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(is study addresses bifurcation analysis and controlling chaos in a vehicular electronic throttle. Using analysis techniques from
nonlinear dynamics of an electronic throttle system based on bifurcation diagrams, we establish the existence of period-doubling
and intermittency routes to chaos. (e largest Lyapunov exponent is estimated from the synchronization to identify periodic and
chaotic motions. Finally, the proposed continuous feedback control is employed to control chaos. To verify the effectiveness of the
raised control strategy, we present a number of numerical simulations.

1. Introduction

In a conventional automotive engine, the throttle pedal is
mechanically connected to the throttle body of the engine. In
modern fuel injection systems, the throttle body is an essential
part of the air intake system, controlling the flow of air into
the engine to effectively combust fuel in the pistons. (e
correct amount of air is vital: toomuch or too little means that
the engine cannot run smoothly [1]. (e linkage mechanism
between the throttle pedal and the throttle body can decrease
engine efficiency. To maintain fuel efficiency and abide by
emissions laws, fuel systems have been significantly changed
in recent years. Most importantly, the linkage mechanism has
been changed with an electronic module, widely known as an
electronic throttle [2–5]. In automotive design, there are
many advanced technologies of this concept which are in
application already or in exploitation such as steering-by-
wire, brake-by-wire, and throttle-by-wire [6].(e throttle-by-
wire involves a pedal sensor, electronic throttle body, and an
electronic control unit. Controlling the throttle valve opening
angle adjusts air inflow into the engine. According to the
demand of the engine, the amount of air flow will directly
affect the performance of engine [7]. In electronic throttle, the
throttle pedal is connected to the throttle body using a DC

motor, which can enhance both the driving performance and
fuel efficiency of the vehicle. (is has encouraged its wide
application in modern intelligent automobiles [8–11].
However, electronic throttle systems face two major prob-
lems: the nonlinear spring and the friction force in the valve
[12]. Because electronic throttle valve systems feature many
nonsmooth nonlinearities, the system is very hard to control
[13–15]. Several studies have investigated nonlinear control
for electronic throttle systems [16–20], which are typically
depicted by a nonlinear dynamical system [13, 17]. Modifying
one of these parameters alters the dynamics that exhibit chaos
motion, leading to instability of engine running. Chaos
appearing in electronic throttle systemmay lead to instability,
resulting in engine misfire or incomplete combustion [21].
Modern nonlinear dynamics of bifurcation and chaos are
widely employed in the research of nonlinear systems and
many of these consider chaos dynamics in electronic throttle
systems [22–24]. (e initial condition sensitivity is one of the
most important features of the chaotic system, and some
related references about multistability and coexisting
attractors are studied in recent years [25–28].

In this study, we employed numerical simulations such
as bifurcation diagrams and Lyapunov exponents to indicate
periodic and chaotic motions. (e Lyapunov exponent can

Hindawi
Mathematical Problems in Engineering
Volume 2021, Article ID 5286043, 14 pages
https://doi.org/10.1155/2021/5286043

mailto:changsc@mail.dyu.edu.tw
https://orcid.org/0000-0002-7683-2319
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/5286043


be adopted to judge whether a system is in chaotic motion.
(e algorithms of Lyapunov exponents for smooth dynamic
systems are well developed [29, 30]. However, there are some
nonsmooth dynamic systems, such as dry friction and
saturation, to which this algorithm cannot be applied di-
rectly. Several approaches are employed to calculate the
largest Lyapunov exponents for nonsmooth dynamic sys-
tems [31–34]. In this paper, we employ the estimation
scheme [31] for calculating the largest Lyapunov exponent of
the electronic throttle system.

