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Domestic sewage in rural regions is mainly treated by small-scale treatment terminals in China. -e large quantities and high
dispersion of these terminals render the chemical measurement of effluent to be a time and energy intensive work and further hinder
the efficient surveillance of terminals’ performance. After a thorough investigation of 136 operating terminals, this study successfully
employs two artificial neural network (ANN) models to predict effluent total nitrogen (TN) and COD (R2 both higher than 0.8) by
setting some easily detectable parameters, e.g., pH and conductivity, as inputs. To prevent ANNmodels getting stuck on local optima
and enhance the model performance, genetic algorithm (GA) and particle swarm optimization (PSO) are introduced into ANN,
respectively. By comparison, ANN-PSO excels inmodelling both TN and COD.-e rootmean square error (RMSE) andR2 of ANN-
PSO inmodelling TN are 9.14 and 0.90, respectively, in the training stage, and 11.54 and 0.90, respectively, in the validation stage.-e
RMSE and R2 of ANN-PSO in modelling COD are 22.10 and 0.90, respectively, in the training stage, and 26.57 and 0.85, respectively,
in the validation stage.-is is the first study to provide performance prediction models that are available for different terminals. Two
established ANN-PSO models show great practical significance in monitoring huge amounts of terminals despite the slight sacrifice
of models’ accuracy caused by the great heterogeneity of different terminals.

1. Introduction

-e economic boom and fast increase in the living standards
of residents brings about the growing production of rural
domestic sewage (RDS). It is estimated that, in China, the
annual RDS discharge reaches up to 19.5 billion tons, which is
about 63% of the urban domestic sewage [1]. In light of the
large amounts of nutrients like organic matter or nitrogen
contained in the RDS, either direct discharge or improper
treatment of RDS will impose non-negligible threats to the
receiving water [2]. In many developing countries, RDS has
become the main source of pollution in the rural region [3, 4].

In the Zhejiang province, RDS is mainly treated by
small-scale terminals with treatment capacities ranging from
tons to dozens of tons. Traditional biological treatment

(A2O) dominates the technology mainstream of these ter-
minals with regard to its competitive edge in a low con-
struction cost and energy demands. Whereas, the notorious
problem of A2O that the performance of the biological
process is easily affected by the ambient environment has
gradually stood out in recent years [5]. -e approach of
periodical manual sampling integrated with a traditional
chemical test has been adopted as the main monitoring
strategy to determine some important effluent index, like
COD or total nitrogen (TN), by most regional governments
and carried out for decades. However, the large quantities
and high dispersion (sometimes, tens of thousands of ter-
minals scatter throughout one city) of these terminals render
the surveillance work to be a time and energy intensive work
and require large capital investment.
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1.1. Application of the ANN Model on Modelling the Water
Quality. Machine learning (ML) methods provide some
potential alternatives to control or simulate targets through
examples or past experiences [6]. Among them, an artificial
neural network (ANN) has become increasingly popular in
the field of wastewater treatment and exhibited more ex-
cellent accuracy in modelling nonlinear targets like effluent
water quality than many other ML methods [7]. For in-
stance, Abyaneh [8] found ANN excelled higher accuracy
and adequacy capacity in modelling BOD and COD of
WWTP, compared with the multivariate linear regression
method. In addition, in the study by Mahdiyah et al. [9],
ANN obtained the best prediction performance in accuracy
relative to the extreme learning machine and support vector
machine methods.

-e backpropagation (BP) ANN model is one of the
most studied ANN models, which can redistribute errors
from the output to input layer by iterations in order to find
the appropriate model parameters like weights and
thresholds. Excellent self-learning and adaptability of BP
ANN has already been reflected by the applications in
multiple fields [10]. For instance, Antwi et al. [11] employed
two BP ANNmodels in the prediction of ammonia and total
nitrogen removal and demonstrated a good result
(R2> 0.98). Likewise, Mandal et al. [12] also used BP ANN in
simulating As(III) removal with R2 above 0.97 for both
training and validation processes. However, the drawbacks
of BP ANN that it tends to be trapped by local optima due to
severe initialization sensitivity are often put forward by
researchers [13]. Apart from that, the high requirements for
computational complexity and memory in some BP ANN
intrinsic algorithms like Levenberg–Marquardt also deserve
proper attention [14].

