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*e q-rung orthopair fuzzy sets and their hybrid models are capable of dealing with uncertain situations very effectively than the
theories of intuitionistic and Pythagorean fuzzy sets and thus have numerous decision-making applications in daily life, while the
fuzzy parameterized soft set theory has its impact on different decision-making scenarios. Motivated by these facts, in this research
article, these theories are combined to form a new structure named fuzzy parameterized q-rung orthopair fuzzy soft expert sets
(FPq ROFSESs) for dealing with more generalized information. *e developed model is an efficient extension of fuzzy pa-
rameterized intuitionistic fuzzy soft expert sets. Some of its basic notions, including subset, complement, OR operation, AND
operation, intersection, and union are studied and illustrated via examples. Moreover, to show the applicability and efficiency of
the developed model, two real-life applications are solved under the FPq ROFSES approach, which is supported by an algorithm,
the first application is about selecting an appropriate site for a cafe outlet, and the second application is about selecting the Best
News Channel for an award. At last, a comparison of the initiated model with some existing approaches is presented to verify its
advantages over them.

1. Introduction

Nowadays, a lot of researchers and scientists across the globe
keep on working to find the solutions to complexities and
situations unsolvable by traditional mathematical tools; for
example, crisp set theory is not capable of dealing with
different real-world problems concerning uncertainties in
various areas, including engineering, medicine, and artificial
intelligence. A solution to these problems emerged as the
notion of fuzzy sets initiated by Zadeh [1] in 1965. Instead of
normally declaring a belongingness degree (i.e., 1) or
a nonbelongingness degree (i.e., 0) of an element in the
classical set theory, fuzzy sets allow partial belongingness
degrees from the interval [0, 1] to be assigned to each ele-
ment, thus claiming its vague boundary scenario by
extending crisp set theory. *is powerful concept fills the
gaps in the previous traditional concepts allowing modeling
of and solution to many vague situations. Inspection of the

last few decades leads us to an important fact that the fuzzy
set model urged many scientists and experts to use and
extend this model for solving numerous uncertain problems.

In a fuzzy set, the nonbelongingness degree is dependent
on the belongingness degree and calculated as “1 minus
belongingness degree.” However, there come situations
where belongingness and nonbelongingness degrees may
vary from this criterion. To tackle this difficulty, Atanassov
[2] proposed intuitionistic fuzzy sets (IFSs) as an extension
to fuzzy sets by providing two degrees, i.e., the belongingness
degree αI and nonbelongingness degree βI for an element
with the constraint that 0≤ αI + βI ≤ 1. *us, it allows
dealing better with the uncertainties, e.g., a situation where
αI � 0.3 and βI � 0.6. But this model fails to deal with sit-
uations where belongingness and nonbelongingness degrees
sum up above unity. For this, Yager [3] initiated the concept
of Pythagorean fuzzy sets (PFSs) as a generalization of
IFSs, allowing higher applicability in two-dimensional
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uncertainties. *e belongingness degree αP and non-
belongingness degree βP are now conditioned with the
constraint 0≤ (αP)2 + (βP)2 ≤ 1. Due to their higher ability
to deal with uncertainties than IFSs, they have been utilized
widely in many decision-making situations. Later on, Sen-
apati and Yager [4] observed that in a particular situation
where a belongingness degree of 0.65 and a non-
belongingness degree of 0.85 are assigned to an element,
then (0.65)2 + (0.85)2 � 1.145≮1. Hence, PFSs fail to deal
with it. To deal with such situations, Senapati and Yager [4]
extended the PFSs to Fermatean fuzzy sets (FFSs) with the
condition 0≤ (αF)3 + (βF)3 ≤ 1.*us, this increased order of
uncertainties allows handling of the problems as discussed
above since (0.65)3 + (0.85)3 � 0.888≤ 1. Afterward,
Yager’s [5] contribution came in the form of q-rung
orthopair fuzzy sets (q-ROFSs) or generalized orthopair
fuzzy sets with the characteristic of the sum of the qth power
of belongingness and nonbelongingness values of elements
not beingmore than one.*e q-ROFSs are generally reduced
to IFSs, PFSs, and FFSs for q � 1, 2 and q � 3, respectively
(see Figure 1). Later, Shaheen et al. [6] briefly investigated
the reasons behind the construction of q-ROFSs. A number
of decision-making problems have been solved by using the
q-ROFS model [7–11].

All the models mentioned above have a common lim-
itation in that they fail to deal with situations considering
multiple parameters. To deal with this issue, Molodtsov [12]
initiated the concept of soft set theory that provides pa-
rameterization tools for handling uncertainties. Actually,
soft sets are modeled as parameterized families of sets, thus
giving a parameterized methodology for multiattribute
decision-making problems. Maji et al. [13] discussed some
properties and operations of soft sets. *e concepts of the
soft set model were naturally extended and combined with
other models by many experts to deal with uncertain sit-
uations. Some important models are fuzzy soft sets (FSSs)
[14] and intuitionistic FSSs [15]. *ese models fail to deal
with some practical situations. To overcome this difficulty,
Hamid et al. [16] generalized intuitionistic FSSs and pre-
sented the idea of a novel hybrid model called q-ROF soft
sets (q-ROFSSs).*ere is a deficiency in this model; that is, it
cannot deal with bipolar information. In order to handle this
issue, very recently, Ali et al. [17] presented a novel hybrid
multi-criteria decision-making (MCDM) model, namely,
q-ROF bipolar soft sets as a generalization of q-ROFSSs. In
addition, Alkan and Kahraman [18] proposed a q-rung
orthopair fuzzy TOPSIS method for the evaluation of
government strategies against the COVID-19 pandemic.

In the soft set model, elements are categorized with
respect to the parameters. However, it is seen that in most
cases, some parameters have more preferences over others,
and thus, higher degrees of less preferable parameter families
may affect the decisions. For this, fuzzy parameterized soft
sets were introduced by Aman and Enginoglu [19], where
fuzzy memberships are assigned to the parameters which
better demonstrate the weightage or the relative preferences
of the parameters. In addition, the same authors extended it
to fuzzy parameterized fuzzy soft sets (FPFSSs) [20]. *is
MCDM model fails to deal with data in an intuitionistic

fuzzy environment. *at is why more improvements and
extensions to this fruitful concept include intuitionistic fuzzy
parameterized soft sets (IFPSSs) [21], intuitionistic fuzzy
parameterized FSSs (IFPFSSs) [22], and intuitionistic fuzzy
parameterized intuitionistic FSSs (IFPIFSSs) [23, 24]. All the
mentioned above fuzzy parameterized soft models are not
suitable in the case of interval-valued representation of data
and information. To overcome this difficulty, recently, Aydın
and Enginolu [25] presented a more generalized model
called interval-valued intuitionistic fuzzy parameterized
interval-valued intuitionistic FSSs (IVIFP-IVIFSSs) and
solved a decision-making application.

Since themodels and their hybridization discussed above
have vital importance in handling uncertainties, one com-
mon restriction is that they deal with a single expert.
However, many situations require multiple experts opinions
or group decision-making. For instance, when dealing with
the selection of an admin manager in a company, the
committee of two or more people takes its judgments as
scores on questionnaires and finally declares who will be the
most suitable person. To deal with such scenarios, Alkha-
zaleh and Salleh [26] introduced soft expert sets (SESs),
which are capable of integrating the opinions of all experts in
one place and hence are extremely efficient in multiattribute
group decision-making (MAGDM) situations. Later, the
same authors discussed the fuzziness of the SES model [27].
Due to group decision-making modeling capabilities of
SESs, many hybrid models have been proposed till now as
SESs are their major component, fuzzy N-SESs [28], fuzzy
parameterized intuitionistic fuzzy SESs [29], fuzzy bipolar
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Figure 1: Comparison between the spaces of IFSs, PFSs, FFSs, and
q-ROFSs.
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soft expert sets [30], analysis of chat conversations of pe-
dophiles based on bipolar fuzzy soft sets [31], risk assessment
in automatic robots using rough ELECTRE-II approach
[32], and decision support systems based on rough D-
TOPSIS method [33]. Akram et al. [34] developed a new
hybrid model called m-polar fuzzy SESs, which discusses the
multipolarity of fuzzy SESs and solved some group decision-
making problems. For more useful terms, the reader is
referred to [35–44].

1.1.MotivationandContribution. *emotives of the current
study are summarized as follows:

(1) *ere is a considerably wider applicability scope of
q-ROFSs as compared to IFSs, PFSs, and FFSs in
dealing with 2-dimensional uncertainties. To better
understand this argument, consider a pair con-
taining belongingness and nonbelongingness de-
grees as (0.80, 0.95); then, it is clear that
0.80 + 0.95≮1, (0.80)2 + (0.95)2 ≮1, (0.80)3 +

(0.95)3≮1. But (0.80)q + (0.95)q < 1 for all q≥ 6.
(2) *ere are parameterization capabilities of fuzzy

parameterized intuitionistic fuzzy SESs (FPIFSESs)
for dealing with IFS information under multiple
experts with weighted preferences.

(3) *e inability of FPIFSESs to deal with q-ROF in-
formation indicates the need for an extension of this
model, which also preserves the existing abilities of
the FPIFSES model.

(4) *e q-ROFS model was found to be more effective
when extended to the range of parameterizations and
used in different domains, that is, q-ROFSSs but the
main drawback of this model is that it has no ability
to tackle a situation where different weights are
assigned to different parameters in q-ROF in-
formation. Actually, the fuzzy parameterized ver-
sions of q-ROFSSs and q-ROFSESs are unattended to
date.

Motivated by the above analysis, in this research
article, the concept of FPIFSESs or q-ROFSSs is extended
to FPq ROFSESs, thus allowing more uncertainties to be
handled easily as the order of uncertainty is increased
from 1 to qth power of belongingness and non-
belongingness degrees.

*is research contributes the following:

(1) A new and powerful extension of the FPIFSES model
is provided, namely, FPq ROFSES, which allows
dealing with q-ROFS information efficiently

(2) Basic operations, including subset, complement, OR
operation, AND operation, intersection, and union
of the newly developed model, are provided and
supported with examples

(3) Two real-life MAGDM problems, including the best
site selection for a new cafe outlet and the selection of
Best News Channel, are solved using a developed
algorithm based on FPq ROFSESs

(4) A comparison of the developed group decision-
making method under FPq ROFSESs with few
existing approaches is also given

1.2. Framework of the Paper. Section 1 includes the in-
troduction, related works, motivation, and contribution of
the research article. Section 2 recalls some basic definitions
and then introduces the main concept of FPq ROFSESs along
with certain essential notions and basic operations for the
FPq ROFSESs. Section 3 presents two real-life applications of
the FPq ROFSESs with an algorithmic approach. Section 4
discusses a comparison of the developed method under FPq

ROFSESs with few existing approaches. At last, Section 5
gives the concluding remarks and some future directions.

2. FuzzyParameterizedq-RungOrthopairFuzzy
Soft Expert Sets

*is section introduces the FPq ROFSES model, its basic
operations, and its properties. But before that, we need to
review some essential definitions useful for its construction
and further study throughout the article.