(e dynamics of an electronic throttle system become
unstable when it exhibits chaotic motion. Several practical
engineering problems require control techniques to trans-
form chaos into stable periodic motions. Various chaos
control approaches have been proposed [36–41]. Improving
the performance of an electronic throttle system necessitates
transformation of chaotic motion into a steady-state peri-
odic orbit. (e purpose of transformation of chaos into a
periodic motion is to raise the performance of an electronic
throttle system. Our approach is based on the synchroni-
zation recommended by Kapitaniak [38] and Pyragas [39].
Numerical simulations confirm the effectiveness of the
proposed procedure. Finally, adoption of Lyapunov stability
theories guarantees the global stability of the nonlinear error
system [42–44].

(e paper is arranged as follows. Sections 2 and 3 de-
scribe the proposed model as well as the rich dynamics of an
electronic throttle system. (ey are described employing
numerical simulation methods. Section 4 explains the
Lyapunov exponent used to decide whether the system
exhibits chaos. A synchronization technique for chaos
control in an electronic throttle system is presented in
Section 5. (e robustness of parametric perturbation in an
electronic throttle system with synchronization control is
depicted in Section 6. Conclusions and recommendations
are listed in Section 7.

2. Problem Formulation

An outline of an electronic throttle system is presented in
Figure 1, which is a mechatronic device. Because the DC
motor is an acuter, it transmits torque to throttle shaft to
control the air flow into the intake manifold [13].

(e motor drive torque Tm is directly proportional to the
current, which can be represented as follows:

Tm � kmi(t), (1)

where km is the motor torque coefficient.
(e electrical device is modeled by induction L, resis-

tance R, and an electromotive force E � kvωm induced by
rotation of the motor angle, where kv is the motor counter
electromotive coefficient and ωm is the angular velocity of
the motor rotor. (e DC armature circuit equation is de-
scribed as follows:

L
di

dt
+ Ri � u(t) − kvωm(t), (2)

where u(t) is the applied voltage.

(e nonlinear torque of the return spring can be de-
scribed as follows:

Ts � ks θ − θ0( 􏼁 + Dsgn θ − θ0( 􏼁, (3)

where ks is the spring coefficient, D is the spring compen-
sation coefficient, θ is the throttle angle, and θ0 is the initial
throttle position (the so-called “limp-home” position).

Nonlinear friction torque is given by

Tf � kdω(t) + kfsgn(ω(t)), (4)

where kd is the viscous friction coefficient, kf is the Coulomb
friction coefficient, and ω is the throttle valve angular
velocity.

If total inertia is J, according to equations (1)–(4), the
resulting nonlinear model for the electronic throttle system
is

J
dω
dt

� Tm − Ts − Tf􏽩 � km􏼂 i − ks θ − θ0( 􏼁 − Dsgn θ − θ0( 􏼁

− kdω(t) − Kfsgn(ω(t)),

(5a)

dθ
dt

� ω(t) � Nωm(t). (5b)

Taking into consideration equations (2)–(5) and
denoting the state variable x1 � θ − θ0, x2 �ω, and x3 � i, the
state-space equations of electronic throttle can be rewritten
as follows:

_x1 � x2, (6a)

_x2 � a21x1 + a22x2 + a23x3 − α1sgn x1( 􏼁 − α2sgn x2( 􏼁,

(6b)

_x3 � a32x2 + a33x3 + b3u(t), (6c)

where a21 � − (ks/J), a22 � − (kd/J), a23 � (km/J), α1 �

(D/J), α2 � (kf/J), a32 � − (kv/NL), a33 � − (R/L), b3 �

(1/L), and u � A0sin􏽥ωt.
For convenience, we first let ωn �

����
− a21

√ , Ω � (􏽥ω/ωn),
and τ � ωnt and then normalize equations (6a)–(6c) as
follows:

Return Spring

Pinion
Gear

DC MotorDriver

Intermediate
Gear

Sector Gear

Position Sensor

Throttle Valve

u(t)

Figure 1: Outline of the electronic throttle system.
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dx1

dτ
� x2, (7a)

dx2

dτ
� x1 +

a22

ωn

x2 +
a23

ωn
2x3 −

α1
ωn

2 sgn x1( 􏼁 −
α2
ωn

2 sgn x2( 􏼁,

(7b)

dx3

dτ
�

a32

ωn

x2 +
a33

ωn

x3 +
b3

ωn

A0sin(Ωτ). (7c)

(e values of parameter for equation (7) are shown in
Table 1 [45].