1.2. Application of Hybrid ANN on Modelling the Water
Quality. Evolutionary algorithms, like particle swarm op-
timization (PSO) and genetic algorithm (GA), are often
introduced into ANN as optimization strategies [15]. -e
principle of PSO is to globally search the solution space in
order to select the most well-behaved particles [16]. It has
edges in the low computing volume, strong memory ability
for remembering the best position of each particles, and
higher convergence characteristics as it only depends on the
particle velocity to do the searching job [15, 17]. Im-
provement in the prediction accuracy of the PSO-based
hybrid model has been documented in many previous
studies. Mei et al. [18] introduced PSO into ANN in a
electro-oxidation system and achieved accurate predictions
with R2 of 0.99 and 0.9944 for COD removal and total energy
consumption, respectively. Khajeh et al. [19] validated the
hybrid model, ANN-PSO, which was robust in modelling
Mn(II) and Co(II) removal efficiency in adsorption (R2 was
0.942 and 0.944 forMn(II) and Co(II)alt, respectively). GA is
a metaheuristic algorithm inspired from the natural selec-
tion process [20]. It is suitable to search for a single and
exclusive target and obtain satisfying performance with
reduced complexity of ANN [15]. ANN-GA models have
also shown to be superior than ANN in various fields. -e

study of Azad et al. [21] showed that ANFIS models
(adaptive neuro fuzzy inference system) only displayed good
simulation in the training stage of modelling precipitation in
the winter and spring, and the accuracy of models in the
validation stage was very poor. ANFIS-GAmade up for these
shortcomings and achieved the purpose of optimization.
Jalalkamali [22] reported that ANFIS-PSO and ANFIS-GA
both exhibited excellent simulation of spatiotemporal
groundwater quality, and the ANFIS-PSO model yielded
better performance than ANFIS-GA.

1.3. Limitations of Current Cases Applied on Modelling the
Effluent of RDS Terminals. Although many successful ANN
cases have been applied to predict effluent quality ofWWTP,
two significant shortcomings are worth highlighting when
these cases are extended to RDS: (1) database of the
established model mainly comes from the historical data of a
single target, like a specific WWTP. Great heterogeneity
among terminals will inevitably challenge the availability of
the model (established for a specific terminal) for other
terminals, while constructing the model for each terminals
would be too costly. (2) Inputs contained some parameters
that are difficult or costly to be measured. In some cases,
influent TN even served as inputs for effluent TN prediction
[23].

-is research is dedicated to finding a universal, prac-
ticable, and affordable monitoring approach for different
terminals. To make the model applicable to as many ter-
minals as possible, data from 136 operating terminals were
collected. -en, ANN, ANN-GA, and ANN-PSOmodels are
employed in this study to predict effluent TN and COD by
setting some easily detectable and low cost parameters like
pH and conductivity as inputs.

2. Methods and Materials

2.1. Investigation of Rural Domestic Sewage Terminal.
Changxing is a county located in Huzhou City, Zhejiang
Province, with a total area of 1430 sq. km. It has a subtropical
monsoon climate, with an average annual temperature
ranging from 14°C ∼ 22°C. According to the official data,
there are more than 0.27 million residents living in the rural
region. Domestic sewage in this region is mainly treated by
small-scale A2O treatment terminals. To have a full mas-
tering of the current performance and preparing for the next
round terminal upgrading, a survey was conducted from
March to April, 2018. A total of 136 A2O rural sewage
treatment terminals were investigated.

2.2. Analysis of Water Quality and Selection of Inputs.
Influent and effluent water samples were carefully collected
at each terminal and stored in a −20° fridge until analysis.
NH4

+–N, TP, TN, and COD were determined by the HACH
Kit (HACH, USA). Conductivity (DDSJ-308A, INESA,
China), pH (HQ11 d, HACH, USA), and turbidity (2100Q,
HACH, USA) were measured by an online parameter.
Pollutant removal efficiency is computed according to the
following formula:
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Removal Efficiency �
(Influent concentration − effluent concentration)

Influent concentration
. (1)

-e parameters that are significantly correlated with
effluent TN and COD are screened out through IBM SPSS
statistics 24. -en, principal component analysis (PCA),
subtractive clustering algorithm (SCA), and fuzzy c-means
algorithm (FCM) are used in this study to further determine
dimensions of inputs [24–26]. Initially, PCA is used to
ensure the importance of inputs and minimize the redun-
dancy problems caused by massive strongly intercorrelated
data.-en, SCA and FCM are used to determine the number
of clusters and clustering centers of outputs and inputs,
respectively. Eventually, clustering centers of these inputs
and outputs are treated by the Johnson Algorithm in the
Rosetta Software to determine the input dimensions.

2.3. Methodology of ANN, ANN-GA, and ANN-PSO

2.3.1. ANN. Figure 1 shows the typical structure of classical
ANN. Briefly, the ANN model consists of several layers, and
according to their distinctive layers, neurons can be sub-
divided into input, hidden, and output neurons. Hidden
layers, serving as feature detectors to introduce nonlinearity
into the network, can be either single or multiarchitecture,
depending on the case need. -e construction of the ANN
model includes training (input feed forward and error back
propagation) and validation.

