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Radar Emitter Individual Identification is a key technology in modern electronic radar systems. )is paper will focus on Radar
Emitter Individual Identification (REII). Based on the advantages of Empirical Mode Decomposition (EMD) and bispectrum in
signal processing, we propose an REII method based on the CNN. Firstly, the radar emitter signal is preprocessed. Secondly, the
Hilbert–Huang Transform (HHT) spectrum and bispectrum are combined to form an image of the signal. Finally, in order to
avoid loss of information and achieve the potential identification performance improvement, the signal image obtained is
identified by the optimized CNN. Experimental results based on the measured signals show that the proposed method has high
identification accuracy and is capable of meeting real-time identification requirements. )e deep-learning-based identification
method proposed in this paper has strong generalization ability and adaptability, which provides a new way for REII.

1. Introduction

In recent years, the fifth-generation mobile communication
system (5G) has become a hot topic for discussion in the
communications industry and academia. System interfer-
ence in ultradense networks will severely reduce spectrum
efficiency [1]. Spectrum sharing and unlicensed wireless
networks associate technologies to address the smart
spectrum sharing for 5G and affordable networks [2]. 5G has
increased the development of high-frequency technology to
solve the problem of insufficient supply of low-frequency to
a certain extent. On the other hand, 5G relies on many base
stations and lays enough antennas to make the network
coverage area widely covered, allowing dense networks to
work together, enhancing the strength of information sig-
nals, and ensuring the reliability of the information trans-
mission process [3].

High-density networking and the use of high-frequency
technology have led to an increasingly complex electro-
magnetic environment. With the upgrading of intelligence
and automation of electronic reconnaissance technology, a

radar emitter signal waveform turns to be changing rapidly
with massive parameters, and features are more concealed,
which brings new difficulties and challenges to REII [4].

In order to achieve good identification performance, it is
necessary to extract fingerprint features that can effectively
reflect the subtle differences of tremendous devices [5]. )is
kind of differences is usually caused by unintentional
modulation. )e time-frequency analysis method has im-
portant applications in signal processing, including Short-
Time Fourier Transform (STFT) [6, 7], Wigner–Ville Dis-
tribution (WVD) [8], S Transform (ST) [9], Continuous
Wavelet Transform (CWT) [10], EMD [11], and so on.
Hayaparan et al. [12] pointed out that the time-frequency
characteristics of signals can be uniquely identified.
Extracting signal fingerprint features from time-frequency
distributions is a current research hotspot [13]. )erefore,
this paper uses the extracted unique fingerprint features for
identification. EMD has strong adaptability, and the ob-
tained time-frequency map has a high resolution, which is
suitable for processing nonstationary signals such as radar
emitter signals. )erefore, this paper uses EMD to process
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nonstationary signals such as radar transmitters. Bispectrum
can retain phase information, suppress Gaussian noise, and
is widely used in signal fingerprint feature extraction
[14, 15].)erefore, this paper uses the bispectral information
of the signal as the fingerprint feature for signal unique
identification. Generally, the computational complexity of
bispectrum is high, so the integral bispectrum method is
often used for dimensionality reduction, including RIB [16],
AIB [17], CIB [18], and SIB [19]. Besides, the bispectral slice
features can also be utilized as fingerprint features [20, 21].
Zhang et al. [22] investigate the specific emitter identifica-
tion (SEI) problem, and three algorithms based on the
Hilbert spectrum are proposed. Current identification
methods often require manual design features, and feature
engineering is complex and uncertain, resulting in poor
generalization ability and adaptability. An improved
quantum evolutionary algorithm (QEA) based on the niche
coevolution strategy and enhanced particle swarm optimi-
zation (PSO), namely, IPOQEA [23], is designed. An
IPOQEA-based gate allocation method is proposed to al-
locate the flights to suitable gates within different periods,
which has better optimization ability in solving a gate al-
location problem. For complex optimization problems, in
the EMMSIQDE [24], a new differential mutation strategy of
a difference vector is proposed to enhance the search ability
and descent ability. )en, a new multipopulation mutation
evolution mechanism is designed to ensure the relative
independence of each subpopulation and the population
diversity. A new optimal mutation strategy based on the
complementary advantages of five mutation strategies is
designed to develop a novel improved DE algorithmwith the
wavelet basis function, named WMSDE, which can improve
the search quality, accelerate convergence, and avoid fall into
local optimum and stagnation [25]. To avoid premature
convergence and improve the global search ability, an im-
proved quantum-inspired differential evolution (MSIQDE),
namely, MSIQDE algorithm, based on making use of the
merits of the Mexh wavelet function, standard normal
distribution, adaptive quantum state update, and quantum
nongate mutation is proposed [26].