3. Structures in Bifurcation Diagram of
Electronic Throttle System

We executed computer simulations based on equation (7) to
explain the entire dynamics of the electronic throttle system.
(e commercial package was applied to solve the ordinary
differential equation problems [46]. Here, initial conditions
(x1(0)� 0.01, x2(0)� − 0.002, and x3(0)� − 0.005) and time
step (4×10− 4) are used. Figure 2 clearly reveals that the first
period-doubling bifurcation occurred at aboutΩ� 1.619 and
that chaos arose belowΩ� 1.582. In order to detect period or
chaos, we select a cross section 􏽐, where the flow “W” must
be transverse to 􏽐. For point (Xi, Yi ) ∈ 􏽐

​ , let t0 be the time
of next return to 􏽐. (e map

P
t0 Xi, Yi( 􏼁 � Xi+1, Yi+1( 􏼁, (8)

is the Poincaré map, as shown in Figure 3.
Figures 4–8 list the various dynamics displayed by this

system in detail. Figures 4(a)–4(c) show the period-1 orbit
withΩ> 1.619. Also, Figures 5(a)–5(c) show a period-2 orbit
atΩ� 1.595. (e first period-4 bifurcation occurred whenΩ
fell below 1.588. Figures 6(a)–6(c) show a period-4 orbit at
Ω� 1.586. (e route to chaos via period-doubling bifurca-
tions is obtained in Figure 2, resulting in a chatter that could
create unstable behaviors, leading to incomplete combustion
and eventually reducing engine performance. Strange
attractors and continuous broad spectra are powerful in-
dicators of chaos motion. Figures 7 and 8 reveal these
characteristics of chaotic behavior.

4. Analysis of Chaotic Vibration Phenomena in
Electronic Throttle System

(e largest Lyapunov exponent is a powerful diagnostic
technique for analysis of chaos. Any bounded motion in a
system containing at least one positive Lyapunov exponent is
defined as chaotic, and nonpositive Lyapunov exponents
indicate periodic motion. In this paper, we estimated the
largest Lyapunov exponent to verify the occurrence of chaos
in an electronic throttle system. An easy method for esti-
mating the largest Lyapunov exponent based on synchro-
nization is recommended by Stefanski [31]. (is way is
described briefly as follows.

We consider a dynamic system comprising two identical
n-dimensional subsystems:

(i) A drive system:

_x � f(x). (9)

(ii) A response system:

_y � f(y). (10)

(e response system (10) is combined with coupling
coefficient d, and the drive system (9) remains the same.
(erefore, the first-order differential equations can be re-
written as follows:

_x � f(x),

_y � f(y) + d(x − y).
(11)

(e qualification of synchronization is described in the
following inequality:

d> λmax. (12)

(e least value of coupling coefficient d in synchroni-
zation ds is estimated to be equal to the largest Lyapunov
exponent as follows:

ds � λmax. (13)

We can apply equations (7) and (11) to create the fol-
lowing augmented system:

dx1

dτ
� x2, (14a)

dx2

dτ
� x1 +

a22

ωn

x2 +
a23

ωn
2x3 −

α1
ωn

2 sgn x1( 􏼁 −
α2
ωn

2 sgn x2( 􏼁,

(14b)

dx3

dτ
�

a32

ωn

x2 +
a33

ωn

x3 +
b3
ωn

A0sin(Ωτ), (14c)

dy1

dτ
� y2 + d x1 − y1( 􏼁, (14d)

dy2

dτ
� y1 +

a22

ωn

y2 +
a23

ωn
2y3 −

α1
ωn

2 sgn y1( 􏼁 −
α2
ωn

2 sgn y2( 􏼁

+ d x2 − y2( 􏼁,

(14e)

Table 1: Parameter values for the simplified model.