Definition 1 (see [5]). Let Y be a universal set. A pair G �

(αΓ, βΓ) is called a q-rung orthopair fuzzy set or q-ROFS over
Y where αΓ is a membership function given by
αΓ: Y⟶ [0, 1] and βΓ is a nonmembership function given
by βΓ: Y⟶ [0, 1] with 0≤ (αΓ(y))q + (βΓ(y))q ≤ 1 where
q≥ 1, αΓ(y), βΓ(y) ∈ [0, 1] for all y ∈Y. In set form, a q-
ROFS on Y is given as

G � y, αΓ(y), βΓ(y)( 􏼁􏼊 􏼋|y ∈Y􏼈 􏼉, (1)

where αΓ(y), βΓ(y) ∈ [0, 1] denotes the belongingness and
nonbelongingness values, respectively, and satisfies
0≤ (αΓ(y))q + (βΓ(y))q ≤ 1. Moreover, (αΓ(y), βΓ(y)) is
known as a q-rung orthopair fuzzy number (q-ROFN) and
denoted by Q � (αΓ(y), βΓ(y)). *e degree of hesitance for
q-ROFN Q � (αΓ(y), βΓ(y)) is defined by

πQ �

���������������������

1 − αΓ(y)( 􏼁
q

+ βΓ(y)( 􏼁
q

( 􏼁
q

􏽱

. (2)

Definition 2 (see [16]). LetY be a universe of discourse and
letS be a set of parameters. LetA⊆S andQY be a collection
of all q-ROF subsets ofS. A pair (Γ,A) is said to be a q-rung
orthopair fuzzy soft set (q-ROFSS) onY, if Γ is the function
defined by Γ: A⟶ QY.

For y ∈Y and s ∈ A, a q-ROFS Γ(s) is given as

Γ(s) � y, αΓ(s)(y), βΓ(s)(y)( 􏼁􏼊 􏼋|y ∈Y􏼈 􏼉, (3)

such that the belongingness degree “αΓ” and non-
belongingness degree “βΓ” are conditioned with the con-
straint 0≤ (αΓ(s)(y))q + (βΓ(s)(y))q ≤ 1, for all q ∈ (0,∞).

Definition 3 (see [29]). LetY be a universe, let S be a set of
parameters, let E be a set of experts, and
let O � 0 � disagree, 1 � agree􏼈 􏼉 be their set of opinions.
Let D be the fuzzy subset of S, and
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Z ⊆ D × E × O � (d, e, o)|d ∈ D, e ∈ E, o ∈ O{ }. Consider
a mapping I: Z⟶ IFY, where IFY is the collection of all
IFSs on Y. A pair (I,Z)D is called a fuzzy parameterized
intuitionistic fuzzy soft expert set or FPIFSES, where

(I,Z)D � (z,I(z)): z ∈Z􏼈 􏼉, (4)

such that I(z) � (y/(αI(z)(y), βI(z)(y)))|y ∈ Y􏼈 􏼉 with
0≤ (αI(z)(y))q + (βI(z)(y))q ≤ 1.

We are now ready to construct the notion of novel FPq

ROFSESs, which is given as follows.

Definition 4. Let Y be a universe, let S be a set of pa-
rameters, let E be a set of experts, and let
O � 0 � disagree, 1 � agree􏼈 􏼉 be their set of opinions. Let D
be the fuzzy subset of S, and
Z ⊆ D × E × O � (d, e, o)|d ∈ D, e ∈ E, o ∈ O{ }. Consider
a mapping f: Z⟶ QY, where QY is the collection of all
q-ROFSs on Y. A pair (f,Z)D is said to be a fuzzy pa-
rameterized q-rung orthopair fuzzy soft expert set or FPq

ROFSES, where

(f,Z)D � (z, f(z)): z ∈ Z􏼈 􏼉, (5)

such that f(z) � (y/(αf(z)(y), βf(z)(y)))|y ∈ Y􏽮 􏽯 with
0≤ (αf(z)(y))q + (βf(z)(y))q ≤ 1, for all q ∈ (0,∞).

*is main concept is now explained by an example given
as follows.

Example 1. Consider a person is interested in buying
a house, but before spending on the house, he needs to be
sure that the house meets all his needs. In such a condition,
he decides to consider the opinions of experts in selecting
a reasonable house. Consider there are four houses available
in the desired area for purchase, constituting the universal
setY � y1, y2, y3, y4􏼈 􏼉. *e person contacts two experts as in
the set E � e1, e2􏼈 􏼉, for helping him in making the decision.
*ese experts consider the following parameters
S � s1, s2, s3, s4􏼈 􏼉, where s1 � cheap, s2 � beautiful,
s3 � expensive, and s4 �materal, for the selection of the
house. Let D � (0.6/s1), (0.7/s2), (0.9/s3), (0.2/s4)􏼈 􏼉 rep-
resents certain weights for the parameters according to the
buyer’s requirements and q � 4. *en, the FP4 ROFSES
(f,Z)D representing the opinions of experts about the
houses regarding parameters is described as follows:

(f,Z)D �
0.6
s1

, e1, 1􏼠 􏼡,
y1

(0.30, 0.60)
,

y2
(0.80, 0.70)

,
y3

(0.20, 0.10)
,

y4
(0.50, 0.20)

􏼨 􏼩􏼪 􏼫􏼨 ,

0.7
s2

, e1, 1􏼠 􏼡,
y1

(0.70, 0.90)
,

y2
(0.60, 0.10)

,
y3

(0.30, 0.20)
,

y4
(0.10, 0.40)

􏼨 􏼩􏼪 􏼫,

0.9
s3

, e1, 1􏼠 􏼡,
y1

(0.10, 0.50)
,

y2
(0.80, 0.10)

,
y3

(0.80, 0.20)
,

y4
(0.30, 0.80)

􏼨 􏼩􏼪 􏼫,

0.2
s4

, e1, 1􏼠 􏼡,
y1

(0.10, 0.20)
,

y2
(0.70, 0.30)

,
y3

(0.70, 0.40)
,

y4
(0.90, 0.60)

􏼨 􏼩􏼪 􏼫,

0.6
s1

, e2, 1􏼠 􏼡,
y1

(0.80, 0.60)
,

y2
(0.80, 0.70)

,
y3

(0.80, 0.50)
,

y4
(0.80, 0.60)

􏼨 􏼩􏼪 􏼫,

0.7
s2

, e2, 1􏼠 􏼡,
y1

(0.90, 0.16)
,

y2
(0.50, 0.15)

,
y3

(0.40, 0.14)
,

y4
(0.30, 0.14)

􏼨 􏼩􏼪 􏼫,

0.9
s3

, e2, 1􏼠 􏼡,
y1

(0.66, 0.36)
,

y2
(0.44, 0.72)

,
y3

(0.48, 0.52)
,

y4
(0.36, 0.44)

􏼨 􏼩􏼪 􏼫,

0.2
s4

, e2, 1􏼠 􏼡,
y1

(0.87, 0.45)
,

y2
(0.45, 0.56)

,
y3

(0.79, 0.36)
,

y4
(0.62, 0.42)

􏼨 􏼩􏼪 􏼫,

0.6
s1

, e1, 0􏼠 􏼡,
y1

(0.70, 0.40)
,

y2
(0.60, 0.30)

,
y3

(0.70, 0.40)
,

y4
(0.80, 0.20)

􏼨 􏼩􏼪 􏼫,

0.7
s2

, e1, 0􏼠 􏼡,
y1

(0.70, 0.10)
,

y2
(0.80, 0.60)

,
y3

(0.40, 0.14)
,

y4
(0.56, 0.65)

􏼨 􏼩􏼪 􏼫,
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0.9
s3

, e1, 0􏼠 􏼡,
y1

(0.80, 0.70)
,

y2
(0.90, 0.60)

,
y3

(0.80, 0.20)
,

y4
(0.80, 0.30)

􏼨 􏼩􏼪 􏼫,

0.2
s4

, e1, 0􏼠 􏼡,
y1

(0.50, 0.15)
,

y2
(0.77, 0.63)

,
y3

(0.56, 0.56)
,

y4
(0.27, 0.31)

􏼨 􏼩􏼪 􏼫,

0.6
s1

, e2, 0􏼠 􏼡,
y1

(0.90, 0.60)
,

y2
(0.62, 0.42)

,
y3

(0.71, 0.81)
,

y4
(0.72, 0.44)

􏼨 􏼩􏼪 􏼫,

0.7
s2

, e2, 0􏼠 􏼡,
y1

(0.40, 0.14)
,

y2
(0.53, 0.61)

,
y3

(0.71, 0.81)
,

y4
(0.90, 0.16)

􏼨 􏼩􏼪 􏼫,

0.9
s3

, e2, 0􏼠 􏼡,
y1

(0.72, 0.42)
,

y2
(0.77, 0.63)

,
y3

(0.50, 0.80)
,

y4
(0.30, 0.80)

􏼨 􏼩􏼪 􏼫,

0.2
s4

, e2, 0􏼠 􏼡,
y1

(0.30, 0.80)
,

y2
(0.79, 0.36)

,
y3

(0.80, 0.70)
,

y4
(0.50, 0.16)

􏼨 􏼩􏼪 􏼫􏼩.

(6)

Now, we discuss some essential basic properties of FPq

ROFSESs together with illustrative numerical examples. We
start with subset relation.

Definition 5. For any two FPq ROFSESs (f,Z)D and
(g,W)K over Y, the FPq ROFSES (f,Z)D is referred to as
the fuzzy parameterized q-ROF soft expert subset of
(g,W)K if

(1) Z⊆W
(2) For all z ∈Z, fD(z) is q-ROF subset of gK(z)

*is subset relation is shown as (f,Z)D ⊂ (g,W)K,
whereas (g,W)K is called a fuzzy parameterized q-ROF soft
expert superset of (f,Z)D.

Definition 6. Let (f,Z)D and (g,W)K be FPq ROFSESs
over a universe Y. *en, (f,Z)D and (g,W)K are called
equal if (f,Z)D is a fuzzy parameterized q-ROF soft expert
subset of (g,W)K and (g,W)K is a fuzzy parameterized
q-ROF soft expert subset of (f,Z)D.

Example 2. Considering Example 1, suppose that a second
opinion of the experts is taken once again for buying the
house as follows:

Z �
0.6
s1

, e1, 1􏼠 􏼡,
0.7
s2

, e1, 0􏼠 􏼡,
0.6
s1

, e2, 1􏼠 􏼡,
0.7
s2

, e2, 1􏼠 􏼡,
0.6
s1

, e3, 0􏼠 􏼡,
0.7
s2

, e3, 1􏼠 􏼡􏼨 􏼩,

W �
0.8
s1

, e1, 1􏼠 􏼡,
0.9
s2

, e1, 0􏼠 􏼡,
0.3
s3

, e1, 1􏼠 􏼡,
0.8
s1

, e2, 1􏼠 􏼡,
0.9
s2

, e2, 1􏼠 􏼡,
0.8
s1

, e3, 0􏼠 􏼡,
0.9
s2

, e3, 1􏼠 􏼡,
0.3
s3

, e3, 1􏼠 􏼡􏼨 􏼩.