)e main aim of this paper is to propose an REII method
based on the CNN by taking the advantages of EMD and
bispectrum. First, preprocessing prepares the proper data
sequence. Secondly, we combine the Hilbert–Huang
Transform (HHT) spectrum and bispectrum to obtain the
signal image.)en, we optimize the CNN algorithm. Finally,
the simulation proves that our proposed method achieves
outstanding performance for REII.

2. Emitter Individual Identification Method

In this section, we introduce the REII method based on the
CNN. )e method’s block diagram is presented in Figure 1.
)e signal is preprocessed first, then in order to avoid loss of
information and achieve the potential identification per-
formance improvement, the transformed spectral data are
directly input to the CNN, the CNN is optimized accord-
ingly, and finally, the identification result is obtained.

2.1.Preprocessing. To avoid the influence of signal amplitude
on identification, the received radar emitter signal data need
to be normalized. For the original signal sequence x(t), we
find its maximum value maxx(t) and is its minimum value
minx(t), and then, the normalization formula is as follows:

xn(t) �
x(t) − maxx(t)

maxx(t) − minx(t)

. (1)

2.2. HHT. )e fundamental of HHT consists of the em-
pirical mode decomposition (EMD) and Hilbert spectrum
analysis. )e former is a sifting process to decompose any
signal into an infinite set of intrinsic mode function (IMF),
while the latter offers the time-frequency distribution, re-
ferred to as the Hilbert spectrum, by performing the Hilbert
transform on each IMF [22]. We propose an REII method
based on the CNN, and the HHT spectrum and bispectrum
are combined to form an image of the signal.

)e core algorithm of HHT is EMD, and the goal of
EMD is to obtain an Intrinsic Mode Function (IMF). )e
steps are as follows:

(1) )e upper and lower envelopes bmax(t) and bmin(t)

are obtained by fitting the extreme points of the
normalized sequence xn(t), and their average value
is

a1(t) �
bmax(t) + bmin(t)

2
. (2)

(2) a1(t) is subtracted from the data sequence:

p1(t) � xn(t) − a1(t). (3)

Whether p1(t) meets the requirements of the IMF is
determined [8]. If so, it is regarded as the first IMF
component; otherwise, we go to step 3.

(3) With p1(t) as the new initial data, steps 1 and 2 are
repeated until the requirements of IMF are met.
After looping k times, the expression is as follows:

p1k(t) � p1(k−1)(t) − a1k(t). (4)

(4) After the first screening, the first IMF obtained was
separated:

d1(t) � xn(t) − imf1(t). (5)

)en, d1(t) is used as the new initial data, and steps 1
to 4 are performed in a loop. After looping n times,
the expression is as follows:

dn(t) � dn−1(t) − imfn(t). (6)

(5) HHT time-frequency spectrum can be obtained by
performing Hilbert transform on each IMF. As-
suming that Ri(f, t)(i � 1, 2, . . . , n) is obtained after
each IMF is transformed, the HHT spectrum ex-
pression is as follows:
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TF(f, t) � 􏽘
n

i�1
Ri(f, t). (7)

2.3. Bispectral Transform. In the higher-order spectrum,
bispectrum has the lowest order, so it has the lowest
complexity and strong practicability.