(i) Input Feed Forward. Simplified feed forward calculations
are as follows [10]:

Hidden neurons receive signals from the input neurons
through a set of specific weights, thresholds, and transferring
functions as follows [10]:

bj � F 􏽘
m

i�1
ai × wij + Pj

⎛⎝ ⎞⎠. (2)

Again, the signals are passed to the output neuron and
form the final predicted values (output neurons) as follows
[10]:

c′ � F′ 􏽘

n

i�1
vj × bj + Q⎛⎝ ⎞⎠, (3)

where aj represents the value of the input neuron; bj

represents the value of the hidden neuron; wija and vj are
the weights between the input neuron ai and hidden
neuron bi,j and hidden neuron bj and output neuron,
respectively; Pj andQ are the connection thresholds of the
hidden neuron and output neuron, respectively; F and F′
means the transfer function from input neurons to
hidden neurons and hidden neurons to output neurons,
respectively. c′ is the predicted value of effluent TN or
COD concentration. Initially, wij, Pj, vj, and Q are all
randomly selected small values and will be readjusted in
the latter feedback works.

(ii) Error Back Propagation. -e core of back propagation
lies in redistribution of errors from the output layer to the
former layer and readjustment of the parameters like weight
and connection threshold accordingly. After certain itera-
tions of back propagation, the error will be minimized, and
the model will obtain a better fitness. In this study, the
Levenberg–Marquardt Algorithm is adopted as the network
training function for the update of previous parameters with
regard to its fast computing speed and outstanding training
ability. Models that are only established under the cir-
cumstances of the mean square error (MSE) is small enough
[10],

MSE �
1
m

􏽘

m

k�1
ck
′ − ck( 􏼁

2
, (4)

where c′ and c stand for the predicted value and measured
value, respectively. m is the number of samples.

(iii) Validation Procedure of Models. Validation is the last
important procedure to retest the reliability after model
establishment. Subsequent model applications can be only
carried out under the circumstances that the results of
validation fit expectations.

2.3.2. ANN-GA. As aforementioned, to prevent the
models trapped by local optima, GA and PSO are used for
the selection of suitable initial weights and thresholds for
ANN (Figure 2). -e idea of GA was derived from the
principles of natural selection and genetics. It treats the
parameters (initial weights and thresholds) that need
optimization as chromosomes. Chromosomes with high
fitness will be selected, and others will be replaced by
genetic propagation like crossover and mutation [28]. It
is reported that GA is very good at global searching,
independent of the initial value to achieve the conver-
gence. However, compared to PSO, complicated pro-
cesses like crossover and mutation will slow down the
convergence rate of GA [15]. -e brief methodology of
GA can be made as previous studies and method de-
scription partly reproduces their wording [27]:

(1) Start ANN and obtain the corresponding initial
weight and threshold. -ese parameters are subse-
quently encoded into binary strings to form
chromosomes.

(2) Compute the fitness coefficient of each chromosome
and retain the ones with high fitness.

(3) Use crossover and mutation to treat rest
chromosomes.

Crossover operator [27]:
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Figure 2: Flowchart of ANN-GA and ANN-PSO [27].
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Figure 1: Typical structure of the ANN neural network.
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AKJ � AKJ(1 − B) + ALJB,

ALJ � ALJ(1 − B) + AKJB,
(5)

where AKJ and ALJ are the Kth and the Lth chro-
mosomes; B is the random value from 0 to 1.
Mutation operator [27]:

QIJ �

QIJ + QIJ − Qmax􏼐 􏼑 · R2 · 1 −
g

Gmax
􏼠 􏼡, α> 0.5,

QIJ + Qmin − QIJ􏼐 􏼑 · R2 · 1 −
g

Gmax
􏼠 􏼡, α≤ 0.5,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(6)

where QIJ is the Jth gene of the Ith chromosome; Qmax
and Qmin are the maximum and minimum of gene
QIJ; g is the current iteration time; R2 is a random
number; Gmax is the maximum iteration time; and α
is a random number ranging from 0 to 1.

(4) Repeat step 2 until obtaining chromosomes with the
best fitness after several iterations. Decode the
chromosomes and replace the initial weights and
threshold of the ANN model with these optimized
ones.

2.3.3. ANN-PSO. PSO is a modern heuristic algorithm
derived from natural foraging and swarming of birds or fish
[17]. -e bases of PSO is built on the team cooperation and
information sharing [29]. -e algorithm treats the param-
eters that need optimization (like initial weights and
thresholds) as particles. Each particle represents an indi-
vidual solution, and the swarms of particles show the whole
solution space. -e individual particle is not only aware of
the position of itself and others, but also searches the so-
lution space through its present velocity, previous experi-
ence, and the experience of its neighbour particles [16].
Hence, apart from fast convergence, PSO also has advan-
tages in remembering particles’ best location. However, as
velocity, a key parameter for searching process, is lack of
dynamic adjustment, PSO sometimes will lead to the con-
sequences of difficult convergence and low convergence
accuracy [15]. -e following methodology of PSO-ANN has
been obtained from previous studies, and the method de-
scription partly reproduces their wording [27].