(7)

Clearly,Z⊆W. Consider two FP4 ROFSESs (f,Z)D and
(g,W)K to be defined as follows:

(f,Z)D �
0.6
s1

, e1, 1􏼠 􏼡,
y1

(0.80, 0.85)
,

y2
(0.70, 0.65)

,
y3

(0.90, 0.35)
,

y4
(0.50, 0.80)

􏼨 􏼩􏼪 􏼫􏼨 ,

0.7
s2

, e1, 0􏼠 􏼡,
y1

(0.19, 0.40)
,

y2
(0.60, 0.70)

,
y3

(0.12, 0.55)
,

y4
(0.22, 0.50)

􏼨 􏼩􏼪 􏼫,

0.6
s1

, e2, 1􏼠 􏼡,
y1

(0.23, 0.47)
,

y2
(0.25, 0.80)

,
y3

(0.12, 0.59)
,

y4
(0.23, 0.85)

􏼨 􏼩􏼪 􏼫,
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0.7
s2

, e2, 1􏼠 􏼡,
y1

(0.43, 0.40)
,

y2
(0.44, 0.79)

,
y3

(0.48, 0.50)
,

y4
(0.50, 0.60)

􏼨 􏼩􏼪 􏼫,

0.6
s1

, e3, 0􏼠 􏼡,
y1

(0.35, 0.70)
,

y2
(0.37, 0.80)

,
y3

(0.38, 0.77)
,

y4
(0.45, 0.30)

􏼨 􏼩􏼪 􏼫,

0.7
s2

, e3, 1􏼠 􏼡,
y1

(0.54, 0.80)
,

y2
(0.57, 0.93)

,
y3

(0.61, 0.40)
,

y4
(0.65, 0.85)

􏼨 􏼩􏼪 􏼫􏼩.

(g,W)K �
0.8
s1

, e1, 1􏼠 􏼡,
y1

(0.90, 0.60)
,

y2
(0.80, 0.60)

,
y3

(0.91, 0.32)
,

y4
(0.60, 0.70)

􏼨 􏼩􏼪 􏼫􏼨 ,

0.9
s2

, e1, 0􏼠 􏼡,
y1

(0.29, 0.30)
,

y2
(0.70, 0.60)

,
y3

(0.20, 0.50)
,

y4
(0.33, 0.40)

􏼨 􏼩􏼪 􏼫,

0.3
s3

, e1, 1􏼠 􏼡,
y1

(0.69, 0.21)
,

y2
(0.71, 0.17)

,
y3

(0.72, 0.32)
,

y4
(0.73, 0.25)

􏼨 􏼩􏼪 􏼫,

0.8
s1

, e2, 1􏼠 􏼡,
y1

(0.29, 0.40)
,

y2
(0.30, 0.70)

,
y3

(0.16, 0.44)
,

y4
(0.29, 0.70)

􏼨 􏼩􏼪 􏼫,

0.9
s2

, e2, 1􏼠 􏼡,
y1

(0.50, 0.30)
,

y2
(0.55, 0.71)

,
y3

(0.50, 0.40)
,

y4
(0.60, 0.50)

􏼨 􏼩􏼪 􏼫,

0.8
s1

, e3, 0􏼠 􏼡,
y1

(0.40, 0.60)
,

y2
(0.40, 0.70)

,
y3

(0.42, 0.72)
,

y4
(0.48, 0.20)

􏼨 􏼩􏼪 􏼫,

0.9
s2

, e3, 1􏼠 􏼡,
y1

(0.60, 0.72)
,

y2
(0.59, 0.91)

,
y3

(0.70, 0.30)
,

y4
(0.66, 0.82)

􏼨 􏼩􏼪 􏼫,

0.3
s3

, e3, 1􏼠 􏼡,
y1

(0.11, 0.29)
,

y2
(0.31, 0.42)

,
y3

(0.12, 0.24)
,

y4
(0.11, 0.23)

􏼨 􏼩􏼪 􏼫􏼩.

(8)

Here, ∀ z ∈Z, fD(z) is a 4-ROF subset of gK(z). Hence
(f,Z)D ⊂ (g,W)K.

Definition 7. An agree-FPq ROFSES of (f,Z)D over Y

denoted by (f,Z)1D is the FPq ROFSES defined as
(f,Z)1D � fD(z): z ∈ D × E × 1{ }􏼈 􏼉.

Example 3. Considering the FP4 ROFSES (f,Z)D in Ex-
ample 1, the associated agree-FP4 ROFSES (f,Z)1D overY is

(f,Z)
1
D �

0.6
s1

, e1, 1􏼠 􏼡,
y1

(0.30, 0.60)
,

y2
(0.80, 0.70)

,
y3

(0.20, 0.10)
,

y4
(0.50, 0.20)

􏼨 􏼩􏼪 􏼫􏼨 ,

0.7
s2

, e1, 1􏼠 􏼡,
y1

(0.70, 0.90)
,

y2
(0.60, 0.10)

,
y3

(0.30, 0.20)
,

y4
(0.10, 0.40)

􏼨 􏼩􏼪 􏼫,

0.9
s3

, e1, 1􏼠 􏼡,
y1

(0.10, 0.50)
,

y2
(0.80, 0.10)

,
y3

(0.80, 0.20)
,

y4
(0.30, 0.80)

􏼨 􏼩􏼪 􏼫,

0.2
s4

, e1, 1􏼠 􏼡,
y1

(0.10, 0.20)
,

y2
(0.70, 0.30)

,
y3

(0.70, 0.40)
,

y4
(0.90, 0.60)

􏼨 􏼩􏼪 􏼫,
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0.6
s1

, e2, 1􏼠 􏼡,
y1

(0.80, 0.60)
,

y2
(0.80, 0.70)

,
y3

(0.80, 0.50)
,

y4
(0.80, 0.60)

􏼨 􏼩􏼪 􏼫,

0.7
s2

, e2, 1􏼠 􏼡,
y1

(0.90, 0.16)
,

y2
(0.50, 0.15)

,
y3

(0.40, 0.14)
,

y4
(0.30, 0.14)

􏼨 􏼩􏼪 􏼫,

0.9
s3

, e2, 1􏼠 􏼡,
y1

(0.66, 0.36)
,

y2
(0.44, 0.72)

,
y3

(0.48, 0.52)
,

y4
(0.36, 0.44)

􏼨 􏼩􏼪 􏼫,

0.2
s4

, e2, 1􏼠 􏼡,
y1

(0.87, 0.45)
,

y2
(0.45, 0.56)

,
y3

(0.79, 0.36)
,

y4
(0.62, 0.42)

􏼨 􏼩􏼪 􏼫􏼩.

(9)

Definition 8. A disagree-FPq ROFSES of (f,Z)D over Y

denoted by (f,Z)0D is the FPq ROFSES defined as
(f,Z)0D � fD(z): z ∈ D × E × 0{ }􏼈 􏼉.

Example 4. Considering the FP4 ROFSES (f,Z)D in Ex-
ample 1, then the related disagree FP4 ROFSES (f,Z)0D over
Y is

(f,Z)
0
D �

0.6
s1

, e1, 0􏼠 􏼡,
y1

(0.70, 0.40)
,

y2
(0.60, 0.30)

,
y3

(0.70, 0.40)
,

y4
(0.80, 0.20)

􏼨 􏼩􏼪 􏼫􏼨 ,

0.7
s2

, e1, 0􏼠 􏼡,
y1

(0.70, 0.10)
,

y2
(0.80, 0.60)

,
y3

(0.40, 0.14)
,

y4
(0.56, 0.65)

􏼨 􏼩􏼪 􏼫,

0.9
s3

, e1, 0􏼠 􏼡,
y1

(0.80, 0.70)
,

y2
(0.90, 0.60)

,
y3

(0.80, 0.20)
,

y4
(0.80, 0.30)

􏼨 􏼩􏼪 􏼫,

0.2
s4

, e1, 0􏼠 􏼡,
y1

(0.50, 0.15)
,

y2
(0.77, 0.63)

,
y3

(0.56, 0.56)
,

y4
(0.27, 0.31)

􏼨 􏼩􏼪 􏼫,

0.6
s1

, e2, 0􏼠 􏼡,
y1

(0.90, 0.60)
,

y2
(0.62, 0.42)

,
y3

(0.71, 0.81)
,

y4
(0.72, 0.44)

􏼨 􏼩􏼪 􏼫,

0.7
s2

, e2, 0􏼠 􏼡,
y1

(0.40, 0.14)
,

y2
(0.53, 0.61)

,
y3

(0.71, 0.81)
,

y4
(0.90, 0.16)

􏼨 􏼩􏼪 􏼫,

0.9
s3

, e2, 0􏼠 􏼡,
y1

(0.72, 0.42)
,

y2
(0.77, 0.63)

,
y3

(0.50, 0.80)
,

y4
(0.30, 0.80)

􏼨 􏼩􏼪 􏼫,

0.2
s4

, e2, 0􏼠 􏼡,
y1

(0.30, 0.80)
,

y2
(0.79, 0.36)

,
y3

(0.80, 0.70)
,

y4
(0.50, 0.16)

􏼨 􏼩􏼪 􏼫􏼩.

(10)

Definition 9. Let (f,Z)D be a FPq ROFSES over Y. *en,
the complement of FPq ROFSES (f,Z)D represented as
(f,Z)c

D is defined by (f,Z)c
D � (fc,Z)D whereZ ⊆ Dc×

E × O andfc
D is given as fc

D(z) � c(fD(z))∀z ∈ Z such
that

f
c
D(z) �

y

βf(z)(y), αf(z)(y)􏼐 􏼑
|y ∈ Y

⎧⎨

⎩

⎫⎬

⎭, (11)

with 0≤ (αf(z)(y))q + (βf(z)(y))q ≤ 1, for all q ∈ (0,∞).
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Example 5. Let (f,Z)D be the FP4 ROFSES as discussed in
Example 1. *en, by the definition of complement for FP4

ROFSES,

(f,Z)
c
D �

0.6
s1

, e1, 1􏼠 􏼡,
y1

(0.60, 0.30)
,

y2
(0.70, 0.80)

,
y3

(0.10, 0.20)
,

y4
(0.20, 0.50)

􏼨 􏼩􏼪 􏼫􏼨 ,

0.7
s2

, e1, 1􏼠 􏼡,
y1

(0.90, 0.70)
,

y2
(0.10, 0.60)

,
y3

(0.20, 0.30)
,

y4
(0.40, 0.10)

􏼨 􏼩􏼪 􏼫,

0.9
s3

, e1, 1􏼠 􏼡,
y1

(0.50, 0.10)
,

y2
(0.10, 0.80)

,
y3

(0.20, 0.80)
,

y4
(0.80, 0.30)

􏼨 􏼩􏼪 􏼫,

0.2
s4

, e1, 1􏼠 􏼡,
y1

(0.20, 0.10)
,

y2
(0.30, 0.70)

,
y3

(0.40, 0.70)
,

y4
(0.60, 0.90)

􏼨 􏼩􏼪 􏼫,

0.6
s1

, e2, 1􏼠 􏼡,
y1

(0.60, 0.80)
,

y2
(0.70, 0.80)

,
y3

(0.50, 0.80)
,

y4
(0.60, 0.80)

􏼨 􏼩􏼪 􏼫,

0.7
s2

, e2, 1􏼠 􏼡,
y1

(0.16, 0.90)
,

y2
(0.15, 0.50)

