+ ΔtΔhϕ

n
ij,

(5)

where α � Δt/ϵ2 and Δhϕ
n
ij � (ϕn

i−1,j +ϕn
i+1,j + ϕn

i,j−1 +ϕn
i,j+1

−4ϕn
ij)/h

2. -e baseline algorithm is implemented in equa-
tion (5) using Numpy (CPU array).

2.2. Numerical Solutions on GPU (Pytorch). For GPU
computing, the AC equation (1) can be expressed using
Pytorch, and the algorithm can be represented as
Figure 1.where f is a Pytorch model. -e main Algorithm 1
is a set of steps in equation (6) using Pytorch.

ϕn+1
− ϕn

Δt
�
ϕn

− ϕn
(􏼁

3

ϵ2
+ Δhϕ

n
,

ϕn+1
� ϕn

+ Δt
ϕn

− ϕn
(􏼁

3

ϵ2
+ Δhϕ

n
􏼠 􏼡,

ϕn+1
� (1 + α)ϕn

− α ϕn
(􏼁

3

+ conv ϕn
(􏼁 α �

Δt
ϵ2

, conv ϕn
(􏼁 � ΔtΔhϕ

n
􏼠 􏼡,

ϕn+1
� f ϕn

(􏼁,

(6)

In this Algorithm 1, nn.ReplicationPad2d (or nn.Repli-
cationPad3d) is applied to satisfy the boundary condition by
padding the ϕn input using replication of the input
boundary. Also, the convolutional operator F.conv2d (or
F.conv3d) with the 2nd order differencing filter is used to
calculate the diffusion term Δϕn. -e model can choose an
operation mode between GPU and CPU by to (device) in
Algorithm 1. If device� cuda:0, the model is implemented
on GPU, otherwise on CPU. All the codes are available from
the first author’s GitHub web page (https://github.com/
kimy-de/gpuallencahn) and the corresponding author’s
web page (https://sites.google.com/view/yh-choi/code).

3. Numerical Experiments

In this section, we perform the following numerical tests in
2D and 3D: ϵm effect, the motion by mean curvature effect
with various initial shapes (circle (sphere in 3D), dumbbell,
star, torus, maze), and phase separation. In the ϵm effect test,
we compare the numerical solutions to analytic values to
find a proper ϵm value. We simulate a phenomenon that
follows motion by mean curvature in various initial shapes
and phase separation with random initial condition. We
perform the simulation on the following specifications: Intel
(R) Core (TM) i9-9900K CPU @3.60GHz, 32GB RAM/
NVIDIA GeForce RTX 2080 Super.

3.1. Convergence Tests. We perform convergence tests for
time and space. We define the discrete L2 norm as

2 Mathematical Problems in Engineering

https://github.com/kimy-de/gpuallencahn
https://github.com/kimy-de/gpuallencahn
https://sites.google.com/view/yh-choi/code

‖e‖
d
L2 �

������������

h
2

􏽘

Nx

i�1
􏽘

Ny

j�1
e

n
ij􏼐 􏼑

2

􏽶
􏽴

, (7)

where en
ij � ϕn

ij − ϕn
ref and ϕn

ref is reference solution. We use
the following initial condition:

ϕ(x, y, 0) � 0.1 cos(2πx)cos(2πy), (8)

with zero Neumann boundary condition on the computa-
tional domain (0, 1) × (0, 1).

First, to show the convergence rate with respect to time,
the space step size h � 0.0025 (i.e., Nx � Ny � 400) is fixed,
and we use the reference solution with Nx � Ny � 400 and
Δt � 0.001h2. -en, the test proceeds to time t � 0.0001 for
time steps Δt � 0.2h2, 0.1h2, and 0.05h2. -e temporal
convergence rate is defined as log2(‖eΔt‖

d

L2 /‖eΔt/2‖
d

L2). Table 1
shows that our proposed algorithm has first-order accuracy
for time.

Next, we show the spatial accuracy of our proposed
algorithm. To show the spatial convergence rate, the time
step was fixed to Δt � 0.1h2 for each mesh size
h � 0.01, 0.005, and 0.0025. For the reference solution, the
time step was set to 0.001h2 for each mesh size. -e spatial
convergence rate is defined as log2(‖eh‖

d

L2 /‖eh/2‖
d

L2). Table 2
shows that our proposed algorithm has between second- and
third-order for the spatial accuracy.

