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Joint angle and frequency estimation, one of the key technologies in wireless communication and radar science, has been
extensively studied by scholars. For linear arrays, this paper proposes a joint angle and frequency estimation method based on
covariance reconstruction and the estimation of signal parameters via rotational invariance techniques (CR-ESPRIT). We first use
the received conjugate signal to reconstruct a covariance matrix.&en, we use the least squares-ESPRIT (LS-ESPRIT) algorithm to
estimate the desired frequencies. Finally, we estimate the angles according to the reconstructed matrix. &e proposed method can
estimate signal parameters via automatic pairing and without an additional parameter pairing process under the condition of a
uniform or a nonuniform array. Moreover, this method has high estimation accuracy, excellent and stable anti-noise performance,
and strong algorithmic robustness. &rough a computer simulation analysis, we can confirm the reliability and validity of the
proposed parameter estimation method. A comparison with other methods further proves the performance advantages of the
developed method. &e method in this paper can be easily applied to many signal processing contexts, such as electronic re-
connaissance and wireless communication.

1. Introduction

&e joint angle and frequency estimation of received signals
submerged in Gaussian white noise has important appli-
cations in wireless communication [1], audio and speech
signal processing [2], and other fields [3, 4]. For example, in
a wireless communication system, accurate and robust joint
angle and frequency estimation can help provide better
channel information, thereby improving the link quality and
anti-interference ability of the system [1]. Especially in
electronic reconnaissance [5–8], we often use the operating
frequencies and directions of arrival (DOAs) [9–13] of
noncooperative radar radiation source signals to describe
the main parameters of radar signal characteristics [14–16].
&erefore, to effectively obtain the parameters of

noncooperative radar source signals, it is necessary to study
a joint DOA and frequency estimation method for such
signals submerged in Gaussian white noise.

Regarding the joint DOA and frequency estimation of
noisy signals, researchers worldwide have proposed various
methods [16–22]. In 1986, Schmidt [17] proposed the
multiple signal classification (MUSIC) algorithm for pa-
rameter estimation. Although the algorithm has good es-
timation performance, it has high computational complexity
since it needs to search for spectral peaks to obtain the
estimated values. Lemma et al. [18] presented a joint angle
and frequency estimation method based on the multidi-
mensional estimation of signal parameters via rotational
invariance techniques (ESPRIT). Nevertheless, this algo-
rithm has low parameter estimation accuracy under low
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signal-to-noise ratios (SNRs). To effectively improve the
accuracy of estimated DOA and frequency results, in 2010,
Wang proposed a joint angle and frequency estimation
technique using multiple-delay outputs (MDJAFE) [16]
based on the ESPRIT algorithm. However, this method
cannot realize automatic parameter pairing when per-
forming the joint estimation of signal parameters. Since the
propagator method (PM) shows good performance in pa-
rameter estimation, it has attracted the attention of scholars.
Sun et al. [19] proposed a joint DOA and frequency esti-
mation based on the improved PM. Although the complexity
of the algorithm is low and it can realize the automatic
pairing of DOA and frequency parameter estimations, its
parameter estimation accuracy is not high. Wang et al. [20]
proposed an improved ESPRIT algorithm using the multi-
delay output of a uniform linear antenna (ULA). Although
the algorithm’s complexity is greatly reduced, this method is
greatly affected by noise, and the estimation accuracy of this
method is still very limited when the SNR is low. Based on
the extended orthogonal matching pursuit (EOMP) algo-
rithm, Gao et al. [21] proposed an approach to jointly es-
timate DOAs and frequency, whereas this method has high
computational complexity. Xu et al. [22] proposed a joint
DOA and narrowband source carrier frequency estimation
method based on parallel factor (PARAFAC) analysis. &e
computational complexity of this method is relatively high,
and the hardware cost is also high.

Due to the wide range of possible SNRs, frequency and
DOA estimation algorithms have unstable anti-noise per-
formance and limited estimation accuracy. We propose a
method for the joint DOA and frequency estimation of
signals submerged in Gaussian white noise. &e algorithm
involves a three-step estimation procedure. First, we pre-
process the received signal. Second, we use the least squares-
ESPRIT (LS-ESPRIT) algorithm to estimate the frequency
parameters of the signal. Finally, according to the unique
relationship between the signal angle and its frequency, we
estimate the DOAs. Computer simulations and comparisons
with other methods prove the excellent performance of the
proposed method.

&e main contributions of our work can be summarized
as follows:

(1) We improve upon the estimation process in [20].
Under the condition of a uniform or a nonuniform
array, the method proposed in this paper can esti-
mate the required parameters by performing auto-
matic pairing without an additional parameter
pairing process. Moreover, this method has good
estimation accuracy, stable anti-noise performance,
and robustness. &erefore, the method proposed in
this paper is more suitable than other approaches for
the parameter estimation of noncooperative radar
radiation sources in an external field, which usually
contains a complex electromagnetic environment.