,
y3

(0.14, 0.40)
,

y4
(0.14, 0.30)

􏼨 􏼩􏼪 􏼫,

0.9
s3

, e2, 1􏼠 􏼡,
y1

(0.36, 0.66)
,

y2
(0.72, 0.44)

,
y3

(0.52, 0.48)
,

y4
(0.44, 0.36)

􏼨 􏼩􏼪 􏼫,

0.2
s4

, e2, 1􏼠 􏼡,
y1

(0.45, 0.87)
,

y2
(0.56, 0.45)

,
y3

(0.36, 0.79)
,

y4
(0.42, 0.62)

􏼨 􏼩􏼪 􏼫,

0.6
s1

, e1, 0􏼠 􏼡,
y1

(0.40, 0.70)
,

y2
(0.30, 0.60)

,
y3

(0.40, 0.70)
,

y4
(0.20, 0.80)

􏼨 􏼩􏼪 􏼫,

0.7
s2

, e1, 0􏼠 􏼡,
y1

(0.10, 0.70)
,

y2
(0.60, 0.80)

,
y3

(0.14, 0.40)
,

y4
(0.65, 0.56)

􏼨 􏼩􏼪 􏼫,

0.9
s3

, e1, 0􏼠 􏼡,
y1

(0.70, 0.80)
,

y2
(0.60, 0.90)

,
y3

(0.20, 0.80)
,

y4
(0.30, 0.80)

􏼨 􏼩􏼪 􏼫,

0.2
s4

, e1, 0􏼠 􏼡,
y1

(0.15, 0.50)
,

y2
(0.63, 0.77)

,
y3

(0.56, 0.56)
,

y4
(0.31, 0.27)

􏼨 􏼩􏼪 􏼫,

0.6
s1

, e2, 0􏼠 􏼡,
y1

(0.60, 0.90)
,

y2
(0.42, 0.62)

,
y3

(0.81, 0.71)
,

y4
(0.44, 0.72)

􏼨 􏼩􏼪 􏼫,

0.7
s2

, e2, 0􏼠 􏼡,
y1

(0.14, 0.40)
,

y2
(0.61, 0.53)

,
y3

(0.81, 0.71)
,

y4
(0.16, 0.90)

􏼨 􏼩􏼪 􏼫,

0.9
s3

, e2, 0􏼠 􏼡,
y1

(0.42, 0.72)
,

y2
(0.63, 0.77)

,
y3

(0.80, 0.50)
,

y4
(0.80, 0.30)

􏼨 􏼩􏼪 􏼫,

0.2
s4

, e2, 0􏼠 􏼡,
y1

(0.30, 0.80)
,

y2
(0.79, 0.36)

,
y3

(0.80, 0.70)
,

y4
(0.50, 0.16)

􏼨 􏼩􏼪 􏼫􏼩.

(12)
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Proposition 1. Let (f,Z)D be a FPq ROFSES over Y; then,
((f,Z)c

D)c � (f,Z)D.

Proof. Let (f,Z)D be a FPq ROFSES over Y. *en, by
Definition 9, a mapping (fc

D)c: Z⟶ QY is defined as
follows:

f
c
D( 􏼁

c
(z) � f

c
D(z)( 􏼁

c
� fD(z), (13)

for all z ∈Z, where Z � D × E × O. *us, it is proved that
((f,Z)c

D)c � (f,Z)D. □

Definition 10. *e union of two FPq ROFSESs (f,Z)D and
(g,W)K over Y denoted as (f,Z)D ∪ (g,W)K is the FPq

ROFSES (P,Q)R, such that Q � (R × E × O), where
R � D∪K; then, for all z ∈ Q,PR(z) is given by

PR(z) � fD(z)∪ gK(z), (14)

where ∪ is simply q-ROF union between q-ROFSs fD(z)

and gK(z).

Example 6. LetY � y1, y2, y3􏼈 􏼉 be the universe, and let E �

e1, e2􏼈 􏼉 be the set of experts such that SZ � s1, s2􏼈 􏼉 and
SW � s1􏼈 􏼉 represent the sets of parameters, and
D � (0.8/s1), (0.6/s2)􏼈 􏼉, and K � 0.8/s1􏼈 􏼉 represent the
weights for the parameters. Suppose that (f,Z)D and
(g,W)K are FP4 ROFSESs over Y such that

(f,Z)D �
0.8
s1

, e1, 1􏼠 􏼡,
y1

(0.80, 0.60)
,

y2
(0.30, 0.14)

,
y3

(0.45, 0.56)
􏼨 􏼩􏼪 􏼫􏼨 ,

0.6
s2

, e1, 1􏼠 􏼡,
y1

(0.40, 0.50)
,

y2
(0.52, 0.62)

,
y3

(0.60, 0.42)
􏼨 􏼩􏼪 􏼫,

0.8
s1

, e2, 1􏼠 􏼡,
y1

(0.70, 0.40)
,

y2
(0.43, 0.52)

,
y3

(0.60, 0.75)
􏼨 􏼩􏼪 􏼫,

0.6
s2

, e2, 1􏼠 􏼡,
y1

(0.36, 0.25)
,

y2
(0.30, 0.80)

,
y3

(0.45, 0.51)
􏼨 􏼩􏼪 􏼫,

0.8
s1

, e1, 0􏼠 􏼡,
y1

(0.80, 0.10)
,

y2
(0.90, 0.60)

,
y3

(0.60, 0.60)
􏼨 􏼩􏼪 􏼫,

0.6
s2

, e1, 0􏼠 􏼡,
y1

(0.50, 0.36)
,

y2
(0.48, 0.66)

,
y3

(0.55, 0.22)
􏼨 􏼩􏼪 􏼫,

0.8
s1

, e2, 0􏼠 􏼡,
y1

(0.44, 0.75)
,

y2
(0.71, 0.16)

,
y3

(0.22, 0.51)
􏼨 􏼩􏼪 􏼫,

0.6
s2

, e2, 0􏼠 􏼡,
y1

(0.66, 0.16)
,

y2
(0.60, 0.50)

,
y3

(0.28, 0.19)
􏼨 􏼩􏼪 􏼫􏼩,

(g,W)K �
0.8
s1

, e1, 1􏼠 􏼡,
y1

(0.70, 0.50)
,

y2
(0.47, 0.55)

,
y3

(0.74, 0.45)
􏼨 􏼩􏼪 􏼫􏼨 ,

0.5
s1

, e2, 1􏼠 􏼡,
y1

(0.80, 0.40)
,

y2
(0.50, 0.35)

,
y3

(0.46, 0.78)
􏼨 􏼩􏼪 􏼫,

0.5
s1

, e1, 0􏼠 􏼡,
y1

(0.28, 0.51)
,

y2
(0.75, 0.32)

,
y3

(0.72, 0.56)
􏼨 􏼩􏼪 􏼫,

0.5
s1

, e2, 0􏼠 􏼡,
y1

(0.81, 0.33)
,

y2
(0.40, 0.25)

,
y3

(0.62, 0.44)
􏼨 􏼩􏼪 􏼫􏼩.

(15)

Using Definition 10, we obtain (f,Z)D ∪ (g,W)K �

(P,Q)R as follows:
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(P,Q)R �
0.8
s1

, e1, 1􏼠 􏼡,
y1

(0.80, 0.50)
,

y2
(0.47, 0.14)

,
y3

(0.74, 0.45)
􏼨 􏼩􏼪 􏼫􏼨 ,

0.6
s2

, e1, 1􏼠 􏼡,
y1

(0.40, 0.50)
,

y2
(0.52, 0.62)

,
y3

(0.60, 0.42)
􏼨 􏼩􏼪 􏼫,

0.8
s1

, e2, 1􏼠 􏼡,
y1

(0.80, 0.40)
,

y2
(0.50, 0.35)

,
y3

(0.60, 0.75)
􏼨 􏼩􏼪 􏼫,

0.6
s2

, e2, 1􏼠 􏼡,
y1

(0.36, 0.25)
,

y2
(0.30, 0.80)

,
y3

(0.45, 0.51)
􏼨 􏼩􏼪 􏼫,

0.8
s1

, e1, 0􏼠 􏼡,
y1

(0.80, 0.10)
,

y2
(0.90, 0.32)

,
y3

(0.72, 0.56)
􏼨 􏼩􏼪 􏼫,

0.6
s2

, e1, 0􏼠 􏼡,
y1

(0.50, 0.36)
,

y2
(0.48, 0.66)

,
y3

(0.55, 0.22)
􏼨 􏼩􏼪 􏼫,

0.8
s1

, e2, 0􏼠 􏼡,
y1

(0.81, 0.33)
,

y2
(0.71, 0.16)

,
y3

(0.62, 0.44)
􏼨 􏼩􏼪 􏼫,

0.6
s2

, e2, 0􏼠 􏼡,
y1

(0.66, 0.16)
,

y2
(0.60, 0.50)

,
y3

(0.28, 0.19)
􏼨 􏼩􏼪 􏼫􏼩.

(16)

Proposition 2. Let (f,Z)D, (g,W)K, and (h,T)L are FPq

ROFSESs over the universe Y; then, the following conditions
hold:

(1) (f,Z)D ∪ (g,W)K � (g,W)K ∪ (f,Z)D

(2) ((f,Z)D ∪ (g,W)K) ∪ (h,T)L � (f,Z)D ∪
((g,W)K ∪ (h,T)L)

(3) (f,Z)D ∪ (f,Z)D � (f,Z)D

Proof. (1) Let (f,Z)D ∪ (g,W)K � (P,Q)R; then, ∀zQ,
we have

R � D∪K � K∪D,

PR(z) � fD(z)∪ gK(z) � gK(z)∪ fD(z).
(17)

*is implies (P,Q)R � (g,W)K ∪ (f,Z)D. Hence,
(f,Z)D ∪ (g,W)K � (g,W)K ∪ (f,Z)D.

*e proof of the remaining parts is similar. □

Definition 11. *e intersection of two FPq ROFSESs (f,Z)D
and (g,W)K over Y, represented as (f,Z)D ∩ (g,W)K, is
the FPq ROFSESs (I,Q) such that Q � (R × E × O) where
R � D∩K. *en, for all z ∈ Q,IR(z) is defined as

IR(z) � fD(z)∩ gK(z), (18)

where ∩ is simply the q-ROF intersection between q-ROFSs
fD(z) and gK(z).