3.2. Energy Dissipation and Maximum Principle. AC equa-
tion (1) follows the energy dissipation law, and the equation
is derived from

E(ϕ) � 􏽚
Ω

F(ϕ)

ϵ2
+
1
2
|∇ϕ|

2
􏼠 􏼡dx. (9)

E(ϕ) is decreasing with time

z

zt
E(ϕ) � −􏽚

Ω

zϕ
zt

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2
dx ≤ 0. (10)

To check a discrete energy, we can rewrite equation (9) as
Ed(ϕ). Figure 2 showsmesh plots and a discrete energy graph
when time evolution is performed with random initial con-
dition. -e tested initial condition is used as equation (17a)
and other parameters are used Nx �Ny � 200, space step size
h� 1/Nx, time step size Δt� 0.1h2, and thickness of transition
layer ϵ10 on the computational domain Ω� (0, 1)2.

Also, we can obtain that the AC equation does not
conserve the initial mass.

d

dt
􏽚
Ω
ϕdx � 􏽚

Ω
ϕtdx � 􏽚

Ω
−

F′(ϕ)

ϵ2
+ Δϕ􏼠 􏼡dx

� −􏽚
Ω

F′(ϕ)

ϵ2
dx ≤ 0,

(11)

with zero Neumann boundary condition.

class Net (nn.Module):
def __init__(self, h2, dt, eps, device):
super (Net, self).__init__()
2nd order differencing filter
self.lap� torch.Tensor ([[[[0., 1., 0.], [1., −4., 1], [0., 1., 0.]]]]).to (device)
self.pad� nn.ReplicationPad2d (1) #Replication pad for boundary condition.
self.alpha� dt/eps ∗∗ 2
self.beta� dt/h2

def forward (self, x):
u_pad� self.pad (x) #boundary condition
reaction� F.conv2d (u_pad, self.lap) #reaction term
x� (1 + self.alpha) ∗ x-self.alpha ∗ x ∗∗ 3 + self.beta ∗ reaction
return x

ALGORITHM 1: Our CNN model for solving AC equation (6).

–α(ϕn)3

conv (ϕn)

(1 + α)ϕn

convolutional
filter

ϕn
ϕn+1

Figure 1: Schematic of the process to obtain f.

Mathematical Problems in Engineering 3

3.3. Initial Conditions. We consider the 2D and 3D initial
conditions introduced in this section: to check the ϵm effect,

we measure the circle’s (sphere in 3D) radius that changes
with time and take the initial conditions:

tϕ(x, y, 0) � tanh
R0 −

������������������

(x − 0.5)
2

+(y − 0.5)
2

􏽱

�
2

√
ϵ

⎛⎜⎜⎝ ⎞⎟⎟⎠, in 2D, (12a)

ϕ(x, y, z, 0) � tanh
R0 −

����������������������������

(x − 0.5)
2

+(y − 0.5)
2

+(z − 0.5)
2

􏽱

�
2

√
ϵ

⎛⎜⎜⎝ ⎞⎟⎟⎠, in 3D, (12b)

where R0 is the initial radius of a circle (sphere in 3D).
In various tests to check the motion by the mean cur-

vature, the initial conditions for the circle and sphere refer to

equations (12a) and (12b), respectively. A dumbbell is
constructed by following the initial conditions (o/w:
otherwise)

Table 1: Temporal L2 errors and convergence rates at t � 0.0001.

Δt 0.2 h2 0.1 h2 0.05 h2

L2 error 9.282e− 3 4.759e− 3 2.487e− 3
Rate 0.963 0.936

1
0.5

00
0.5

1
–1

–0.5
0

0.5
1

(a)

1
0.5

00
0.5

1
–1

–0.5
0

0.5
1

(b)

1
0.5

00
0.5

1
–1

–0.5
0

0.5
1

(c)

1
0.5

00
0.5

1
–1

–0.5
0

0.5
1

(d)

0.005 0.01 0.015 0.02 0.025 0.030
t

0

0.5

1

εd
 (ϕ

)

(e)

max (ϕ)
max (ϕ)

-1

-0.5

0

0.5

1

ϕ

0.01 0.02 0.030
t

(f)

Figure 2: (a–d) Mesh plots at the marked points from left to right of the energy graph (e). (e) Time-dependent normalized discrete total
energy Ed(ϕ(t))/Ed(ϕ(0)). (f) Maximum and minimum values of ϕ over time evolution.