Symbol Parameter values
a21 − 1.6801 × 103
a22 − 32.9820
a23 4.2941 × 103
a32 − 11.6039
a33 − 5.2087 × 102
α1 4.6139 × 103
α2 2.1073 × 103
b3 4.7438 × 102
A0 3.0
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dy3

dτ
�

a32

ωn

y2 +
a33

ωn

y3 +
b3

ωn

A0sin(Ωτ) + d x3 − y3( 􏼁. (14f)

We estimate the largest Lyapunov exponent in accor-
dance with the above method. Figure 9 presents the esti-
mated results. At T3, the sign of the largest Lyapunov
exponent changed from negative to positive as Ω slowly
decreased. At T1-2, the largest Lyapunov exponents became
close to zero, beyond which the system could suffer bifur-
cation. (e types of bifurcation have been described in the
bifurcation diagram as presented in Figure 2. In a com-
parison of Figures 2 and 9, period-2 bifurcation is found at
T1 and period-4 bifurcation is found at T2. All of the largest
Lyapunov exponents are positive at Ω< 1.582, representing
chaotic motion.

5. Suppressing Chaos
Based on Synchronization

Improving the performance of a dynamic system necessi-
tates conversion of chaotic motion to a stable periodic orbit.
Kapitaniak [38] and Pyragas [39] have proposed a simple

and effective control method based on synchronization.(is
method relates the construction of a feedback in conjunction
with a specific time-continuous perturbation. Figure 10
presents the feedback-controlled with an external periodic
perturbation.

(e method is described slightly as follows.
Consider the following n-dimensional systems:

_p � A(p), (15)

_q � B(q) + F(t), (16)

where p(t), q(t) ∈ Rn expresses the state vector and F(t) is
the input signal. Consider equation (16) exhibits chaos
motion (F(t)� 0) and equation (15) shows periodic motion.
A periodic system is expressed as the drive system, whereas a
chaotic system is denoted as the response system. (e block
diagram of control strategy is presented in Figure 10. (e
difference between signals q(t) and p(t) is adopted as the
control signal as follows:

F(t) � K[q(t) − p(t)], (17)

where K denotes the feedback gain.

W P0

P1
P2

P3

Y

X

∑

Figure 3: Illustration of a Poincaré section.
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When Ω1 � 1.63 in the drive system, equation (18) re-
veals period-1 motion:

dp1

dτ
� p2, (18a)

dp2

dτ
� p1 +

a22

ωn

p2 +
a23

ωn
2p3 −

α1
ωn

2 sgn p1( 􏼁 −
α2
ωn

2 sgn p2( 􏼁, (18b)

dp3

dτ
�

a32

ωn

p2 +
a33

ωn

p3 +
b3

ωn

A0sin Ω1τ( 􏼁. (18c)

When Ω2 �1.542 in the response system, equation (19)
suffers chaotic motion:

dq1
dτ

� q2, (19a)

dq2
dτ

� q1 +
a22

ωn

q2 +
a23

ωn
2q3 −

α1
ωn

2 sgn q1( 􏼁 −
α2
ωn

2 sgn q2( 􏼁,

(19b)

dq3

dτ
�

a32

ωn

q2 +
a33

ωn

q3 +
b3

ωn

A0sin Ω2τ( 􏼁. (19c)

We introduced the control signal represented by
equation (17) to equations (19a)− (19c) to synchronize
equations (18) and (19). (is yields the following coupled
system:

dq1

dτ
� q2 + K q1 − p1( 􏼁, (20a)

dq2
dτ

� q1 +
a22

ωn

q2 +
a23

ωn
2q3 −

α1
ωn

2 sgn q1( 􏼁

−
α2
ωn

2 sgn q2( 􏼁 + K q2 − p2( 􏼁,

(20b)

dq3
dτ

�
a32

ωn

q2 +
a33

ωn

q3 +
b3
ωn

A0sin Ω2τ( 􏼁 + K q3 − p3( 􏼁.