Example 7. Let (f,Z)D and (g,W)K be two FP4 ROFSESs
over the universe Y, as taken in Example 6. *en, by using
Definition 11, we obtain (f,Z)D ∩ (g,W)K � (I,Q)R
where (I,Q)R is a FP4 ROFSES defined as

(I,Q)R �
0.8
s1

, e1, 1􏼠 􏼡,
y1

(0.70, 0.60)
,

y2
(0.30, 0.55)

,
y3

(0.45, 0.56)
􏼨 􏼩􏼪 􏼫􏼨 ,

0.6
s2

, e1, 1􏼠 􏼡,
y1

(0.40, 0.50)
,

y2
(0.52, 0.62)

,
y3

(0.60, 0.42)
􏼨 􏼩􏼪 􏼫,

0.8
s1

, e2, 1􏼠 􏼡,
y1

(0.70, 0.40)
,

y2
(0.43, 0.52)

,
y3

(0.46, 0.78)
􏼨 􏼩􏼪 􏼫,
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0.6
s2

, e2, 1􏼠 􏼡,
y1

(0.36, 0.25)
,

y2
(0.30, 0.80)

,
y3

(0.45, 0.51)
􏼨 􏼩􏼪 􏼫,

0.8
s1

, e1, 0􏼠 􏼡,
y1

(0.28, 0.51)
,

y2
(0.75, 0.60)

,
y3

(0.60, 0.60)
􏼨 􏼩􏼪 􏼫,

0.6
s2

, e1, 0􏼠 􏼡,
y1

(0.50, 0.36)
,

y2
(0.48, 0.66)

,
y3

(0.55, 0.22)
􏼨 􏼩􏼪 􏼫,

0.8
s1

, e2, 0􏼠 􏼡,
y1

(0.44, 0.75)
,

y2
(0.40, 0.25)

,
y3

(0.22, 0.51)
􏼨 􏼩􏼪 􏼫,

0.6
s2

, e2, 0􏼠 􏼡,
y1

(0.66, 0.16)
,

y2
(0.60, 0.50)

,
y3

(0.28, 0.19)
􏼨 􏼩􏼪 􏼫􏼩.

(19)

Proposition 3. Let (f,Z)D, (g,W)k, and (h,T)L be an
FPq ROFSES over the universe Y; then, the following con-
ditions hold:

(1) (f,Z)D ∩ (g,W)K � (g,W)K ∩ (f,Z)D

(2) ((f,Z)D ∩ (g,W)K) ∩ (h,T)L �

(f,Z)D ∩ ((g,W)K ∩ (h,T)L)

(3) (f,Z)D ∩ (f,Z)D � (f,Z)D

Proof. (1) Let (f,Z)D ∩ (g,W)K � (I,Q)R; then, ∀z ∈ Q,
we have

R � D∩K � K∩D,

IR(z) � fD(z)∩ gK(z) � gK(z)∩ fD(z).
(20)

*is implies (I,Q)R � (g,W)K ∩ (f,Z)D. Hence,
(f,Z)D ∩ (g,W)K � (g,W)K ∩ (f,Z)D.

*e proof of the remaining parts is similar. □

Proposition 4. Let (f,Z)D, (g,W)K, and (h,T)L be FPq

ROFSESs over the universe Y; then, the following conditions
hold:

(1) (f,Z)D ∩ ((g,W)K ∪ (h,T)L) � ((f,Z)D
∩ (g,W)K) ∪ ((f,Z)D ∩ (h,T)L)

(2) (f,Z)D ∪ ((g,W)K ∩ (h,T)L) �

((f,Z)D ∪ (g,W)K) ∩ ((f,Z)D ∪ (h,T)L)

Proof. *e proof is simple and is therefore omitted. □

Proposition 5. Let (f,Z)D and (g,W)K be FPq ROFSESs
over the universe Y. <en,

(1) ((f,Z)D ∪ (g,W)K)c � (f,Z)c
D ∩ (g,W)c

K

(2) ((f,Z)D ∩ (g,W)K)c � (f,Z)c
D ∪ (g,W)c

K

Proof. (1) Let (f,Z)D and (g,W)K be two FPq ROFSESs
over the universe Y; then, we have

f
c
D(z)∩ gc

K(z) � fD(z)∪ gK(z)( 􏼁
c
, (21)

for all z ∈ D∩K. Hence, ((f,Z)D ∪ (g,W)K)c � (f,Z)c
D

∩ (g,W)c
K.

(2) Similar to Part 1. □

Definition 12. Let (f,Z)D and (g,W)K be two FPq ROF-
SESs over the universe Y. *en, “((f,Z)DAND(g,W)K)”
represented by (f,Z)D∧(g,W)K � (I,Z × W)R is an FPq

ROFSES such that R � D × K and is given by

IR(σ, δ) � fD(σ)∩ gK(δ)( 􏼁, ∀(σ, δ) ∈ Z × W. (22)

Definition 13. Let (f,Z)D and (g,W)K be two FPq ROF-
SESs over the universe Y. *en, “((f,Z)DOR(g,W)K)”
represented by (f,Z)D∨(g,W)K � (P,Z × W)R is an FPq

ROFSES such that R � D × K and is given as

PR(σ, δ) � fD(σ)∪ gK(δ)( 􏼁, ∀(σ, δ) ∈Z × W. (23)

Proposition 6. Let (f,Z)D and (g,W)K be FPq ROFSESs
over the universe Y. <en,

(1) ((f,Z)D∧(g,W)K)c � (f,Z)c
D∨(g,W)c

K

(2) ((f,Z)D∨(g,W)K)c � (f,Z)c
D∧(g,W)c

K

Proof. Its proof is directly followed from Proposition 5. □

3. Applications of FPq ROFSESs in
Group Decision-Making

As a powerful extension to the existing fuzzy parameterized
models, FPq ROFSESs are highly applicable and can prove
their efficiency in situations where other models failed. *is
section provides two MAGDM problems and their solutions
under FPq ROFSESs along with a developed algorithm.

Before going through the applications, some notions
need to be reviewed as follows:

Definition 14 (see [9]). Let Q � (αf(zi)(yj), βf(zi)(yj)) be
a q-ROFN. *e score function of Q is given by

s(Q) � αf zi( 􏼁 yj􏼐 􏼑􏼐 􏼑
q

− βf zi( 􏼁 yj􏼐 􏼑􏼐 􏼑
q
, q≥ 1. (24)
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Definition 15 (see [9]). Let Q � (αf(zi)(yj), βf(zi)(yj)) be
a q-ROFN. *e accuracy function of Q is given as

h(Q) � αf zi( 􏼁 yj􏼐 􏼑􏼐 􏼑
q

+ βf zi( 􏼁 yj􏼐 􏼑􏼐 􏼑
q
, q≥ 1. (25)

Definition 16 (see [9]). Let Q1 � (αf1(zi)(yj), βf1(zi)(yj))

and Q2 � (αf2(zi)(yj), βf2(zi)(yj)) be any two q-ROFNs, let
s(Q1) and s(Q2) be the score functions of Q1 and Q2, and let
h(Q1) and h(Q2) be the accuracy functions of Q1 and Q2;
then,

(1) If s(Q1)> s(Q2), then Q1 >Q2

(2) If s(Q1) � s(Q2)

(i) If h(Q1)> h(Q2), then Q1 >Q2
(ii) If h(Q1) � h(Q2), then Q1 � Q2

Definition 17. For an agree-FPq ROFSES (f,Z)1D, its ac-
cumulated agree scores Lj are given as

Lj � 􏽘
i

wiXij, (26)

where Xij’s are entries of the score table for agree-FPq

ROFSES and wi represents weights for the parameters.

Definition 18. For a disagree-FPq ROFSES (f,Z)0D, its ac-
cumulated disagree scores Cj are given by

Cj � 􏽘
i

wiXij, (27)

where Xij’s are entries of the score table for disagree-FPq

ROFSES and wi represents weights for the parameters.

Definition 19. For a FPq ROFSES (f,Z)D, its final scoresKj

are defined as

Kj � Lj − Cj. (28)

We now present the applications of FPq ROFSESs in the
following.

3.1. Selection of an Appropriate Site for a Cafe Outlet.

Cafes are considered as places where one can meet up with
his friends, sit away from home and work, or just simply grab
a cup of coffee and let the laziness go away. Cafes are now
present all over the world, and those owning these cafes are
making huge profits all around. *e cafe and restaurant
business comprises a large part of the economy and is
considered a catchy business to make a career with. Many
cafe chains like McDonald’s McCafe, Starbucks, Tim Hor-
tons, etc., are well known for their worldwide business and
reputation. Similarly, many small cafe chains are also rep-
utable for the quality and services they provide.

*e cafe chains keep on earning, growing, expanding,
and again earning more. But many factors affect the cafe
business, particularly where the cafe outlet is located. If the
cafe is in a good place with many customers and less
competition, then, it assures a good business if ran pro-
fessionally. On the other hand, if the cafe is in a place with
fewer customers or a high competition place, then, it can
prove to be a challenge for the owners to make a good profit
from it. In the example below, we are going to see how FPq

ROFSESs can help in finding the best location for a cafe
outlet, so that the business gets profited instead of falling
back.

Consider a cafe chain is willing to increase its business by
opening a new outlet in the area of the city, where the chain
has no prior outlets. To get the best choice, the chain
considers experts’ opinions in the selection process of an
appropriate site for their new outlet. *e cafe chain owner
has five sites under consideration to extend their chain. Let
Y � y1, y2, . . . , y5􏼈 􏼉 show the set of sites available. *e
experts consider S � s1, s2, s3􏼈 􏼉 as the set of important
parameters for the analysis of the sites, where s1 is the
competing cafes within the chosen area, s2 is the fraction of
residents who visit one cafe for coffee or tea, and s3 is the
cafe’s accessibility which includes ample parking. Consider
that E � e1, e2, e3, e4􏼈 􏼉 is the set of experts and
D � (0.5/s1), (0.3/s2), (0.8/s3)􏼈 􏼉 represents the weights for
the parameters.

*e experts visit and analyze the sites with respect to the
indicated parameters andmake their findings integrated into
an FPq ROFSES where q � 4 as shown as follows:

(f,Z)D �
0.5
s1

, e1, 1􏼠 􏼡
y1

(0.90, 0.70)
,

y2
(0.42, 0.38)

,
y3

(0.11, 0.61)
,

y4
(0.80, 0.70)

,
y5

(0.58, 0.47)
􏼨 􏼩􏼪 􏼫􏼨 ,

0.3
s2

, e1, 1􏼠 􏼡
y1

(0.24, 0.39)
,

y2
(0.19, 0.28)

,
y3

(0.43, 0.16)
,

y4
(0.53, 0.37)

,
y5

(0.69, 0.36)
􏼨 􏼩􏼪 􏼫,

0.8
s3

, e1, 1􏼠 􏼡
y1

(0.29, 0.37)
,

y2
(0.89, 0.70)

,
y3

(0.83, 0.20)
,

y4
(0.14, 0.25)

,
y5

(0.39, 0.75)
􏼨 􏼩􏼪 􏼫,

0.5
s1

, e2, 1􏼠 􏼡
y1

(0.51, 0.75)
,

y2
(0.45, 0.65)

,
y3

(0.12, 0.78)
,

y4
(0.56, 0.72)

,
y5

(0.90, 0.43)
􏼨 􏼩􏼪 􏼫,
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0.3
s2

, e2, 1􏼠 􏼡
y1

(0.27, 0.45)
,

y2
(0.21, 0.27)

,
y3

(0.25, 0.27)
,

y4
(0.69, 0.15)

,
y5

(0.34, 0.13)
􏼨 􏼩􏼪 􏼫,

0.8
s3

, e2, 1􏼠 􏼡
y1

(0.44, 0.81)
,

y2
(0.45, 0.65)

,
y3

(0.32, 0.41)
,

y4
(0.29, 0.23)

,
y5

(0.88, 0.34)
􏼨 􏼩􏼪 􏼫,

0.5
s1

, e3, 1􏼠 􏼡
y1

(0.47, 0.62)
,

y2
(0.32, 0.34)