4 Mathematical Problems in Engineering

ϕ(x, y, 0) �

1.0, if (0.4<x< 1.6) and (0.4<y< 0.6),

1 + tanh
R0 −

������������

(x − 0.3)
2

+ Y

􏽱

�
2

√
ϵ

⎛⎜⎜⎝ ⎞⎟⎟⎠ + tanh
R0 −

������������

(x − 1.7)
2

+ Y

􏽱

�
2

√
ϵ

⎛⎜⎜⎝ ⎞⎟⎟⎠, otherwise,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

in 2D,

(13a)

ϕ(x, y, z, 0) �

1.0, if (0.4<x< 1.6) and (0.4<y, z< 0.6),

1 + tanh
R0 −

�������������

(x − 0.3)
2

+ YZ

􏽱

�
2

√
ϵ

⎛⎜⎜⎝ ⎞⎟⎟⎠ + tanh
R0 −

�������������

(x − 1.7)
2

+ YZ

􏽱

�
2

√
ϵ

⎛⎜⎜⎝ ⎞⎟⎟⎠, otherwise,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

in 3D.

(13b)

where R0 is the initial radius of both sides of dumbbell’s
circle (sphere in 3D) and for simplicity of expression, Y �

(y − 0.5)2 and YZ � (y − 0.5)2 + (z − 0.5)2.

-e initial conditions of a star shape are defined as

ϕ(x, y, 0) � tanh
0.25 + 0.1 cos(6θ) −

������������������

(x − 0.5)
2

+(y − 0.5)
2

􏽱

�
2

√
ϵ

⎛⎜⎜⎝ ⎞⎟⎟⎠, in 2D, (14a)

ϕ(x, y, z, 0) � tanh
0.7 + 0.2 cos(6θ) −

����������

x
2

+ y
2

+ z
2

􏽱

�
2

√
ϵ

⎛⎜⎜⎝ ⎞⎟⎟⎠, in 3D, (14b)

where

θ �

tan− 1 y − 0.5
x − 0.5

􏼒 􏼓, if (x> 0.5),

π + tan− 1 y − 0.5
x − 0.5

􏼒 􏼓, otherwise,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

in 2D,

θ �

tan− 1 z

x
􏼒 􏼓, if (x> 0.5),

π + tan− 1 z

x
􏼒 􏼓, otherwise.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

in 3D.

(15)

and we use different domain sizes in 2D and 3D, so the
center of the star depends on the dimensions.

And, a torus shape is given by

ϕ(x, y, 0) � −1 + tanh
R1 −

���
XY

√

�
2

√
ϵ

􏼠 􏼡

− tanh
R2 −

���
XY

√

�
2

√
ϵ

􏼠 􏼡, in 2D,

(16a)

ϕ(x, y, z, 0) �

�������������������

z
2

+

������

x2 + y2
􏽱

− R1􏼒 􏼓
2

􏽳

− R2, in 3D, (16b)

where R1 and R2 are the radius of major (outside) and minor
(inside) circles, respectively. And, for simplicity of expres-
sion, XY � (x − 0.5)2 + (y − 0.5)2.

-e initial conditions of a maze shape are complicated to
describe its equation, so refer to the code (https://github.
com/kimy-de/gpuallencahn, https://sites.google.com/view/
yh-choi/code).

And, the last initial condition is random for confirming
the phase separation of the AC equation:

ϕ(x, y, 0) � 0.1 rand(x, y), in 2D, (17a)

ϕ(x, y, z, 0) � 0.1 rand(x, y, z), in 3D. (17b)

Here, the function rand (x, y) has a random value be-
tween −1 and 1.

3.4. Simulations in the 2-Dimensional Space. Unless other-
wise stated, we use the following parameters: mesh size
Nx � Ny � 200, space step size h � 1/Nx, time step size
Δt � 0.1h2, and computational domain Ω � (0, 1) × (0, 1).
We should find a proper thickness of the transition layer as
defined in equation (4). First, we find an appropriate ϵm by
comparing the numerical solution with the exact solution for
the radius that decreases due to the motion by mean cur-
vature in the circle initial condition in equation (12a).