(1) Start ANN and obtain the corresponding initial
weight and threshold. -ese parameters are subse-
quently encoded into particles of a group, and each
particles get their corresponding position (ep) and
velocity (fp) information [27],

ep � ep1, ep2, ep3, ..., eph􏼐 􏼑,

fp � fp1, fp2, fp3, ..., fph􏼐 􏼑,
(7)

where h means the dimension of space.
(2) Determine the fitness of each particle (pbest) and

compare it to the best historical value of pbest.

(3) Evaluate the overall fitness of the group (gbest) and
compare it with the best historical value of the gbest.

(4) Update the velocity and position information of each
particle by the following formula [27]:

fph � ω · fph + h1 · Rand1 · pbestph − eph􏼐 􏼑

+ h2 · Rand2 · gbestph − eph􏼐 􏼑,

eph � eph + fph,

(8)

where Rand1 and Rand2 are two uniform random
functions, and h1 and h2 are the learn rates

(5) Repeat step 2 until the particles with the best fitness
after several iterations are obtained. Replace the
initial weights and threshold of the ANNmodel with
these optimized ones.

2.3.4. Modeling Performance Criteria. -e root mean square
error (RMSE), the coefficient of determination (R2), mean
absolute percentage error (MAPE), and nash sutcliffe effi-
ciency coefficient (NSEC) are the four criteria to evaluate
model precision from different aspects [30, 31],

RMSE �

������������

􏽐
m
k�1 ck
′ − ck( 􏼁

2

m

􏽳

,

R
2

�
m 􏽐

m
k�1 ckck
′ − 􏽐

m
k�1 ck( 􏼁 􏽐

m
k�1 ck
′( 􏼁

��������������������

m 􏽐
m
k�1 c2k − 􏽐

m
k�1 ck( 􏼁

2
􏽨 􏽩

􏽱

× m 􏽐
m
k�1 c2
′
k − 􏽐

m
k�1 ck
′( 􏼁
2

􏽨 􏽩

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦

2

,

MAPE �
1
m

􏽘

m

k�1

ck − ck
′

ck

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
× 100,

(9)

NSEC �
􏽐

m
k�1 ck
′ − ck( 􏼁

2

􏽐
m
k�1 ck − ck( 􏼁

2
⎛⎝ ⎞⎠, (10)

where c stands for the measured value.

2.3.5. Index Contribution and Sensibility Analysis. For a
better description of the contribution from each input pa-
rameter within models, the importance of each input pa-
rameter is computed by the subsequent formula from the
perspective of the weights of the input neurons [32],

Ci �
􏽐

nh

j�1 ABS wij􏼐 􏼑

􏽐
nv

l�1 􏽐
nh

j�1 ABS wij􏼐 􏼑􏼐 􏼑
l

, (11)

where Ci stands for the contribution index of the input i; nh
stands for the number of hidden neurons; nv stands for the
number of input variables; wij stands for the weight of the
input layer to the hidden layer; and ABS represents the
absolute value of function.

-e Morris screening method is used to identify the
sensibility of the model to each input from the perspective of
the prediction outcome [33]. Briefly, the sensitivity of a
certain input parameter will be evaluated by increasing or
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decreasing its value by 10% and keeping others intact and
seeing how the model will react to the change [33],

di,k �
inputb,k ck

″ − ck
′( 􏼁

inputpc,k − inputb,k􏼐 􏼑ck
′
,

μi �
1
m

􏽘

m

k�1
di,k,

(12)

where inputb refers to the original input value; inputpc refers
to the proportional change in the original input value; c′ is
the original outcome of the model; c″ is the model reaction
to the corresponding changes of inputp c; and μi is the
sensibility index of each input.

All the aforementioned processes are performed in IBM
SPSS statistics 24, Matlab R2017b, Excel 2016, and AutoCAD
2019.

Table 1: Influent and effluent parameter of the rural domestic sewage terminal.

Parameter
Min Max Average

Influent Effluent Influent Effluent Influent Effluent
pH 6.2 6.3 8.56 8.67 6.88 6.96
Conductivity (μs/cm) 248 50.6 1479 1502 972.78 948.7
Turbidity (NTU) 4 1.71 435 98.6 52.55 22.46
NH3-N (mg/L) 4.4 1 131 156 53.41 45.98
TN (mg/L) 22 11 130 141 68.32 57.92
TP (mg/L) 0.3 0.37 11.03 11 5.187 4.248
COD (mg/L) 27 3 659 335 208.92 103.43