,
y3

(0.40, 0.36)
,

y4
(0.28, 0.42)

,
y5

(0.46, 0.16)
􏼨 􏼩􏼪 􏼫,

0.3
s2

, e3, 1􏼠 􏼡
y1

(0.60, 0.80)
,

y2
(0.24, 0.47)

,
y3

(0.59, 0.37)
,

y4
(0.11, 0.27)

,
y5

(0.64, 0.20)
􏼨 􏼩􏼪 􏼫,

0.8
s3

, e3, 1􏼠 􏼡
y1

(0.81, 0.52)
,

y2
(0.56, 0.46)

,
y3

(0.22, 0.65)
,

y4
(0.92, 0.34)

,
y5

(0.37, 0.56)
􏼨 􏼩􏼪 􏼫,

0.5
s1

, e4, 1􏼠 􏼡
y1

(0.72, 0.44)
,

y2
(0.56, 0.65)

,
y3

(0.63, 0.36)
,

y4
(0.43, 0.51)

,
y5

(0.30, 0.80)
􏼨 􏼩􏼪 􏼫,

0.3
s2

, e4, 1􏼠 􏼡
y1

(0.66, 0.36)
,

y2
(0.44, 0.72)

,
y3

(0.48, 0.52)
,

y4
(0.45, 0.56)

,
y5

(0.51, 0.42)
􏼨 􏼩􏼪 􏼫,

0.8
s3

, e4, 1􏼠 􏼡
y1

(0.87, 0.45)
,

y2
(0.62, 0.42)

,
y3

(0.77, 0.63)
,

y4
(0.30, 0.14)

,
y5

(0.70, 0.21)
􏼨 􏼩􏼪 􏼫,

0.5
s1

, e1, 0􏼠 􏼡
y1

(0.79, 0.50)
,

y2
(0.81, 0.27)

,
y3

(0.84, 0.50)
,

y4
(0.86, 0.40)

,
y5

(0.15, 0.22)
􏼨 􏼩􏼪 􏼫,

0.3
s2

, e1, 0􏼠 􏼡
y1

(0.15, 0.22)
,

y2
(0.17, 0.25)

,
y3

(0.19, 0.22)
,

y4
(0.17, 0.21)

,
y5

(0.11, 0.24)
􏼨 􏼩􏼪 􏼫,

0.8
s3

, e1, 0􏼠 􏼡
y1

(0.31, 0.42)
,

y2
(0.12, 0.24)

,
y3

(0.11, 0.23)
,

y4
(0.10, 0.22)

,
y5

(0.34, 0.46)
􏼨 􏼩􏼪 􏼫,

0.5
s1

, e2, 0􏼠 􏼡
y1

(0.37, 0.39)
,

y2
(0.18, 0.70)

,
y3

(0.13, 0.25)
,

y4
(0.38, 0.45)

,
y5

(0.35, 0.45)
􏼨 􏼩􏼪 􏼫,

0.3
s2

, e2, 0􏼠 􏼡
y1

(0.34, 0.40)
,

y2
(0.39, 0.29)

,
y3

(0.38, 0.27)
,

y4
(0.15, 0.20)

,
y5

(0.51, 0.36)
􏼨 􏼩􏼪 􏼫,

0.8
s3

, e2, 0􏼠 􏼡
y1

(0.54, 0.22)
,

y2
(0.13, 0.37)

,
y3

(0.55, 0.15)
,

y4
(0.62, 0.10)

,
y5

(0.45, 0.16)
􏼨 􏼩􏼪 􏼫,

0.5
s1

, e3, 0􏼠 􏼡
y1

(0.63, 0.45)
,

y2
(0.39, 0.10)

,
y3

(0.64, 0.19)
,

y4
(0.63, 0.15)

,
y5

(0.62, 0.17)
􏼨 􏼩􏼪 􏼫,

0.3
s2

, e3, 0􏼠 􏼡
y1

(0.69, 0.21)
,

y2
(0.71, 0.17)

,
y3

(0.72, 0.32)
,

y4
(0.73, 0.25)

,
y5

(0.12, 0.30)
􏼨 􏼩􏼪 􏼫,

0.8
s3

, e3, 0􏼠 􏼡
y1

(0.40, 0.36)
,

y2
(0.29, 0.23)

,
y3

(0.12, 0.28)
,

y4
(0.45, 0.65)

,
y5

(0.36, 0.55)
􏼨 􏼩􏼪 􏼫,

0.5
s1

, e4, 0􏼠 􏼡
y1

(0.29, 0.37)
,

y2
(0.81, 0.75)

,
y3

(0.27, 0.43)
,

y4
(0.47, 0.62)

,
y5

(0.81, 0.52)
􏼨 􏼩􏼪 􏼫,
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0.3
s2

, e4, 0􏼠 􏼡
y1

(0.43, 0.16)
,

y2
(0.83, 0.70)

,
y3

(0.21, 0.27)
,

y4
(0.40, 0.36)

,
y5

(0.59, 0.37)
􏼨 􏼩􏼪 􏼫,

0.8
s3

, e4, 0􏼠 􏼡
y1

(0.32, 0.41)
,

y2
(0.24, 0.47)

,
y3

(0.27, 0.25)
,

y4
(0.89, 0.60)

,
y5

(0.92, 0.34)
􏼨 􏼩􏼪 􏼫􏼩.

(29)

For the selection of the best site based on the above data,
the experts analyze the data under the decision-making
method based on FPq ROFSESs as given in Algorithm 1.

Table 1 represents the score table for the FP4 ROFSES
defined above. Tables 2 and 3 represent the score tables for
agree- and disagree-FP4 ROFSESs, respectively, along with
the agree and disagree accumulated scores.

Using agree and disagree accumulated scores in Tables 2
and 3, Table 4 provides the final scores. From the final scores
table, it can be seen that KM � max(Kj) � K1; hence, the
site y1 is decided to be the most suitable site for the opening
of a new cafe outlet.

To better understand Algorithm 1, its flowchart diagram
is shown in Figure 2.

Now, we present the next application of FPq ROFSESs.

3.2. Selection of Best News Channel. News channels and
journalists all over the world keep us updated about the
events in the world, the changes in policies, the crisis
coverage, and a lot more. *e main purposes, including
informing, guiding, educating, and entertaining the audi-
ence, interpreting the news and facts, causing awareness for
social issues, and forming value opinions about the policies
and situations, etc., make these news channels and jour-
nalism a very important part of the society. With the ad-
vancements in technology, many changes have come to
journalism too. First, we were informed with news in black
and white and then came the radio tech and then the TV

networks, and now, the online services allow the availability
of news in any place at any instant.

Although all the news channels try their best to keep
their audience best updated and entertained, many factors
like biased opinions, forced news, low quality, lack of factual
material, and so on, can affect the quality of a news channel
to a huge extent. For this, every year, many organizations
(like AVTA, RTS, CNA, and CRN) award the channels by
critical analysis of the channels in their respective domains,
which helps to find the credibility of a news channel ef-
fectively. In this example, we model a problem where an
award of “Best News Channel” is to be awarded on the basis
of various criteria.

Consider that an organization announces an event for
the award of “Best News Channel,” for which eight high-
rated news channels are nominated. *e nominated chan-
nels are presented in the set Y � y1, y2, . . . , y8􏼈 􏼉. For the
analysis of the channels, a committee of three experts as in
the set E � e1, e2, e3􏼈 􏼉 is considered by the organization.
*ese experts choose a favorable set of parameters given as
S � s1, s2, s3, s4, s5􏼈 􏼉 for the judgments, where
si(i � 1, 2, 3, 4, 5) stand for “effective social awareness,”
“quality entertainment,” “unbiased quality opinions,” “fac-
tual information,” and “quality guidance and education.”
*e weights assigned to the parameters by the experts are
D � (0.6/s1), (0.2/s2), (0.9/s3), (0.7/s4), (0.3/s5)􏼈 􏼉. After
critically analyzing the channels, the committee provides the
data, which is represented by an FPq ROFSES (f,Z)D with
q � 5 as follows:

(f,Z)D �
0.6
s1

, e1, 1􏼠 􏼡
y1

(0.79, 0.91)
,

y2
(0.58, 0.26)

,
y3

(0.53, 0.48)
,

y4
(0.85, 0.23)

,
y5

(0.19, 0.37)
,

y6
(0.49, 0.39)

,
y7

(0.62, 0.87)
,

y8
(0.13, 0.86)

􏼨 􏼩􏼪 􏼫,􏼨

0.2
s2

, e1, 1􏼠 􏼡
y1

(0.17, 0.28)
,

y2
(0.96, 0.36)

,
y3

(0.17, 0.48)
,

y4
(0.89, 0.13)

,
y5

(0.25, 0.28)
,

y6
(0.59, 0.49)

,
y7

(0.81, 0.75)
,

y8
(0.34, 0.13)

􏼨 􏼩􏼪 􏼫,

0.9
s3

, e1, 1􏼠 􏼡
y1

(0.25, 0.61)
,

y2
(0.64, 0.88)

,
y3

(0.85, 0.67)
,

y4
(0.49, 0.20)

,
y5

(0.41, 0.35)
,

y6
(0.79, 0.69)

,
y7

(0.65, 0.24)
,

y8
(0.57, 0.12)

􏼨 􏼩􏼪 􏼫,

0.7
s4

, e1, 1􏼠 􏼡
y1

(0.32, 0.31)
,

y2
(0.73, 0.55)

,
y3

(0.60, 0.75)
,

y4
(0.26, 0.56)

,
y5

(0.19, 0.90)
,

y6
(0.28, 0.16)

,
y7

(0.31, 0.54)
,

y8
(0.39, 0.23)

􏼨 􏼩􏼪 􏼫,
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Table 1: Score table for FP4 ROFSES (f,Z)D.

Y y1 y2 y3 y4 y5

((0.5/s1), e1, 1) 0.4160 0.0103 −0.1383 0.1695 0.0644
((0.3/s2), e1, 1) −0.0198 −0.0048 0.0335 0.0602 0.2099
((0.8/s3), e1, 1) −0.0117 0.3873 0.4730 −0.0035 −0.2933
((0.5/s1), e2, 1) −0.2488 −0.1375 −0.3699 −0.1704 0.6219
((0.3/s2), e2, 1) −0.0357 −0.0034 −0.0014 0.2262 0.0131
((0.8/s3), e2, 1) −0.3930 −0.1375 −0.0178 0.0043 0.5863
((0.5/s1), e3, 1) −0.0990 −0.0029 0.0088 −0.0250 0.0441
((0.3/s2), e3, 1) −0.2800 −0.0455 0.1024 −0.0052 0.1662
((0.8/s3), e3, 1) 0.3574 0.0536 −0.1762 0.7030 −0.0796
((0.5/s1), e4, 1) 0.2313 −0.0802 0.1407 -0.0335 −0.4015
((0.3/s2), e4, 1) 0.1730 −0.2313 −0.0200 −0.0573 0.0365
((0.8/s3), e4, 1) 0.5319 0.1166 0.1940 0.0077 0.2382
((0.5/s1), e4, 0) 0.3270 0.4252 0.4354 0.5214 −0.0018
((0.3/s2), e1, 0) −0.0018 −0.0031 −0.0010 −0.0011 −0.0032
((0.8/s3), e1, 0) −0.0219 −0.0031 −0.0027 −0.0022 −0.0314
((0.5/s1), e2, 0) −0.0044 −0.2391 −0.0036 −0.0202 −0.0260
((0.3/s2), e2, 0) −0.0122 0.0161 0.0155 −0.0011 0.0509
((0.8/s3), e2, 0) 0.0827 −0.0185 0.0910 0.1477 0.0404
((0.5/s1), e3, 0) 0.1165 0.0230 0.1665 0.1570 0.1469
((0.3/s2), e3, 0) 0.2247 0.2533 0.2583 0.2801 −0.0079
((0.8/s3), e3, 0) 0.0088 0.0043 −0.0059 −0.1375 −0.0747
((0.5/s1), e4, 0) −0.0117 0.1141 −0.0289 −0.0990 0.3574
((0.3/s2), e4, 0) 0.0335 0.2345 −0.0034 0.0088 0.1024
((0.8/s3), e4, 0) −0.0178 −0.0455 0.0014 0.4978 0.7030

(1) Input
Y, a universal set,
S, a universe of parameters,
E, a set of experts,
D, a set of weights for parameters,
O, a set of opinions,
(f,Z)D, an FPq ROFSES.