Let f(x1, x2, . . . , xk) be the joint probability density
function of the continuous random variable x1, x2, . . . , xk,
and the first joint feature function is defined as

Φ w1, w2, . . . , wk( 􏼁 � E e
j w1x1+w2x2+···+wkxk( )􏼚 􏼛,

� 􏽚

+∞

−∞

· · · 􏽚

+∞

−∞

f x1, x2, . . . , xk( 􏼁

e
j w1x1+w2x2+···+wkxk( )dx1dx2 . . . dxk.

(8)

)e second joint feature function expression is

Ψ w1, w2, . . . , wk( 􏼁 � ln Φ w1, w2, . . . , wk( 􏼁. (9)

)en, we can get the r-th joint cumulant of x1 . . . xk,
r � r1 + r2 + · · · + rk:

cr � cum x
r1
1 ...x

rk

k􏼐 􏼑 � (−j)
rd

rΨ w1, w2, . . . , wk( 􏼁

dw
r1
1 . . . w

rk

k

|w1�···�wk�0.

(10)

Whenr1 � r2 � ... � rk � 1, the k-th order cumulant
expression of x1, x2, . . . , xk is as follows:

ck � cum x1 . . . xk( 􏼁 � (−j)
kd

k ln Φ w1 . . . wk( 􏼁

dw1 . . . wk

|w1�···�wk�0.

(11)

For continuous rand signals x(t), let x1 � x(t), . . . , xk �

x(t + τk−1). )en, the k-th order cumulant of x(t) is
expressed as

ckx τ1, τ2, ..., τk−1( 􏼁 � cum x(t), x t + τ1( 􏼁,􏼂

x t + τ2( 􏼁, . . . , x t + τk−1( 􏼁􏼃.
(12)

We take k� 3, if the following formula holds:

􏽘

∞

τ1�−∞
􏽐
∞

τ2�−∞
c3x τ1, τ2( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌<∞. (13)

)en, the bispectrum expression is as follows:

Bx ω1,ω2( 􏼁 � 􏽘
∞

τ1�−∞
􏽘

∞

τ2�−∞
c3x τ1, τ2( 􏼁e

− j ω1τ1+ω2τ2( ). (14)

2.4. CNN Optimization. REII is different from the tradi-
tional pattern recognition task. It has high requirements for
identification accuracy and real-time performance, and the
input is obviously different from ordinary image data.
)erefore, for the purpose of enhancing the network’s ability
to extract signal fingerprint features, improve identification
accuracy, and reduce identification time, it is necessary to
optimize the general CNN to better meet the practical ap-
plication needs.

2.4.1. Number of Convolutional Kernels. A type of con-
volutional kernel can extract a specific data pattern feature.
In traditional pattern-recognition tasks, multiple con-
volutional kernels are used to fully extract different pattern
features to improve accuracy. However, the composition
of the signal spectrum is relatively simple, and the number
of pattern features is relatively small. Using too many
convolutional kernels will increase network redundancy,
increase network scale, and bring negative effects.
)erefore, the number of convolutional kernels needs to be
optimized.

2.4.2. Convolutional Kernel Size and Convolutional Kernel
Step Size. Small convolutional kernels have fewer parame-
ters and lower computational complexity, but the signal
spectrum features are often sparser than ordinary image
features. It is difficult for small convolutional kernels to
completely extract sparse pattern features. Convolutional
kernel slides on data in certain step size. To avoid infor-
mation loss, the step size is usually smaller than the con-
volutional kernel size. A smaller convolutional kernel step
size can make the convolutional kernel scan the data more
fully, but it may also cause repeated calculation and fitting of
the noise distributed in the signal spectrum, which reduces

Radar emitter 
signal Preprocessing

Bispectral 
transform

HHT

Optimized 
CNN

Phase 
spectrum

Time-
frequency 
spectrum

Identification 
result

Figure 1: Block diagram of the proposed method.
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the generalization ability of the model and affects the
identification accuracy. )erefore, the size and step size of
the convolutional kernel need to be optimized.