Removal efficiency of TN

19.12%

48.53%

16.18%

11.03%

5.15%

Negative
0-20%
21-40%

41-60%
61-80%
81-100%

Removal efficiency of NH3-N

27.94%

36.03%

16.91%

8.82%

4.41%
5.88%

Negative
0-20%
21-40%

41-60%
61-80%
81-100%

Removal efficiency of COD

4.41%
9.56%

23.53%

30.15%

23.53%

8.82%

Negative
0-20%
21-40%

41-60%
61-80%
81-100%

Removal efficiency of TP

22.79%

34.56%
25.74%

8.82%

7.35%
0.74%

Negative
0-20%
21-40%

41-60%
61-80%
81-100%

Figure 3: Removal efficiency of the terminals for TN, NH3-N, COD, and TP.
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3. Results and Discussion

3.1. Performance of Rural Domestic Sewage Terminal.
Seven vital water parameters were measured and listed in
Table 1. Indeed, the average NH3-N, TN, TP, and COD
concentrations reached up to 53.41mg/L, 68.32mg/L,
5.19mg/L, and 208.92mg/L, respectively, in the influent,
which can be bracketed with or even higher than the pol-
lutant load in some WWTPs [34]. -e average NH3-N
concentration is very close to the average TN concentration,
implying that ammonia nitrogen dominates the nitrogen

form in the RDS. Besides that, substantial differences are
demonstrated among influents from different terminals.
Discrepant regional customs and dilution effect from various
factors like rainfall contribute to these differences.

Figure 3 shows that the terminals had relatively limited
power for pollutant removal. -e average removal efficiency
of turbidity, NH3-N, TN, TP, and COD were only 11.18%,
16.09%, 13.31%, and 46.39%, respectively. Negative removal
efficiency of these pollutants occasionally occurred on some
terminals due to factors like releasing of bulking sludge [35].
Similarly, Yu et al. [36] identified about 29% of RDS
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terminals in Jiaxing (another city in Zhejiang), which were in
the ineffective operation. -e following reasons are specu-
lated for unsatisfied performance: (1) unstability of bio-
chemical reaction; (2) relatively limited maintenance in light
of the massive amounts of terminals; (3) traditional chemical
measurement cannot satisfy the need of real-time assess-
ment as it requires intensive time for the digestion of pol-
lutants [37]. Failure to evaluate the performance of terminals
on time will let the problematic terminals fall into a worse
situation. Every year, local governments have to bear great
financial burdens and put considerable amount of economic
and human resources into more surveillance. Finding an
easier and quicker monitoring approach is an urgent desire
at present.

3.2. Selection of Input Parameters. Significant correlations
between some critical water parameters have been referred
in the previous studies. Some easily detectable parameters
can serve as rough surrogates for pollutant concentration or
problems during the operation. For instance, the study of Yu
et al. [36] demonstrated that conductivity was significantly
correlated with TN, NH4

+-N, TP, and COD within both the
influent and effluent. -us, a low correlation between
conductivity and TN might imply the leakage of sewer
transporting system. Analogously, strong correlations were
found between turbidity and parameters like TN and COD
[38]. -e study of Slaets et al. [39] showed that turbidity is a
reliable and cost-effective predictor variable for the linear
mixed model developed to account for TN. Apart from

Table 2: -e results of PCA analysis.

Components Characteristic value Contribution rate, % Accumulated contribution rate, %
1 3.582 44.772 44.77
2 1.878 23.478 68.25
3 1.036 12.946 81.2
4 0.624 7.797 88.99
5 0.426 5.326 94.32
6 0.211 2.638 96.96
7 0.146 1.823 98.78
8 0.098 1.22 100

Table 4: Parameters setting in ANN, ANN-GA, and ANN-PSO.

Model Common setting for ANN Others
ANN

Inputnum� 8 (number of input neurons); Hiddennum�

15 (number of hidden neurons); Outputnum�

1 (number of output neurons);
Net.trainParam.epochs�

20000;
Net.trainParam.lr�

0.01 (learning rate);
Net.trainParam.goal�

0.000004 (training goal); Purelin
, transfer function from input layer to hidden layer;

Tansig, transfer function from hidden layer to output layer;

None

ANN-GA

Maxgen� 100 (number of Iterations); Sizepop�

10 (size of population); Pcross�

0.7 (possibility of crossover); Pmutation�

0.1
(possibility of mutation)

ANN-PSO

Maxgen� 100 (number of Iterations); Sizepop�

10 (size of population);
Vmax�

1 (maximum speed); Vmin�

−1
(minimum speed); Popmax�

5 (maximum population); Popmin�

−5 (minimum population)

Table 3: Clustering centers of inputs and outputs.