Figures 3(a)–3(d) show a circle shrinking with motion by
mean curvature based on ϵ10.-e exact solution of the radius
r decreasing with time evolution can be calculated [22]:

r(t) �

������������

r
2
0 + 2(1 − d)t

􏽱

, (18)

where r0 is the initial radius of the circle, d is the dimension,
and t is time. We simulate various ϵm until the final time
T � 0.03. As shown in Figure 3, when ϵ10 is used, it is found
that the exact solution and the numerical solution are most
similar in the experiment. -erefore, the other tests are

Mathematical Problems in Engineering 5

https://github.com/kimy-de/gpuallencahn
https://github.com/kimy-de/gpuallencahn
https://sites.google.com/view/yh-choi/code
https://sites.google.com/view/yh-choi/code

performed using ϵ10 except for the case of changing the grid
in 2D.

Figure 4 shows the temporal evolution of the dumbbell
shape, and the initial condition is shown in equation (13a).
For resolution, we use Nx � 400 and Ny � 200 on the
computational domain Ω � (0, 2) × (0, 1). -e final time T

of the simulation is 0.0094 and R0 � 0.2. In Figure 4(e), the
changing direction by the motion by mean curvature is
indicated by arrows.

Figure 5 shows the evolution of the star shape created by
equation (14a). -e parameters are used as mentioned at the
beginning of this section and T � 0.0325. As shown in
Figure 5, the tips of the star move inward and the gaps
between the tips move outward. When it changes to the
shape of a circle, the change of the radius can be predicted as
shown in Figure 3.

Figure 6 shows the evolution of the torus shape of
equation (16a) with T � 0.0575, R1 � 0.4, and R2 � 0.3.
Because the inner circle has a larger curvature, it shrinks
faster than the outer circle, and after the inner circle dis-
appears, the change of radius over time can be measured as
shown in Figure 3.

Figure 7 shows the evolution of a maze shape. We use
Nx � Ny � 100, ϵ5, and T � 0.04. As shown in Figure 7, we
obtain the results of shrinkingwhilemaintaining its initial shape.

-e last simulation in 2D is phase separation with a
random initial condition equation (17a). In Figure 8, starting
with random values with 0.1 amplitude, but over time, phase
separation occurs with values −1 to 1.

According to the results in Table 3, the speed gap be-
tween CPU and GPU is significant. In 2D, it is up to 251.6
times the difference between the Python:CPU and the

Pytorch:GPU codes. Also, Pytorch:GPU tensors make the
model up to 4.73 times faster than Pytorch:CPU tensors in
the same code.

3.5. Simulations in the 3-Dimensional Space.
-ree-dimensional simulations can be considered as an
extension of two-dimensional tests. Unless otherwise stated,
we use the following parameters: mesh size
Nx � Ny � Nz � 100, space step size h � 1/Nx, time step
size Δt � 0.1h2, and computational domain
Ω � (0, 1) × (0, 1) × (0, 1). As in the 2D simulation, we find
an appropriate ϵm by comparing the numerical solution with
the exact solution (using in equation (18)) for the radius of
the sphere initial condition in equation (12b).

Figures 9(a)–9(d) show the time evolution results for ϵ12,
and (e) presents the comparison of the numerical and exact
solutions of radius for various epsilons. As shown in Fig-
ure 9, when ϵ12 is used, it is found that the exact solution and
the numerical solution are most similar. -erefore, the other
tests are performed using ϵ12.

Figure 10 shows the temporal evolution of the dumbbell
shape, and the initial condition is shown in equation (13b).
For resolution, we use Nx � 200 and Ny � Nz � 100 on the
computational domain Ω � (0, 2) × (0, 1) × (0, 1). -e final
time T of the simulation is T � 0.0025 and R0 � 0.25. -e
tendency of the 3D dumbbell motion is different from the
result of 2D dumbbell. -e reason is that, in the initial shape
in Figure 10(a), the radius of the handle is much smaller than
the radius of the spheres at both ends. -erefore, the handle
part shrinks faster than the end of spheres and breaks as in
Figure 10.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

(a)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

(b)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

(c)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

(d)

0 0.005 0.01 0.015 0.02 0.025 0.03

0.05

0.1

0.15

0.2

0.25

t
є5є10

є15є20

r

analytic

(e)

Figure 3: (a–d)-e changes in the circle over time are shown, and each time is described in the figures. (e) Change of radius for various ϵm.