(20c)

Figure 11 expresses the bifurcation diagram, which
clearly describes the dynamics of the system over a range of
feedback gains. Specifically, chaos occurs in the region be-
tween K� 0 and K� − 1.0, while period-1 occurs when K
decreases below − 1.0. When K< − 1.0, equation (20) displays
period-1 motion; that is, synchronization was achieved by a
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Figure 4: Period-1 motion at Ω� 1.64: (a) time histories, (b) phase portraits, (c) Poincaré maps, and (d) power spectra.
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control signal with K< − 1.0. Transforming chaotic motion
into period-1 for K� − 2.0 and Ω� 1.542 with synchroni-
zation control signal is introduced. Figure 12(a) plots the
time histories of displacement in which the synchronization
control signal is added after 60 s, Figure 12(b) reveals the
phase portrait of the controlled system, and Figure 12(c)
indicates the Poincaré map of the controlled system. Fig-
ure 13 shows the synchronization errors: e1 � q1 − p1 and
e2 � q2 − p2. Zero synchronization errors indicate that syn-
chronization has been achieved. (is means that the control
signal has successfully controlled chaotic motion to periodic
orbit, thereby improving the chatter of the electronic throttle
system. Obviously, the high-quality performance of the

electronic throttle system could lead to improve vehicle
drivability and fuel economy.

6. Study of Parametric Perturbations in
Electronic Throttle System

We try to comprehend the effects of parameter errors on the
performance of the synchronization control by adding a
sinusoidal perturbation directly to parameters
a22, a23, α1, α2, a32, a33, and b3 in the drive system. If we
assume that equation (18) denotes the drive system, then the
corresponding controlled response system is as follows:

_z1 � z2 + u1, (21a)

_z2 � z1 +
a22(1 + ε sin(ωt))

ωn

z2 +
a23(1 + ε sin(ωt))

ωn
2 z3 −

α1(1 + ε sin(ωt))

ωn
2 sgn z1( 􏼁 −

α2(1 + ε sin(ωt))

ωn
2 sgn z2( 􏼁 + u2,

(21b)
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Figure 5: Period-2 motion at Ω� 1.595: (a) time histories, (b) phase portraits, (c) Poincaré maps, and (d) power spectra.
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_z3 �
a32(1 + ε sin(ωt))

ωn

z2 +
a33(1 + ε sin(ωt))

ωn

z3 +
b3(1 + ε sin(ωt))

ωn

A0sin Ω1τ( 􏼁 + u3, (21c)

where ε is the amplitude of the perturbation and ω is the
angular frequency.

Subtracting equation (18) from equations (21a)− (21c) we
get the error equation as follows:

_e1 � e2 + u1, (22a)

_e2 � e1 +
a22ε sin(ωt)

ωn

e2 +
a23ε sin(ωt)

ωn
2 e3 −

α1εsin(ωt)

ωn
2 sgn e1( 􏼁 −

α2ε sin(ωt)

ωn
2 sgn e2( 􏼁 + u2, (22b)

_e3 �
a32ε sin(ωt)

ωn

e2 +
a33ε sin(ωt)

ωn

e3 +
b3εsin(ωt)

ωn

A0sin Ω1τ( 􏼁 + u3, (22c)

where e1 � z1 − p1, e2 � z2 − p2, and e3 � z3 − p3.
Considering a Lyapunov function of equation (22), we

obtain the following:

V(e) �
1
2
e

T
e. (23)

(e first derivative of V(e) can be obtained as follows:

_V(e) � e1 _e1 + e2 _e2 + e3 _e3. (24)