Parameter Cluster centers
Effluent TN (mg/L) 59
Effluent COD (mg/L) 128
Influent pH 6.64
Effluent pH 6.75
Influent ammonia concentration (mg/L) 56.5
Effluent ammonia concentration (mg/L) 53.5
Influent conductivity (us/cm) 976
Effluent conductivity (us/cm) 928
Influent turbidity (NTU) 39.9
Effluent turbidity (NTU) 10.9
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conductivity and turbidity, pH had also presented a weak
correlation with TN and was served as input in the ANN
model to predict TN [40]. Figure 4 shows that these rules are
also applicable in the field of RDS. Effluent TN of RDS
displays strong correlations with influent conductivity, ef-
fluent conductivity, influent ammonia, effluent ammonia,
effluent turbidity, respectively, and a weak correlation with
influent pH, effluent pH, and effluent turbidity, respectively.
Effluent COD of RDS exhibits strong correlations with ef-
fluent turbidity, effluent ammonia, influent conductivity,
and effluent conductivity, respectively, and a weak corre-
lation with influent ammonia, influent turbidity, influent
pH, and effluent pH, respectively. Remarkably, R2 between
effluent TN and effluent conductivity can reach 0.80, in-
dicating nitrogen might be mainly presented in the dissolved
ammonia form. -e high R2 (0.77) between effluent COD

and effluent turbidity implies that particle pollutants play an
important role in the effluent COD.

Correlation analyses indicate that ANN models can be
developed to account for effluent TN and COD with these
easily detectable parameters (pH, turbidity, conductivity,
and ammonia of influent and effluent) as inputs. -e results
of PCA (Table 2.) show that the first principle can explain
44.77% of all variance, and first four components contain
88.99% of variance. Generally, the overall data can be
characterized by components that explain more than 85% of
variance [41]. SCA, FCM, and Johnson Algorithm are
subsequently used to determine the dimension of inputs.
Clustering centers of all parameters are shown in Table 3,
and the final results of the Johnson Algorithm show that pH,
turbidity, ammonia concentration, and conductivity of both
influent and effluent can all act as inputs.
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Figure 5: Performance of TN prediction.
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3.3. ANN Prediction Performance. Fan et al. [15] concluded
44 studies that used ANN to model and optimize pollutant
removal processes. In this review, most studies used about
60% to 80% of data as the training database. Accordingly,
this study uses data from 100 terminals as the training
database (73.53% of total), then the rest data from 36 ter-
minals are applied to validate the performance of the model.
A trial and error approach is used in this study to determine
the number of hidden neurons [42, 43]. Since the standard
multilayer feedforward network with one hidden layer has
been considered as a universal approximator, analogously,
this study also configures all models with only one hidden
layer [44, 45]. Eventually, ANN, ANN-GA, and ANN-PSO
models all contain three distinctive layers. A total of 8
neurons, including pH, conductivity, turbidity, and am-
monia concentration of both influent and effluent, are set in
the input layer, and 15 neurons are set in the hidden layer.
-e preset parameters, weights, and thresholds of models
can be found in Tables 4 and 5.

-e prediction performance of the three models for TN
and COD can be seen in Figures 5 and 6, respectively. -e
prediction curves of the three models not only acquire the
knowledge base of these terminals, but also closely capture
the fluctuation trend of the true curves. As shown in Fig-
ure 7, the linear fit for ANN-PSO curves is closest to the
reference line (100% accuracy), followed by the linear fit for
ANN-GA curves and finally ANN curves, demonstrating
ANN-PSO yields the best predicting performance for both
TN and COD [27]. Table 6 shows ANN-PSO also obtained
the most reliable performance in terms of the model error.
-e R2, RMSE, and MAPE of ANN-PSO in modelling TN
are 0.90, 9.14, and 16.19%, respectively, in training, and 0.90,
11.54, and 16.79%, respectively, in validation. In terms of
COD prediction, R2, RMSE, and MAPE of ANN-PSO are
0.90, 22.10, and 34.57%, respectively, in training, and 0.85,
26.57, and 22.30%, respectively, in validation. Considering
that ANN-PSO models possess higher R2 and lower RMSE
than ANN models, ANN-PSO models neither get into
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overfitting nor underfitting after optimization. In addition,
this study uses NSEC to evaluate the predictive power of
models. -eoretically, NSEC ranges from −∞ to 1. 0 in-
dicates that the prediction performance of the model is close
to the mean of the measured value; in the other words, the
overall result is credible and 1 indicates that the model is in
the perfect prediction. -e closer NSEC is to 1, the more
accuracy models can reach [30]. -e NSEC of ANN-PSO in
modelling TN are both 0.97 for training and validation and
NSEC of ANN-PSO in modelling COD are 0.89 and 0.84,
respectively, for training and validation, showing strong
prediction power of ANN-PSO. Except the accuracy ad-
vantage, ANN-PSO shows superiority in terms of compu-
tational time. It takes ANN-PSO less than 1min for 100
iterations of model convergence, while it takes ANN-GA
about 6min to do the same work.