6 Mathematical Problems in Engineering

Figure 11 shows the evolution of the star shape shown in
equation (14b) on the computational domain
Ω � (−1, 1) × (−1, 1) × (−1, 1). -e parameters are used as
mentioned at the beginning of this section and T � 0.02. As
shown in Figure 11, similar to the 2D result, the tips of the

star move inward, and the gaps between the tips move
outward.

Figure 12 shows the evolution of the torus shape with
initial condition in equation (16b) using R1 � 0.3 and R2 �

0.3 and T � 0.01 on the computational domain

0

0.5

1

0 0.5 1 1.5 2

(a)

0

0.5

1

0 0.5 1 1.5 2

(b)

0

0.5

1

0 0.5 1 1.5 2

(c)

0

0.5

1

0 0.5 1 1.5 2

(d)
1

0.5

0
0 0.5 1 1.5 2

(e)

Figure 4: (a–d) Time evolution of dumbbell shape, and each time is described in the figures. (e) Contour lines over time are shown by
overlapping. Changing by the mean curvature flow can be seen.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

(a)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

(b)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 11

(c)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

(d)

Figure 5: Time evolution of a star shape. As in the shape of a dumbbell, it can be seen that it changes with the mean curvature flow.
(a) t� 0, (b) t � 0.0025, (c) t � 0.0188, (d) t� 0.0325.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

(a)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

(b)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 11

(c)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

(d)

Figure 6: Time evolution of a torus shape, and each time is described in the figures. -e inner circle has larger curvature than the outer
circle, so the inner circle shrinks faster than the outer circle. (a) t� 0, (b) t� 0.0188, (c) t � 0.0375, (d) t� 0.0575.

Mathematical Problems in Engineering 7

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

(a)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

(b)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 11

(c)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

(d)

Figure 7: Time evolution of a maze shape on 100 × 100 mesh size with ϵ5, and T � 0.04. (a) t� 0, (b) t� 0.01, (c) t� 0.025, (d) t� 0.04.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

(a)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

(b)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 11

(c)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(d)

Figure 8: Time evolution of phase separation with a random initial condition. (a) t� 0, (b) t� 0.0025, (c) t� 0.0038, (d) t� 0.0125.

Table 2: Spatial L2 errors and convergence rates at t � 0.0001.

h 0.01 0.005 0.0025
L2 error 1.011e− 4 6.722e− 04 4.760e− 3
Rate 2.733 2.824

1
0.5

0

0

0.5

1
0

0.5

1

(a)

1
0.5

00

0.5

1
0

0.5

1

(b)

1
0.5

00

0.5

1
0

0.5

1

(c)

1
0.5

00

0.5

1
0

0.5

1

(d)

0 0.005 0.01 0.014
0.05

0.1

0.15

0.2

0.25

t
є5є10

є12є15

r

є20
analytic

(e)

Figure 9: (a–d)-e changes in the circle over time are shown, and each time is described in the figures. (e) Change of radius for various ϵm.

8 Mathematical Problems in Engineering

Ω � (−1, 1) × (−1, 1) × (−1, 1). Contrary to the 2D result,
the inner circle becomes larger because the radius of the
minor circle exists. -erefore, the radius of the major circle
and the minor circle each has different curvature. Since the
radius of the minor circle is smaller than major circle, the
mean curvature drives the motion into the inside of the torus
as shown in Figure 12.

Figure 13 shows the evolution of a maze shape. -e
initial condition is described in code (https://github.com/
kimy-de/gpuallencahn, https://sites.google.com/view/yh-
choi/code). In this simulation, we use T � 0.0175 and
computational domain Ω � (−1, 1) × (−1, 1) × (−1, 1). As
shown in Figure 13, we obtain the results of shrinking
while maintaining its initial shape in Figure 13(b), and
then merges and shrinks in Figures 13(c) and 13(d). If we

use different ϵm, it can shrink while preserving its initial
shape.

-e last simulation in 3D is phase separation with
random initial condition in equation (17b). In Figure 14,
starting with random values with 0.1 amplitude, but over
time, phase separation occurs with values −1 to 1.