(2) &is paper proposes a joint angle and frequency
estimation method based on covariance recon-
struction and ESPRIT (CR-ESPRIT). Within the
SNR range from -15 dB to 15 dB (step: 2 dB), its
performance is better than that of the PM, the co-
variance reconstruction and propagator method
(CR-PM), the ESPRIT method [16], and the im-
proved ESPRIT method [20].

&e remainder of this paper is structured as follows. &e
materials and methods are presented in Section 2; Section 3
contains the results and a discussion, and Section 4 is the
summary of the paper.

Notations.(•)H, (•)∗, (•)− 1, and (•)+ denote the conju-
gate transpose, complex conjugation, inverse, and Moor-
e–Penrose inverse (pseudoinverse) operations, respectively.
Matrices and vectors are represented by boldfaced capital
letters and lowercase letters, respectively.

2. Materials and Methods

2.1. SignalModel. Consider an antenna array that consists of
M array elements arranged in a straight line at equal dis-
tances, where the distance between each pair of array ele-
ments is d [23]. We suppose that there exist K (K<M) far-
field source narrowband signals (the center frequency is fk),
which are incident on the antenna array. &erefore, we can
regard the signals as plane waves when they reach the array.
&en, we can express the received signal of the mth antenna
as follows [24]:

ym(t) � 􏽘
K

k�1
exp −j2π(m − 1)dfk

sin θk( 􏼁

c
􏼠 􏼡􏼠 􏼡sk(t) + nm(t), m � 1, 2, . . . , M, (1)

where sk(t) is the kth incident far-field source signal, c is the
speed of light (m/s), θk and fk are the DOA and frequency of
the kth signal, respectively, and nm(t) is the zero-mean
additive white Gaussian noise on the mth antenna. We can
express the output signal of the linear array as

Y0 � y1(n)y2(n), . . . , yM(n)􏼂 􏼃
T
, n � 1, 2, . . . , N. (2)

We assume that the signal is uniformly sampled by a
period that conforms to the Nyquist sampling rate and that

the number of snapshots is N. &erefore, we can transform
the signal model studied in this paper into a joint DOA and
frequency estimation model for multiple source signals,
whereN sampling points are obtained for each source signal.

We assume that the number of signal sources K is
known; thus, we can rewrite output state vector (2) in the
following matrix form:

Y0 � AS + N0, (3)
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where S � [s1, s2, . . . , sK]T ∈ CK×N, N0 � [n1,n2, . . . ,nM]T

∈ CM×N, and

A �

1 1 . . . 1

exp −jα1( 􏼁 exp −jα2( 􏼁 . . . exp −jαK( 􏼁

. . . . . . . . . . . .

exp −j(M − 1)α1( 􏼁 exp −j(M − 1)α2( 􏼁 . . . exp −j(M − 1)αK( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4)

In equation (4), αk � 2πdfk sin(θk)/c, k � 1, . . . , K. To
realize the joint DOA and frequency estimation model, we
take (P-1) delays [25, 26] for the signal received from the

antenna arrays shown in Figure 1. In addition, we set
0< (P − 1)τ < 1/max(fk). &erefore, we can obtain the
delay signal with the delay value τ as

ym(t − τ) � 􏽘
K

k�1
exp

−j2π(m − 1)dfk sin θk( 􏼁

c
􏼠 􏼡sk(t − τ) + nm

′ (t)

� 􏽘
K

k�1
exp

−j2π(m − 1)dfk sin θk( 􏼁

c
􏼠 􏼡sk(t)exp −j2πfkτ( 􏼁 + nm

′ (t).

(5)

We can transform equation (5) into the following form:

Y1 � AΦS + N1, (6)

where βk � 2πfkτ, (k � 1, 2, . . . , K) and Φ � diag[exp
(−jβ1), exp(−jβ2), . . . , exp(−jβK)].

When the delay value is pτ, we can express the delay
signal as

ym(t − pτ) � 􏽘
K

k�1
exp

−j2π(m − 1)dfk sin θk( 􏼁

c
􏼠 􏼡sk(t − pτ) + nm

′ (t)

� 􏽘
K

k�1
exp

−j2π(m − 1)dfk sin θk( 􏼁

c
􏼠 􏼡sk(t)exp −j2πfkτp( 􏼁 + nm

′ (t).

(7)

&en, we can also express equation (7) as

Yp � AΦpS + Np, p � 0, 1, 2, . . . , P − 1. (8)

After reorganizing the equations, we can obtain the
following expression:

Y �

Y0
Y1
. . .

YP−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

A
AΦ
. . .

AΦP− 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
S +

N0
N1
. . .