3.4. Contributions and Sensibility Analysis of Each Input.
Contributions of inputs in the ANN-PSO models are cal-
culated in Figure 8. In the ANN-PSO modelling TN, the
indices range from 10.16% to 15.84% among parameters.
Influent turbidity makes the biggest contribution to TN
prediction. Although the ANN model is often regarded as a
black box, lacking a direct mechanism to demystify the
interrelationship between neurons, the contribution results
strongly suggests that inputs like influent turbidity play
more important roles than others in the ANN-PSO mod-
elling TN [32, 46]. While, in the ANN-PSO modelling COD,
the contributions of inputs range from 6.43% to 15.00%.
Inputs like effluent conductivity and pH significantly par-
ticipate in the COD prediction.

Morris screening is used to identify the sensibility of each
input for ANN-PSO models (Table 7) [33]. Accordingly, the
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Table 6: Error analysis about ANN, ANN-GA, and ANN-PSO.

Model Input parameters Predicted
parameters R 2 RMSE MAPE NSEC

ANN

Influent pH,
effluent pH,
influent

conductivity,
effluent

conductivity,
influent turbidity,
effluent turbidity,
influent NH3-N,
effluent NH3-N.

Effluent TN
0.84 for training; 11.40 for training 18.99% for training; 0.95 for training;

0.85 for
validation

13.49 for
validation

19.93% for
validation

0.95 for
validation

Effluent COD
0.81 for training; 30.88 for training; 45.42% for training; 0.80 for training;

0.82 for
validation

30.00 for
validation

24.54% for
validation

0.80 for
validation

ANN-GA

Effluent TN
0.90 for training; 9.42 for training; 14.90% for training; 0.97 for training;

0.84 for
validation

13.56 for
validation

20.09% for
validation

0.95 for
validation

Effluent COD
0.76 for training; 34.31 for training; 53.92% for training; 0.76 for training;

0.85 for
validation

26.25 for
validation

26.91% for
validation

0.84 for
validation

ANN-
PSO

Effluent TN
0.90 for training; 9.14 for training; 16.19% for training; 0.97 for training;

0.90 for
validation

11.54 for
validation

16.79% for
validation

0.97 for
validation

Effluent COD
0.90 for training; 22.10 for training; 34.57% for training; 0.90 for training;

0.85 for
validation

26.57 for
validation

22.30% for
validation

0.84 for
validation
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sensibility index (μi) higher than 1 implies that the outcomes
of the model exhibit more drastic changes than the corre-
sponding changes of inputs. -erefore, in the ANN-PSO
modelling TN, only effluent and influent pH cause larger
change to the model. While, in the ANN-PSO modelling
COD, not only effluent and influent pH, but also influent
and effluent conductivity yield μi higher than 1. -e sen-
sibility results show that, in both two models, effluent and
influent pH are the most sensible inputs, the second most
sensible inputs are influent and effluent conductivity and
NH3-N, the less sensible inputs are effluent and influent
turbidity.

3.5.Advantages, Limitations, andRecommendation forFuture
Works. Table 8 summarizes some previous successful
studies. By comparison, R2 of the two ANN-PSO models in
this study (0.85 to 0.90) are at a similar level to that in the
previous studies (about 0.70 to 0.99). One shortcoming of
this study lies in our relatively high RMSE. -e sharp
fluctuation of TN and COD cannot be ignored for this issue.
For example, effluent COD mostly fluctuated within 10 to
60mg/L in the study of Luo et al. [23]. In contrast, the range
is magnified to 3–335mg/L in this study. Great heteroge-
neity among these terminals will inevitably introduce new
errors into the models and make the models slightly lose
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Figure 8: Contribution analysis of ANN-PSO in modelling TN and COD.

Table 7: Sensibility analysis of ANN-PSO in the modelling of TN and COD.

TN Upper 10% Lower 10% Rank
e_pH 3.08 4.49 1
i_PHi 2.34 2.71 2
i_Con 0.64 0.65 3
e_Con 0.58 0.65 4
e_NH3 0.41 0.38 5
i_NH3 0.33 0.29 6
e_Tur 0.28 0.14 7
i_Tur 0.1 0.1 8
COD
e_pH 5.57 6.17 1
i_PHi 3.01 2.68 2
i_Con 1.33 1.45 3
e_Con 1.18 1.18 4
i_NH3 0.57 0.56 5
e_NH3 0.41 0.38 6
e_Tur 0.35 0.35 7
i_Tur 0.11 0.11 8
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their edges in precision. However, compared with previous
studies, two ANN-PSO models in this study are both
available for different terminals and do not require historical
data from terminals, which obviously save a lot of time and
energy and be more practical even at the cost of sacrificing
certain degree of precision. Another special advantage of this
study is that the inputs are easier to be obtained and can all
be measured by electrodes (NH3-N was measured by

traditional chemical methods in this study, but it can be also
measured by using the ammonia gas sensing electrode [52]).