(2) Find the table of scores with entries Xij by Definition 14.
(3) Find the table of scores for agree-FPq ROFSES.
(4) Find the table of scores for disagree-FPq ROFSES.
(5) Input the accumulated agree scores Lj � 􏽐iwiXij in the last row of the score table of agree-FPq ROFSES.
(6) Input the accumulated disagree scores Cj � 􏽐iwiXij in the last row of the score table of disagree-FPq ROFSES.
(7) Find the values of final scores Kj � Lj − Cj.
(8) Find m, for which Km � maxKj.
(9) Output

In step (8), the object ym having maximum final score will be the most suitable choice. If there exist two or more objects with
maximum final scores, then anyone can be chosen as a decision.

ALGORITHM 1: Decision-making method based on FPq ROFSESs.
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Table 2: Accumulated score table for agree-FP4 ROFSES (f,Z)1D.

Y y1 y2 y3 y4 y5

((0.5/s1), e1, 1) 0.4160 0.0103 −0.1383 0.1695 0.0644
((0.3/s2), e1, 1) −0.0198 −0.0048 0.0335 0.0602 0.2099
((0.8/s3), e1, 1) −0.0117 0.3873 0.4730 −0.0035 −0.2933
((0.5/s1), e2, 1) −0.2488 −0.1375 −0.3699 −0.1704 0.6219
((0.3/s2), e2, 1) −0.0357 −0.0034 −0.0014 0.2262 0.0131
((0.8/s3), e2, 1) −0.3930 −0.1375 −0.0178 0.0043 0.5863
((0.5/s1), e3, 1) −0.0990 −0.0029 0.0088 −0.0250 0.0441
((0.3/s2), e3, 1) −0.2800 −0.0455 0.1024 −0.0052 0.1662
((0.8/s3), e3, 1) 0.3574 0.0536 −0.1762 0.7030 −0.0796
((0.5/s1), e4, 1) 0.2313 −0.0802 0.1407 -0.0335 −0.4015
((0.3/s2), e4, 1) 0.1730 −0.2313 −0.0200 −0.0573 0.0365
((0.8/s3), e4, 1) 0.5319 0.1166 0.1940 0.0077 0.2382
Lj � 􏽐iwiXij L1 � 0.4887 L2 � 0.1454 L3 � 0.2334 L4 � 0.6067 L5 � 0.6534

Table 3: Accumulated score table for disagree-FP4 ROFSES (f,Z)0D.

Y y1 y2 y3 y4 y5

((0.5/s1), e1, 0) 0.3270 0.4252 0.4354 0.5214 −0.0018
((0.3/s2), e1, 0) −0.0018 −0.0031 −0.0010 −0.0011 −0.0032
((0.8/s3), e1, 0) −0.0219 −0.0031 −0.0027 −0.0022 −0.0314
((0.5/s1), e2, 0) −0.0044 −0.2391 −0.0036 −0.0202 −0.0260
((0.3/s2), e2, 0) −0.0122 0.0161 0.0155 −0.0011 0.0509
((0.8/s3), e2, 0) 0.0827 −0.0185 0.0910 0.1477 0.0404
((0.5/s1), e3, 0) 0.1165 0.0230 0.1665 0.1570 0.1469
((0.3/s2), e3, 0) 0.2247 0.2533 0.2583 0.2801 −0.0079
((0.8/s3), e3, 0) 0.0088 0.0043 −0.0059 −0.1375 −0.0747
((0.5/s1), e4, 0) −0.0117 0.1141 −0.0289 −0.0990 0.3574
((0.3/s2), e4, 0) 0.0335 0.2345 −0.0034 0.0088 0.1024
((0.8/s3), e4, 0) −0.0178 −0.0455 0.0014 0.4978 0.7030
Cj � 􏽐iwiXij C1 � 0.3285 C2 � 0.2616 C3 � 0.4325 C4 � 0.7703 C5 � 0.7907

Table 4: Final scores.

Lj Cj Kj � Lj − Cj

L1 � 0.4887 C1 � 0.3285 K1 � 0.1603
L2 � 0.1454 C2 � 0.2616 K2 � −0.1162
L3 � 0.2334 C3 � 0.4325 K3 � −0.1991
L4 � 0.6067 C4 � 0.7703 K4 � −0.1636
L5 � 0.6534 C5 � 0.7909 K5 � −0.1373
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Table 5: Score table for FP5 ROFSES (f,Z)D.

Y y1 y2 y3 y4 y5 y6 y7 y8

((0.6/s1), e1, 1) −0.3163 0.0644 0.0163 0.4431 −0.0067 0.0192 −0.2571 −0.4704
((0.2/s2), e1, 1) −0.0016 0.8093 −0.0253 0.5584 −0.0007 0.0432 0.1114 0.0045
((0.9/s3), e1, 1) −0.0835 −0.4204 0.3087 0.0279 0.0063 0.1513 0.1152 0.0601
((0.7/s4), e1, 1) 0.0005 0.1570 −0.1595 −0.0539 −0.5902 0.0016 −0.0431 0.0084
((0.3/s5), e1, 1) 0.0345 0.5515 0.0041 −0.1720 0.0070 −0.2203 0.0085 0.0019
((0.6/s1), e2, 1) −0.1368 0.0082 −0.0049 −0.2028 −0.0133 0.0045 0.2499 −0.0687
((0.2/s2), e2, 1) 0.0051 −0.0015 0.4806 0.0976 0.0010 0.3322 0.0012 0.0221
((0.9/s3), e2, 1) 0.0844 0.0146 0.3925 0.2887 −0.0005 0.0014 0.3342 −0.0014
((0.7/s4), e2, 1) −0.5803 0.0427 0.1504 −0.2283 0.5758 0.0714 −0.0668 0.0205
((0.3/s5), e2, 1) 0.1071 −0.0481 0.3107 0.0345 −0.1155 0.7294 −0.0012 −0.0010
((0.6/s1), e3, 1) −0.0701 −0.0198 0.1770 0.0087 0.0210 0.3017 −0.0104 0.1192
((0.2/s2), e3, 1) 0.0312 0.2964 0.5127 0.1677 0.3277 0.0021 0.0309 −0.1578
((0.9/s3), e3, 1) 0.0003 0.1804 −0.0116 0.3483 0.1771 0.2642 0.3276 0.0102
((0.7/s4), e3, 1) −0.1770 0.4800 0.0785 −0.0536 0.1714 0.0610 0.3253 0.0175
((0.3/s5), e3, 1) −0.0014 0.0051 0.0932 −0.1683 0.0426 0.0214 0.0366 0.0125
((0.6/s1), e1, 0) 0.0024 0.5904 0.1596 0.1578 0.3253 0.0312 0.0844 0.0753
((0.2/s2), e1, 0) 0.5437 0.1525 −0.6498 −0.0584 0.2373 0.1681 0.1268 0.7337
((0.9/s3), e1, 0) 0.2964 0.0001 0.0003 0.0260 0.0144 −0.1222 0.1823 0.2765
((0.7/s4), e1, 0) 0.0004 0.0008 0.0020 0.0005 0.0021 0.0132 0.0065 0.0454
((0.7/s5), e1, 0) 0.1578 0.0465 −0.0768 0.0708 0.1516 −0.5303 0.1833 0.3484
((0.3/s1), e2, 0) 0.0008 0.0028 0.0102 0.0161 0.1679 0.0057 0.0002 0.0028
((0.6/s2), e2, 0) 0.5881 0.0024 0.0028 0.1601 0.0226 0.0841 0.1595 0.3870
((0.2/s3), e2, 0) 0.0012 0.0011 0.0008 0.0008 0.5901 −0.0009 0.0070 0.0266
((0.9/s4), e2, 0) 0.0309 0.0005 0.0001 0.0184 0.0243 0.2413 0.1634 0.4588
((0.7/s5), e2, 0) 0.0003 0.0009 −0.0005 −0.1677 0.0105 0.0156 0.0001 0.3472
((0.3/s1), e3, 0) 0.0916 0.0144 0.0184 0.1071 0.1560 0.1803 0.0992 0.0808
((0.6/s2), e3, 0) 0.0844 0.0183 0.0028 0.0503 0.0045 0.0045 0.0089 0.0915
((0.2/s3), e3, 0) 0.1901 0.2063 0.1368 0.0015 0.3936 0.0517 0.0714 0.2842
((0.9/s4), e3, 0) 0.0082 0.4806 −0.2887 0.0005 0.0014 0.0205 0.1071 −0.0481
((0.7/s5), e3, 0) 0.0427 0.0349 0.3936 0.0976 0.0133 −0.0045 −0.0505 0.3107

INPUT
• X, a universal set,
• S, a universe of parameter,
• E, a set of experts,
• D, a set of weights for parameters,
• O, a set of opinions,
• (f,z)D, a FPqROFSES

AGREE AND DISAGREE SCORE TABLES
• Find the table of scores with entries Xij by Definition 3.1.
• Find the table of scores for agree- and disagree-FPqROFSES.
• Input the accumulated agree scores Lj = Σi wiXij and accumu-
lated disagree scores Cj = Σi wiXij in the last row of score tables
of agree- and disagree-FPqROFSES, respectively.

FINAL SCORE TABLE
• Find the values of final scores Rj = Lj – Cj. Then compute m,
for which Rm = max Rj.
• Output
The object rm having maximum final score will be the most suitable
choice. If there exist two or more objects with maximum final scores
then anyone can be chosen as decision.

Figure 2: Flowchart diagram.
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Table 6: Accumulated score table for agree-FP5 ROFSES (f,Z)1D.