NP−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (9)

2.2. 5e Proposed Method. In this paper, inspired by the
improved ESPRITmethod [20], we propose a joint angle and
frequency estimationmethod based on CR-ESPRIT. In a real
space, the improved ESPRIT method is not suitable for
complex electromagnetic environments. Due to the

noncooperative characteristics of radiation sources, we
generally believe that there is no prior information available
regarding the parameters. Moreover, in a complex and harsh
electromagnetic environment, the detected radiation source
signals are very weak. &erefore, in a situation with a low
SNR, the developed method not only needs to distinguish
useful signals and noise effectively but also needs to have
good estimation performance, noise immunity and ro-
bustness. Additionally, it also needs to have the ability to
automatically pair the relevant parameters without an ad-
ditional parameter pairing process under the condition of a
uniform or a nonuniform array.

We first preprocess the received signal in Section 2.2.1.
Second, we use the LS-ESPRIT algorithm to estimate the
frequency parameters of the received signal in Section 2.2.2.
&ird, according to the relationship between the DOA and
frequency in the signal model, we reconstruct the received
signal, and then we estimate the DOAs in Section 2.2.3. In
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Section 2.2.4, we provide the detailed steps of the proposed
method. Finally, we provide the detailed steps of the pro-
posed method under the condition of a nonuniform array in
Section 2.2.5.

2.2.1. 5e Preprocessing Procedure. First, we obtain the
covariance matrix RY � YYH of the received signal. To make
full use of the conjugate information contained in the re-
ceived signal, we define the permutation matrix J [27]:

J �

0 . . . 0 1

. . . 0 1 0

0 . . . . . . . . .

1 0 . . . 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

PM×PM

. (10)

&erefore, we can construct the following matrix:

RJ � J Y∗( 􏼁 Y∗( 􏼁
HJH

. (11)

We add the covariance matrix RY and RJ from equation
(11), and then we average them. &e form of the obtained
covariance matrix is shown as follows:

R �
RY + RJ

2
. (12)

&rough analysis, we can obtain that the new total co-
variance matrix R is a Hermitian matrix (PM×PM) [28].
&erefore, we can apply eigenvalue decomposition, and then
we can reconstruct the signal subspace Ess. In a no-noise
situation, Ess can be approximately expressed as

Ess �

A

AΦ

. . .

AΦP− 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

F, (13)

where F is a full-rank matrix with K×K dimensions.

Remark 1. As mentioned earlier, the new total covariance
matrix R is already a Hermitian matrix. According to
Hermitian matrix characteristics, we assume that the di-
agonal matrix of the eigenvalues of R is G. &en, there
exists a unitary matrix U, which assures RU =UG.
&erefore, we can treat R as the unitary matrix U by using
this correlation feature to further reduce the complexity of
the proposed method and then propose a much lower
complexity method.

2.2.2. Frequency Estimation. We define the following
parameters:

E1 �

A

AΦ

. . .

AΦP− 2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

F, (14)

E2 �

AΦ
AΦ2

. . .

AΦP− 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
F. (15)

&erefore, equations (14) and (15) have the following
relationship:

E2 �

AΦ

AΦ2

. . .

AΦP− 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

F �

A

AΦ1

. . .

AΦP− 2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

FF− 1ΦF � E1F
− 1ΦF. (16)

Let Ψ � F− 1ΦF and Ψ � E+
1E2. According to the LS-

ESPRIT algorithm, we can estimate Φ by the eigenvalue
decomposition ofΨ, and we can also estimate the matrix F−1

by the eigenvector of Φ. In a no-noise situation, we define

􏽢F− 1
� F− 1Θ,

􏽢Φ � Θ− 1ΦΘ,
(17)

where Θ is a fuzzy column matrix. Since Ψ and Φ have the
same eigenvalues, we can obtain the eigenvalues
λk(k � 1, 2, . . . , K) frommatrixΨ. As shown in equation (6)
(βk � 2πfkτ, k � 1, 2, . . . , K), it is obvious that we can es-
timate the frequency parameter 􏽢fk, k � 1, 2, . . . , K:

􏽢fk �
1

2πτ
angle λk( 􏼁. (18)

τ1

Y1

Y0

τ2

τP–1

YP–1

τ1

τ2

τP–1

τ1

τ2

τP–1

Antenna MAntenna 2Antenna 1

Figure 1: Received signals with multilevel delays.
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2.2.3. DOA Estimation. AΦP−1 has the following expression:

AΦP− 1
�

exp −j(P − 1)β1( 􏼁 exp −j(P − 1)β2( 􏼁 . . . exp −j(P − 1)βK( 􏼁

exp −jα1( 􏼁exp −j(P − 1)β1( 􏼁 exp −jα2( 􏼁exp −j(P − 1)β2( 􏼁 . . . exp −jαK( 􏼁exp −j(P − 1)βK( 􏼁

. . . . . . . . . . . .

exp −j(M − 1)α1( 􏼁exp −j(P − 1)β1( 􏼁 exp −j(M − 1)α2( 􏼁exp −j(P − 1)β2( 􏼁 . . . exp −j(M − 1)αK( 􏼁exp −j(P − 1)βK( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(19)

According to the above estimation 􏽢F− 1, we can define the
following expression by reconstructing equation (13):

EQ �

B

BΤ

. . .