Based on the above findings, this study has the following
two recommendations for future works: 1. As shown in
Figure 9, use electrodes to collect input data and realize
remote online prediction of effluent water quality based on
ANN-PSO, which has not been done before. 2. Since bio-
logical treatment is greatly influenced by procedure

Table 8: ANN application cases in the previous works.

Application
scenario Model Input parameters Predicted

parameters R 2 Error Authors

WWTP Adaptive neuro fuzzy
inference system

Influent pH, influent
temperature, influent SS, and

influent COD.

Effluent SS
0.88 for

training; 0.89
for validation

1.87 for training;
0.71 for

validation∗∗

[34]Effluent COD
0.79 for

training; 0.83
for validation

3.83 for training;
2.47 for

validation∗∗

Effluent pH
0.93 for

training; 0.93
for validation

0.07 for training;
0.05 for

validation∗∗∗∗

Fenton reactor Artificial neural
network

Reaction time, pH, antibiotic
concentration, H2O2, etc

COD
removal
efficiency

0.997 0.000376∗ [47]

WWTP

Artificial neural
network-feed
forward back
propagation

COD, BOD, TSS COD

0.93 for
training; — [48]0.86 for
validation

Anoxic/oxic
reactor

Artificial neural
network Influent COD, reflux ratio,

carbon-nitrogen ratio Effluent COD

0.98596 2.82∗

[49]Artificial neural
network-genetic

algorithm
0.99476 1.12∗

-e upflow
anaerobic filter
reactor

Multilayer
perceptron neural

network Influent chemical oxygen
demand, hydraulic retention
time, and influent cyanide

concentration

Effluent COD

0.983 for
training; 0.876
for validation

104.75 for training;
98.35 for

validation∗∗

[31]Radial basis neural
network

0.995 for
training; 0.708
for validation

56.81 for training,
157.95 for
validation∗∗

Regression neural
network

0.951 for
training; 0.751
for validation

175.19 for training,
140.51 for
validation∗∗

Lakes Artificial neural
network NH4-N, secchi depth TN

0.72 for
training, 0.69
for validation

0.15 for training,
0.14 for

validation∗∗
[50]

Partial-
nitritation/
anammox
reactor

Back propagation
artificial neural

network

Influent NO3-, NO2-, pH and
enfluent NO3-, NO2-,

TN removal
efficiency 0.889 0.091∗ [51]

WWTP

Fuzzy rough-back
propagation

Return ratio, sludge volume,
MLSS,
DO, Q

(flow), effluent suspended
solid,

influent TP, influent TN,
influent COD,

influent ammonia
concentraion.

Effluent COD 0.921 2.86∗∗

[23]

Effluent TN 0.882 1.35∗∗
Principal component

analysis-back
propagation

Effluent COD 0.886 3.15∗∗

Effluent TN 0.862 1.52∗∗

Back propagation-
neural networks

Effluent COD 0.813 3.46∗∗

Effluent TN 0.822 1.97 ∗∗

In the error column, numbers with one asterisks is MSE, and numbers with two asterisks is RMSE.
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variables, like DO of aerobic tank [5], future studies can try
to use some procedure variables as inputs for the im-
provement of model accuracy.

4. Conclusion

Complicated influent situation and unsatisfying treatment
performance of large numbers of rural domestic sewage
terminals highlight the urgent need to find a quicker and
simpler effluent measurement. Significant correlations are
found between some easily detectable parameters (e.g.,
conductivity and turbidity) and effluent TN and COD, which
triggers the idea of using these easily detectable parameters as
inputs to predict effluent TN and COD in the ANN models.
-e results turn out that the ANN models can successfully
simulate the effluent TN and COD with R2 both higher than
0.8.-en, GA and PSO are used as two optimization strategies
to improve the ANN performance. By comparison, ANN-
PSO yields the better prediction capacity for both TN and
COD. R2 and RMSE of ANN-PSO on modelling TN are 0.90
and 9.14, respectively, in the training, 0.90 and 11.54, re-
spectively, in the validation. R2 and RMSE of ANN-PSO on
modelling COD are 0.90 and 22.10, respectively, in the
training, 0.85 and 26.57, respectively, in the validation.
Contribution analysis shows that influent turbidity and ef-
fluent conductivity make the biggest contribution to ANN-
PSO on modelling TN and COD, respectively. Sensibility
analysis shows that effluent and influent pH are the two most
sensible inputs for both two models. In the end, considering
that all inputs can be detected by the electrodes, this study also
proposes an ANN-PSO-based remote online water quality
monitoring approach.

Abbrevations

RDS: Rural domestic sewage
TN: Total nitrogen

ML: Machine learning
ANN: Artificial neural network
BP: Back propagation
GA: Genetic algorithm
PSO: Particle swarm optimization
RMSE: Root mean square error
MAPE: Mean absolute percentage error
NSEC: Nash sutcliffe efficiency coefficient.
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