Y y1 y2 y3 y4 y5 y6 y7 y8

((0.6/s1), e1, 1) −0.3163 0.0644 0.0163 0.4431 −0.0067 0.0192 −0.2571 −0.4704
((0.2/s2), e1, 1) −0.0016 0.8093 −0.0253 0.5584 −0.0007 0.0432 0.1114 0.0045
((0.9/s3), e1, 1) −0.0835 −0.4204 0.3087 0.0279 0.0063 0.1513 0.1152 0.0601
((0.7/s4), e1, 1) 0.0005 0.1570 −0.1595 −0.0539 −0.5902 0.0016 −0.0431 0.0084
((0.3/s5), e1, 1) 0.0345 0.5515 0.0041 −0.1720 0.0070 −0.2203 0.0085 0.0019
((0.6/s1), e2, 1) −0.1368 0.0082 −0.0049 −0.2028 −0.0133 0.0045 0.2499 −0.0687
((0.2/s2), e2, 1) 0.0051 −0.0015 0.4806 0.0976 0.0010 0.3322 0.0012 0.0221
((0.9/s3), e2, 1) 0.0844 0.0146 0.3925 0.2887 −0.0005 0.0014 0.3342 −0.0014
((0.7/s4), e2, 1) −0.5803 0.0427 0.1504 −0.2283 0.5758 0.0714 −0.0668 0.0205
((0.3/s5), e2, 1) 0.1071 −0.0481 0.3107 0.0345 −0.1155 0.7294 −0.0012 −0.0010
((0.6/s1), e3, 1) −0.0701 −0.0198 0.1770 0.0087 0.0210 0.3017 −0.0104 0.1192
((0.2/s2), e3, 1) 0.0312 0.2964 0.5127 0.1677 0.3277 0.0021 0.0309 −0.1578
((0.9/s3), e3, 1) 0.0003 0.1804 −0.0116 0.3483 0.1771 0.2642 0.3276 0.0102
((0.7/s4), e3, 1) −0.1770 0.4800 0.0785 −0.0536 0.1714 0.0610 0.3253 0.0175
((0.3/s5), e3, 1) −0.0014 0.0051 0.0932 −0.1683 0.0426 0.0214 0.0366 0.0125
Lj � 􏽐iwiXij −0.7936 0.6780 1.0982 0.5857 0.3210 0.8989 0.8814 −0.1797

Table 7: Accumulated score table for disagree-FP5 ROFSES (f,Z)0D.

Y y1 y2 y3 y4 y5 y6 y7 y8

((0.6/s1), e1, 0) 0.0024 0.5904 0.1596 0.1578 0.3253 0.0312 0.0844 0.0753
((0.2/s2), e1, 0) 0.5437 0.1525 −0.6498 −0.0584 0.2373 0.1681 0.1268 0.7337
((0.9/s3), e1, 0) 0.2964 0.0001 0.0003 0.0260 0.0144 −0.1222 0.1823 0.2765
((0.7/s4), e1, 0) 0.0004 0.0008 0.0020 0.0005 0.0021 0.0132 0.0065 0.0454
((0.7/s5), e1, 0) 0.1578 0.0465 −0.0768 0.0708 0.1516 −0.5303 0.1833 0.3484
((0.3/s1), e2, 0) 0.0008 0.0028 0.0102 0.0161 0.1679 0.0057 0.0002 0.0028
((0.6/s2), e2, 0) 0.5881 0.0024 0.0028 0.1601 0.0226 0.0841 0.1595 0.3870
((0.2/s3), e2, 0) 0.0012 0.0011 0.0008 0.0008 0.5901 −0.0009 0.0070 0.0266
((0.9/s4), e2, 0) 0.0309 0.0005 0.0001 0.0184 0.0243 0.2413 0.1634 0.4588
((0.7/s5), e2, 0) 0.0003 0.0009 −0.0005 −0.1677 0.0105 0.0156 0.0001 0.3472
((0.3/s1), e3, 0) 0.0916 0.0144 0.0184 0.1071 0.1560 0.1803 0.0992 0.0808
((0.6/s2), e3, 0) 0.0844 0.0183 0.0028 0.0503 0.0045 0.0045 0.0089 0.0915
((0.2/s3), e3, 0) 0.1901 0.2063 0.1368 0.0015 0.3936 0.0517 0.0714 0.2842
((0.9/s4), e3, 0) 0.0082 0.4806 −0.2887 0.0005 0.0014 0.0205 0.1071 −0.0481
((0.7/s5), e3, 0) 0.0427 0.0349 0.3936 0.0976 0.0133 −0.0045 −0.0505 0.3107
Cj � 􏽐iwiXij 0.8271 0.9480 0.0026 0.2382 1.4126 0.1542 0.6377 1.4874

Table 8: Final scores.

Lj Cj Kj � Lj − Cj

L1 � −0.7936 C1 � 0.8271 K1 � −1.6206
L2 � 0.6780 C2 � 0.9480 K2 � −0.2700
L3 � 1.0982 C3 � 0.0026 K3 � 1.0957
L4 � 0.5857 C4 � 0.2382 K4 � 0.3475
L5 � 0.3210 C5 � 1.4126 K5 � −1.0917
L6 � 0.8989 C6 � 0.1542 K6 � 0.7447
L7 � 0.8814 C7 � 0.6377 K7 � 0.2438
L8 � −0.1797 C8 � 1.4874 K8 � −1.6671

Table 9: Comparison of final scores by applying proposed model on the application in [29].

Hybrid models u1 u2 u3 Ranking Best option

FPIFSESs [29] 0.989 −0.937 4.039 u3 > u1 > u2 u3
FPPFSESs 0.844 −0.904 4.106 u3 > u1 > u2 u3
FPFFSESs 0.499 −0.633 4.089 u3 > u1 > u2 u3
Proposed FPq ROFSESs (q � 4) 0.184 −0.401 4.025 u3 > u1 > u2 u3
Proposed FPq ROFSESs (q � 5) −0.082 −0.224 3.927 u3 > u1 > u2 u3
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Figure 3: Comparison of final scores by applying the proposed model on the application in [29].
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(30)

*e committee uses Algorithm 1 for the selection of the
“Best News Channel.”

Table 5 represents the score table for the FP5 ROFSES
defined above. Tables 6 and 7 represent the score tables for
agree- and disagree-FP5 ROFSESs, respectively, along with
the agree and disagree accumulated scores.

Using agree and disagree accumulated scores in Tables 6
and 7, Table 8 provides the final scores. From the final scores
table, it can be seen that Km � max(Kj) � K3; hence, the
news channel y3 is awarded as the “Best News Channel” by
the committee and the organization.

4. Comparison

*ese days, experts believe that fuzzy parameterized ex-
tensions of the soft set model and its hybrid structures with
other uncertainty theories are playing a crucial role in
solving several daily-life decision-making problems. Till
date, the mathematical tools considering above-mentioned
topic in hand are FPFSSs [20], IFPFSSs [22], IFPIFSSs [24],
IVIFP-IVIFSSs [25], FPFSESs [45], and FPIFSESs [29].
Inspection of researches completed in the last few decades
proves the significance of uncertain hybrid models toward
this topic. Clearly, our proposed hybrid model, FPq ROF-
SESs, generalized the FPIFSESs [29]. Note that FPIFSESs

[29], fuzzy parameterized Pythagorean FSESs (FPPFSESs),
and fuzzy parameterized Fermatean FSESs (FPFFSESs) are
particular cases of our developed FPq ROFSES model for
q � 1, 2 and q � 3, respectively. One cannot apply the
existing FPIFSES model to the proposed applications in
Section 3. *us, to clearly observe the advantages of the
developed model and its comparative analysis with existing
models, it is applied to the application in [29] and obtains
similar results for different values of parameter “q,” which
are computed in Table 9 and displayed in Figure 3. In [29],
the authors have not used weights in the group decision-
making process, which was an essential part of their new
construction. So, there is a flaw in their model. In our
proposed method, we not only cover this issue (that is, we
have utilized these weights in the developed group decision-
making method, see Algorithm 1; Steps 5 and 6) but also
provided its generalization. *us, our proposed hybrid
model applicability scope is wider than existing models,
including FPIFSESs [29] and FPFSES [45].

4.1. Advantages of the Initiated Model. From the inspection
of the recent decade, one can easily observe various de-
velopments in the hybrid models containing fuzzy param-
eterized soft sets as one of their components. All these
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models are inefficient to tackle data in a q-ROF environment
with n experts where n≥ 1. A generalized hybrid approach is
currently required, which maintains the features of more
than one existing model. With the motivation of these
concerns, a new hybrid model called FPq ROFSES is initi-
ated. In our developed model, the estimations of all experts
are examined in a q-ROF environment. *e developed
model’s applicability scope is wider than various existing
models, including FPFSSs [20], FPFSESs [45], and FPIFSESs
[29] because it is an efficient extension of all these models. It
can be easily seen that the existing MAGDM method,
namely, FPIFSESs, cannot address the MADM situations as
studied in Section 3. *us, the developed model is very
reliable and flexible for dealing with imprecise fuzzy pa-
rameterized q-ROF soft expert information, specifically, if
the available information is collected from multiple experts
in a q-ROF environment.

5. Conclusions

*e theory of q-ROFSs has proved to be a strong tool for
dealing with high levels of uncertainties in many practical
situations than IFSs, PFSs, and FFSs; thus, it is a basic
component of many mathematical hybrid decision-making
models for dealing with such complex decisive situations.
*e fuzzy parameterized soft sets and their extensions are
more efficient in dealing with scenarios considering much
preference of some of the parameters over the others, thus
getting more precisely to the required decisions. Similarly,
for MAGDM situations, SESs as an efficient model provide
the facility of considering multiple experts’ opinions in one
place. *is article extends the hybrid model FPIFSESs to
a more generalized novel hybrid structure called FPq

ROFSESs, which is actually a combination of q-ROFSs [5]
and FPSESs [46]. When q � 1, the proposed model reduces
to the FPIFSES model [29], and when q � 2 and q � 3, it
degenerates into FPPFSESs and FPFFSESs, respectively.
Some essential basic notions including subset, complement,
AND operation, OR operation, intersection, and union are
studied coupled with illustrative examples. De Morgan’s
laws under FPq ROFSESs are verified. Moreover, to show the
applicability and efficiency of the proposed model, two real-
life applications, including the selection of the best site for
cafe outlet and Best News Channel, are provided and solved
under FPq ROFSESs with the help of a developed algorithm.
Finally, a comparison of the developed group decision-
making method under FPq ROFSESs is studied with few
existing approaches, including FPIFSESs [29]. *is com-
parative analysis in Section 4 shows that the developed
model’s applicability and reliability scope is higher than
existing models, including q-ROFSSs and FPIFSESs. During
the construction of our initiated model, we observed that it
has two major limitations. Firstly, the proposed model fails
in a situation if weights are given in the form of an intui-
tionistic fuzzy environment. Secondly, it fails if experts
provide their estimations in the form of an interval-valued
q-ROF environment. In the future, to remove these draw-
backs of our model, we are planning to expand our work
with the following models: (a) intuitionistic fuzzy

parameterized q-rung orthopair fuzzy soft expert sets using
the idea in [24], (b) fuzzy parameterized interval-valued
q-rung orthopair fuzzy soft expert sets using the idea in [25],
(c) fuzzy parameterized complex interval-valued q-rung
orthopair fuzzy soft expert sets with aggregation operators
using the concepts in [7], and (d) fuzzy parameterized
complex q-rung orthopair fuzzy soft expert sets using [8].
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