2.4.3. Number of Convolutional Layers. )e increase of
depth is one of the important reasons why the performance
of deep learning models is superior to that of shallow
models. Generally, within a certain range, with the increase
in the number of layers, the network’s nonlinear expression
ability is enhanced, the features it extracts are more dis-
tinguished, and the pattern recognition performance is
better. However, the abstraction of signal spectrum data
features is at a low level, which makes deep networks un-
necessary. In addition, a deep network has high complexity
and low training efficiency, which affects the speed of rec-
ognition and model update.

3. Experiment and Result Analysis

)e measured signal data of three radar emitters are used in
this paper, each radar emitter has 500 signals, and the
modulation and working modes of the signals are the same.
In order to simplify the optimization process, a fixed net-
work layer connection structure is adopted, which in turn,
includes a convolutional layer, a batch normalization (BN)
layer [27], an activation layer, and a pooling layer. )e
introduction of the BN layer in the CNN can alleviate the
problem of gradient disappearance, speed up the training
speed, and reduce the manual parameter adjustment pro-
cess. At the same time, in order to facilitate parameter se-
lection, each layer of convolutional layers is set to contain the
same number of convolutional kernels, and the last part of
the network is a fully connected layer and a classification
output layer. )e size of the convolutional kernel is set to
3× 3, and the steps of the convolutional kernels are set to be
1 and 2, respectively. CNNs with different numbers of
convolutional layers and each layer with different numbers
of convolutional kernels are trained. )e trained optimal
model is used to identify the test set to achieve accuracy. )e
result is shown in Figure 2.

)e results in Figure 2 address that consistent with the
previous analysis, different parameter settings have a sig-
nificant impact on identification performance. When the
convolutional kernel step is 1, the model is easy to repeatedly
calculate and fit the noise distributed in the input spectrum,
which makes the generalization ability poor. )erefore, the
overall identification accuracy is low, and it fluctuates with
the number of convolutional kernels. When the convolu-
tional kernel step is 2, it can avoid the influence of the noise
to a certain extent and extract the signal fingerprint features
more efficiently.

)en, the convolutional kernel size is set to be 5× 5,
7× 7, and training and testing are performed under different
numbers of convolutional kernels and convolutional layers.
)e results are shown in Figures 3 and 4.

From the results mentioned above, we can draw the
following conclusions:

(1) When the convolutional kernel size, the convolu-
tional kernel step size, and the number of con-
volutional layers are fixed, the identification accuracy
increases with the number of convolutional kernels
and gradually stabilizes. )e increase in the number
of convolutional kernels can make the network ex-
tract the signal fingerprint features more fully, and
after the fingerprint features are fully extracted,
continuing to increase the convolutional kernel will
cause the network parameters to be redundant and
the identification accuracy will not be further
improved.

(2) In general, the identification performance is better
when the number of convolutional layers is 2 and the
convolutional kernel step size is 2. On this basis, an
increase in the number of convolutional layers will
lead to a decrease in feature dimension; an increase
in the convolutional kernel step size will lead to
insufficient feature extraction, and both cases will
lead to a decrease in identification performance.

(3) When the number of convolutional layers is 2 and
the convolutional kernel step size is 2, the identifi-
cation accuracy is relatively stable while being at a
high level, and the robustness to changes in the
number of convolutional kernels is strong, indicating
that the signal fingerprint feature extraction ability of
the network is strong, and the extracted signal fin-
gerprint feature dimension and abstraction level
reaches a good balance.

(4) When the number of convolutional layers is 2 and
the convolutional kernel step size is 2, the identifi-
cation performance of 5× 5 and 7× 7 convolutional
kernel networks is similar, and both are better than
3× 3 convolutional kernel networks. Among them,
when the convolutional kernel size is 5× 5 and the
number of convolution kernels is 14, the identifi-
cation accuracy is the highest, reaching 99.56%.