To estimate the error of the CPU and GPU codes, we use
the following defined Err:

Err �
1
N

􏽘

N

t�1

�����������������

avg ϕt
gpu − ϕt

cpu􏼐 􏼑
2

􏼒 􏼓

􏽲

, (19)

where N is the total number of iterations, avg(X) is the
average of elements in an array X, and t means evolution
time (i.e., t � nΔt, n � 1, 2, . . . , N). We show the error

1
0

–1–1
0

1
–1

–0.5

0

0.5

1

(a)

1
0

–1–1
0

1–1

–0.5

0

0.5

1

(b)

1
0

–1–1
0

1–1

–0.5

0

0.5

1

(c)

1
0

–1–1
0

1–1

–0.5

0

0.5

1

(d)

Figure 11: Time evolution of a star shape.-e shape changes with themean curvature flow. (a) t� 0, (b) t� 0.0025, (c) t� 0.0075, (d) t� 0.02.

1
0

–1

–1

0

1
–1

0

1

(a)

–1
0

1

–1

0

1
–1

0

1

(b)

–1

0
1

–1

0

1
–1

0

1

(c)

–1

0
1

–1

0

1
–1

0

1

(d)

Figure 12: Time evolution of a torus shape. Contrary to the 2D results, the inner circle increases due to the effect of the mean curvature.
(a) t� 0, (b) t � 0.005, (c) t� 0.008, (d) t� 0.01.

1.5
1

0.5
0

0
0.5

1
0

0.5

1

2

(a)

1.5
1

0.5
0

0
0.5

1
0

0.5

1

2

(b)

1.5
2

1
0.5

0

0
0.5

1
0

0.5

1

(c)

2
1.5

1
0.5

0

0
0.5

1
0

0.5

1

(d)

Figure 10: (a–d) Time evolution of the dumbbell shape. -e handle shrinks quickly and breaks occur because the curvature of the handle is
larger than that of both spheres. (a) t� 0, (b) t� 0.0006, (c) t� 0.0013, (d) t� 0.0025.

Mathematical Problems in Engineering 9

https://github.com/kimy-de/gpuallencahn
https://github.com/kimy-de/gpuallencahn
https://sites.google.com/view/yh-choi/code
https://sites.google.com/view/yh-choi/code

1
0

–1–1

0

1
–1

–0.5

0

0.5

1

(a)

–1

0
1

–1

0

1
–1

0

1

(b)

–1

0
1

–1

0

1
–1

0

1

(c)

–1
0

1

–1

0

1
–1

0

1

(d)

Figure 13: Time evolution of a maze shape on Ω � (−1, 1) × (−1, 1) × (−1, 1), and T � 0.0175. (a) t � 0, (b) t � 0.005, (c) t � 0.0125,
(d) t � 0.0175.

0.5
1

00

0.5

1
0

0.5

1

(a)

0.5
1

00

0.5

1
0

0.5

1

(b)

0.5
1

00

0.5

1
0

0.5

1

(c)

0.5
1

00

0.5

1
0

0.5

1

(d)

Figure 14: Time evolution of phase separation with a random initial condition. (a) t� 0, (b) t� 0.0025, (c) t� 0.005, (d) t� 0.01.

Table 3: Runtime Result in 2D(sec).

Iterations
Initial value

Circle Dumbbell Star Torus Maze Random
12001 15001 13001 23001 4001 12001

CPU:Python 680.09 (185.31) 1736.05 (251.6) 729.74 (128.47) 1326.82 (165.65) 60.15 (52.3) 674.63 (119.62)
CPU:Pytorch 14.73 (4.01) 30.67 (4.44) 17.60 (3.1) 37.85 (4.73) 2.98 (2.59) 17.79 (3.15)
GPU:Pytorch 3.67 6.90 5.68 8.01 1.15 5.64
-e values in parentheses describe how many times the difference is based on GPU:Pytorch time for each test.

Table 4: Errors of various numerical simulations with the baseline and ours.

Initial value
Dimension Random Dumbbell Circle/sphere Maze Star Torus
2D 1.75 × 10− 6 7.03 × 10− 7 5.51 × 10− 7 2.22 × 10− 7 6.55 × 10− 7 7.52 × 10− 7

3D 3.01 × 10− 6 1.20 × 10− 6 1.11 × 10− 6 3.36 × 10− 6 1.56 × 10− 6 1.91 × 10− 6

Table 5: Runtime result in 3D (sec).