(erefore, if we select
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Figure 6: Period-4 motion at Ω� 1.586: (a) time histories, (b) phase portraits, (c) Poincaré maps, and (d) power spectra.
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u1 � − e1 − e2, (25a)

u2 � − e1 − e2 −
a22ε sin(ωt)

ωn

e2 −
a23ε sin(ωt)

ωn
2 e3 +

α1ε sin(ωt)
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2 sgn e1( 􏼁 +

α2ε sin(ωt)

ωn
2 sgn e2( 􏼁, (25b)
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Figure 8: Chaotic motion at Ω� 1.548: (a) time histories, (b) phase portraits, (c) Poincaré maps, and (d) power spectra.
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Figure 11: Bifurcation diagram of throttle valve angle against K for the electronic throttle system with synchronization.

1262 1264 1266 1268 1270 1272 1274 1276 12781260
Time (sec)

-3

-2

-1

0

A
ng

le
 (r

ad
)

(a)

-2 -1 0-3
Angle (rad)

-1

-0.5

0

0.5
A

ng
le

 V
elo

ci
ty

 (r
ad

/s
)

(b)

-0.01

-0.005

0

0.005

0.01

A
ng

le
 V

elo
ci

ty
 (r

ad
/s

)

-0.005 0 0.01-0.01 0.005
Angle (rad)

(c)
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Figure 13: Synchronization errors at K� − 2.0.
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Figure 14: Dynamic errors of synchronization for drive and response systems: (a) e1 � z1 − x1, (b) e2 � z2 − x2, and (c) e3 � z3 − x3.
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states of the controlled response and drive systems are
synchronized globally and asymptotically [47].

We evaluated these theoretical results using simulations
with perturbation parameters: ε� 0.01 and ω �125.6 rad/s.
Figures 14(a)–14(c) present dynamics of synchronization
errors, for example, e1 � z1 − p1, e2 � z2 − p2, and e3 � z3 − p3.
(e synchronization error eventually approaches to zero,
resulting in stabilization of the error system. In other words,
the proposed control method is robust to parameter mis-
match in the electronic throttle system. Figure 15 illustrates
the effects of parametric perturbation. (erefore, if chaos is
converted into period-1, then feedback gain would be picked
to the region K≤ − 1.0. Again, the proposed control method
was shown to suppress chaos under these perturbed pa-
rameters (e.g., a22, a23, α1, α2, a32, a33, and b3) using
equation (18).

7. Conclusions

(is study examined rich nonlinear dynamics and developed
a valid approach for controlling chaos in an electronic
throttle system. (e bifurcation diagram showed many
nonlinear dynamics, indicating that the electronic throttle
system appeared chaos under lower Ω. We adopt numerical
simulations, such as phase portraits, Poincaré maps, and
frequency spectra, to explore the nonlinear dynamics of the
system in detail. (e Lyapunov exponent is a strong analysis
tool for determining whether an electronic throttle system
exhibits chaotic motion. We estimated the largest Lyapunov
exponent based on synchronization properties. (en, we
applied a continuous feedback control method based on
synchronization to control chaos and prevent chatter phe-
nomena of the electronic throttle system.

Other many chaos control methods have been derived,
such as synchronization, feedback control, neuro-fuzzy
control, and adaptive control. In this study, a continuous
feedback control method based on synchronization was
adopted to control the chaos of an electronic throttle system.
(e effectiveness of the proposed chaos control method was

verified by numerical simulations. In general, it is found that
compared with other chaos control methods, the synchro-
nization control strategy is simple and easy to control chaos.
Finally, we adopt bifurcation diagram and Lyapunov sta-
bility theory to reveal the robustness of parametric per-
turbation in an electronic throttle system under
synchronization control. We believe that an in-depth un-
derstanding of the nonlinear dynamics and chaos control for
an electronic throttle system will help to promote intelligent
vehicles.
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