In summary, the optimized CNN parameters are set as
follows: the convolutional kernel is 5× 5, convolution kernel
step size is 2, number of convolutional layers is 2, and
number of convolutional kernels per layer is 14.

4. Performance Evaluation

In this section, we evaluate the performance of the proposed
method.)e complexity determines the training and prediction
time of the model. If the complexity is too high, it will lead to a
lot of time for model training and prediction, neither to quickly
verify ideas and improve the model, nor to achieve rapid
prediction. )e number of iterations trained in the CNNmodel
determines the time complexity of the algorithm.)erefore, this
section gives the curve of the loss, and accuracy of the optimal
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parameter CNN with the number of training iterations on the
test dataset is shown in Figure 5. )e relationship between
complexity and model performance is reflected. It can be seen
that as the number of iterations increases, the network loss
decreases and gradually converges; the accuracy gradually rises
and stabilizes at a high level. )is shows that, after sufficient
training, the CNNhas learned effective signal fingerprint pattern
features and can distinguish different radar emitter individuals
effectively.

)e signal preprocessing, HHTtransform, and bispectral
transform are comprehensively designed as a preprocessing

and transformation module (module 1), and the trained
CNNmodel is designed as an identification module (module
2). )e two modules are connected in series to form an
identification system. )e performance evaluation results of
the system are shown in Table 1.

Table 1 shows that the identification accuracy of radar
emitter individuals by the optimized CNN is as high as
99.56%. In terms of recognition speed, the computational
complexity of module 1 is relatively high and it takes a
relatively long time, while the computational complexity of
module 2 is relatively low and it takes less time. )e system
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takes only about 0.104 s to identify each signal, which can
meet the needs of practical applications.

We simulate the radars to send and receive the signal
with Python. Meanwhile, we collect real data from several
WLAN devices to optimize the simulation parameters.

In this simulation environment, we will control the
power of each device to send or receive the signal. )e

distance is fixed to ensure the results can be compared with
each other.

We also compete with the simulation program with
several hundred signals. After collecting the data from the
WLAN devices, we will adjust the signals’ parameters.

With the Monte Carlo method, the signals will be
recorded, and only the average value will be input into the
final CNN network.

)e simulation platform is Tensorflow with Intel i7-8700
four cores CPU, 512GB memory, and GeForce GTX 1080 Ti
Graphics Cards.

In order to further verify the effectiveness of the pro-
posed method, we compare it to other typical identification
methods, including the traditional SIB method, the method
proposed in [14, 15], and [21]. )e results are shown in
Table 2.
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Table 1: System performance evaluation results.

Signal number 450
Correct number 448
Identification accuracy 99.56%
Time consumed by module 1 46.32 s
Time consumed by module 2 0.30 s
Total time 46.62 s
Average time 0.104 s
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In Table 2, compared to the SIBmethod and the methods
in the references, the CNN-based identification method
proposed in this paper achieves a performance improvement
of more than 10%. In addition, the proposed identification
method has low computational complexity, strong gener-
alization ability, and adaptability and reduces the difficulty
and uncertainty of feature engineering, which validates the
effectiveness of deep-learning applications in REII.

5. Conclusions

In this paper, we propose an REII method based on the
CNN. )rough the analysis of HHT and bispectral theory,
combined with the advantages of deep-learning techniques,
a CNN-based REII method with stronger generalization
ability and adaptability is successfully implemented. )e
HHTspectrum and bispectrum are combined, and the signal
image obtained is identified by the optimized CNN to form
an image of the signal. )e comparative experimental results
based on the measured signal data and other typical iden-
tification methods show that the identification accuracy of
the proposed method is higher than 99%, and the compu-
tational complexity is low, which can meet the requirements
of practical applications.
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