Iterations
Initial value

Sphere Dumbbell Star Torus Maze Random
2001 2001 2001 1201 2401 2001

CPU:Python 4022.38 (3944) 8050.45 (4087) 4014.83 (4015) 2478.22 (4766) 4844.24 (3814) 4163.17 (4042)
CPU:Pytorch 65.95 (65) 79.23 (40) 65.22 (65) 39.56 (76) 78.72 (62) 65.80 (64)
GPU:Pytorch 1.02 1.97 1.00 0.52 1.27 1.03
-e values in parentheses describe how many times the difference is based on GPU:Pytorch time for each test.

10 Mathematical Problems in Engineering

results obtained by equation (19) to check the difference
between the numerical results of CPU:Python (baseline) and
GPU:Pytorch. In Table 4, all the errors for any cases are less
than 1.0e − 6.

According to the results in Table 5, the speed gap be-
tween CPU and GPU operations is significant. Of course, it
will be faster by performing GPU calculations, but we
proposed a structure using padding and convolution op-
eration in performing GPU calculations on AC equations.
And, the results are demonstrated by verifying the results
(Table 4) with Python code which has the same mathe-
matical meaning. In 3D, the GPU performance is much
more overwhelming than the CPUs. For instance, the GPU
code is 4766 times faster than the Python code in the torus
problem. Also, GPU tensors make the model up to 76 times
faster than CPU tensors in the same code. -e values in
parentheses describe how many times the difference is based
on GPU:Pytorch time for each test.

4. Conclusions

In this paper, we proposed a structure using padding and
convolution operation for the GPU calculation of the
Allen–Cahn equation. We increased the simulation speed
and demonstrated the validity of the proposed structure
by verifying the result with the Python code that has the
same mathematical meaning. We solved the Allen–Cahn
equation by the explicit finite difference method and
compared the runtime results between CPU and GPU
algorithms. -e errors of CPU:Python and GPU:Pytorch
are less than 1.0e − 6 for the given initial conditions. Also,
we showed that our GPU code is up to 251.6 and 4765.81
times faster than the CPU codes in 2D and 3D, respec-
tively. By showing these results, accuracy and efficiency
have been demonstrated. Various numerical simulations
were presented to confirm that the Allen–Cahn equation
follows the motion by mean curvature and phase sepa-
ration in the 2D and 3D space. In this way, we can build a
fast algorithm for any differential equations using the
finite difference method by efficient programmatic code
structures.

Data Availability

All the codes are available from the first author’s GitHub web
page (https://github.com/kimy-de/gpuallencahn) and the
corresponding author’s web page (https://sites.google.com/
view/yh-choi/code).

Conflicts of Interest

-e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

-is research was supported by the Daegu University Re-
search Grant, 2019 (to Y. Choi).

References

[1] S. M. Allen and J. W. Cahn, “A microscopic theory for
antiphase boundary motion and its application to antiphase
domain coarsening,” Acta Metallurgica, vol. 27, no. 6,
pp. 1085–1095, 1979.

[2] Y. Li, D. Jeong, J.-i. Choi, S. Lee, and J. Kim, “Fast local image
inpainting based on the Allen-Cahn model,” Digital Signal
Processing, vol. 37, pp. 65–74, 2015.

[3] A. L. Brkić and A. Novak, “A nonlocal image inpainting
problem using the linear Allen–Cahn equation,” in Pro-
ceedings of the Conference on Non-integer Order Calculus and
its Applications, Springer, ŁÓDŹ, Poland, October 2018.

[4] Z. Feng, J. Yin, and J. Zhou, “Inpainting algorithm for Jac-
quared image based on phase-field model,” in Proceedings of
the 2008 3rd International Conference on Intelligent System
and Knowledge Engineering, vol. 1, November 2008.

[5] M. Beneš, V. Chalupecký, and K. Mikula, “Geometrical image
segmentation by the Allen–Cahn equation,” Applied Nu-
merical Mathematics, vol. 51, no. 2-3, pp. 187–205, 2004.

[6] D. A. Kay and A. Tomasi, “Color image segmentation by the
vector-valued Allen-Cahn phase-field model: a multigrid
solution,” IEEE Transactions on Image Processing, vol. 18,
no. 10, pp. 2330–2339, 2009.

[7] J. Zhang, C. Chen, and X. Yang, “A novel decoupled and stable
scheme for an anisotropic phase-field dendritic crystal growth
model,” Applied Mathematics Letters, vol. 95, pp. 122–129,
2019.

[8] X. Yang, “Efficient linear, stabilized, second-order time
marching schemes for an anisotropic phase field dendritic
crystal growth model,” Computer Methods in Applied Me-
chanics and Engineering, vol. 347, pp. 316–339, 2019.

[9] X. Jing and Q. Wang, “Linear second order energy stable
schemes for phase field crystal growth models with nonlocal
constraints,” Computers & Mathematics with Applications,
vol. 79, no. 3, pp. 764–788, 2020.

[10] K. M. Furati, M. Yousuf, and A. Q. M. Khaliq, “Fourth-order
methods for space fractional reaction–diffusion equations
with non-smooth data,” International Journal of Computer
Mathematics, vol. 95, no. 6-7, pp. 1240–1256, 2018.

[11] K. M. Owolabi, “Numerical solution of the generalized
Burgers-Huxley equation by exponential time differencing
scheme,” International Journal of Biomedical Engineering and
Science, vol. 1, pp. 43–52, 2015.

[12] K. M. Owolabi and K. C. Patidar, “Numerical solution of
singular patterns in one-dimensional Gray-Scott-like
models,” International Journal of Nonlinear Sciences and
Numerical Stimulation, vol. 15, no. 7-8, pp. 437–462, 2014.

[13] L. Ferm, A. Hellander, and P. Lötstedt, “An adaptive algo-
rithm for simulation of stochastic reaction-diffusion pro-
cesses,” Journal of Computational Physics, vol. 229, no. 2,
pp. 343–360, 2010.

[14] K. M. Owolabi and K. C. Patidar, “Solution of pattern waves
for diffusive Fisher-like non-linear equations with adaptive
methods,” International Journal of Nonlinear Sciences and
Numerical Stimulation, vol. 17, no. 6, pp. 291–304, 2016.

[15] K. M. Owolabi and K. C. Patidar, “Numerical simulations of
multicomponent ecological models with adaptive methods,”
@eoretical Biology and Medical Modelling, vol. 13, no. 1,
pp. 1–25, 2016.

[16] K. M. Owolabi and A. Atangana, “Mathematical analysis and
numerical simulation of two-component system with non-
integer-order derivative in high dimensions,” Advances in
Difference Equations, vol. 2017, no. 1, 24 pages, 2017.

Mathematical Problems in Engineering 11

https://github.com/kimy-de/gpuallencahn
https://sites.google.com/view/yh-choi/code
https://sites.google.com/view/yh-choi/code

[17] H. G. Lee, “A second-order operator splitting Fourier spectral
method for fractional-in-space reaction-diffusion equations,”
Journal of Computational and Applied Mathematics, vol. 333,
pp. 395–403, 2018.

[18] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-
informed neural networks: a deep learning framework for
solving forward and inverse problems involving nonlinear
partial differential equations,” Journal of Computational
Physics, vol. 378, pp. 686–707, 2019.

[19] S. Karumuri, R. Tripathy, I. Bilionis, and J. Panchal, “Simu-
lator-free solution of high-dimensional stochastic elliptic
partial differential equations using deep neural networks,”
Journal of Computational Physics, vol. 404, p. 109120, 2020.

[20] L. Yang, X. Meng, and G. E. Karniadakis, “B-PINNs: Bayesian
physics-informed neural networks for forward and inverse
PDE problems with noisy data,” Journal of Computational
Physics, vol. 425, p. 109913, 2021.

[21] J.-W. Choi, H. G. Lee, D. Jeong, and J. Kim, “An uncondi-
tionally gradient stable numerical method for solving the
Allen-Cahn equation,” Physica A: Statistical Mechanics and its
Applications, vol. 388, no. 9, pp. 1791–1803, 2009.

[22] Y. Li, H. G. Lee, D. Jeong, and J. Kim, “An unconditionally
stable hybrid numerical method for solving the Allen-Cahn
equation,” Computers & Mathematics with Applications,
vol. 60, no. 6, pp. 1591–1606, 2010.

12 Mathematical Problems in Engineering