BTM− 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Θ, (20)

where

B �

1 1 . . . 1

exp −jβ1( 􏼁 exp −jβ2( 􏼁 . . . exp −jβK( 􏼁

. . . . . . . . . . . .

exp −j(P − 1)β1( 􏼁 exp −j(P − 1)β2( 􏼁 . . . exp −j(P − 1)βK( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Τ � diag exp −jα1( 􏼁, exp −jα2( 􏼁, . . . , exp −jαK( 􏼁􏼂 􏼃 ∈ C
K×K

,

αk �
2πdfk sin θk( 􏼁

c
, k � 1, 2, . . . , K.

(21)

According to reconstructed equation (20), we can use the
method described below to estimate the DOA.

We define the following matrices:

EQ1 �

B

BΤ

. . .

BΤM− 2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Θ,

EQ2 �

BT

BT2

. . .

BTM− 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Θ.

(22)

We can also define a matrix D since D � E+
Q1EQ2. &en,

according to the definitions of EQ1 and EQ2, we can express
D in a no-noise situation:

D � Θ− 1TΘ. (23)

&erefore, we can take the diagonal elements of D, and
then, we can obtain ϖk(k � 1, 2, . . . , K), where

αk � 2πdfk sin(θk)/c((k � 1, 2, . . . , K), to obtain the esti-
mation of the DOA:

􏽢θk � arcsin
c

2π􏽢fkd
angle ϖk( 􏼁􏼠 􏼡, k � 1, 2, . . . , K. (24)

2.2.4. 5e Steps of the Proposed Method. &us far, we have
given the complete process for automatically pairing DOA
and frequency estimations in a linear array. &e main steps
required to implement the method proposed in this paper
are as follows:

(i) Step 1: according to permutation matrix J and
equation (12), we reconstruct the covariance matrix
R.

(ii) Step 2: we apply eigenvalue decomposition toR, and
then we reconstruct the signal subspace Ess.
According to equations (14) and (15), we construct
matrices E1 and E2, respectively.

(iii) Step 3: we use equation (Ψ � E+
1E2) for eigenvalue

decomposition to obtain F−1 and 􏽢Φ. Finally, we
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estimate the frequency parameter 􏽢fk according to
equation (18).

(iv) Step 4: we can obtain matrix EQ according to the
reconstruction of Ess in equation (13). &en, we can
also construct matrices EQ1 and EQ2.

(v) Step 5: we calculateD � E+
Q1EQ2 to obtain matrixD.

Finally, we estimate the DOA parameter 􏽢θk

according to equation (24).

2.2.5. 5e Condition of a Nonuniform Array. In this section,
we first present the method proposed in this paper when the
distances between the array elements are not equal.&en, we
present the main steps for implementing the method in the
case of a nonuniform array.

We assume that the first element d1 = 0 and that the
distance between themth element and the first element is dm.
&en, we can transform equation (4) into the following form:

A1 �

1 1 . . . 1

exp −jd2η1( 􏼁 exp −jd2η2( 􏼁 . . . exp −jd2ηK( 􏼁

. . . . . . . . . . . .

exp −jdMη1( 􏼁 exp −jdMη2( 􏼁 . . . exp −jdMηK( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(25)

where ηk � 2πfk sin(θk)/c(k � 1, 2, . . . , K). At the same
time, equation (19) undergoes the following transformation:

A1Φ
P− 1

�

exp −j(P − 1)β1( 􏼁 exp −j(P − 1)β2( 􏼁 . . . exp −j(P − 1)βK( 􏼁

exp −jd2η1( 􏼁exp −j(P − 1)β1( 􏼁 exp −jd2η2( 􏼁exp −j(P − 1)β2( 􏼁 . . . exp −jd2ηK( 􏼁exp −j(P − 1)βK( 􏼁

. . . . . . . . . . . .

exp −jdMη1( 􏼁exp −j(P − 1)β1( 􏼁 exp −jdMη2( 􏼁exp −j(P − 1)β2( 􏼁 . . . exp −jdMηK( 􏼁exp −j(P − 1)βK( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(26)

Similarly, we can reconstruct equation (13) and define
the following expression:

EQQ �

BJ1
BJ2
. . .

BJM

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Θ, (27)

where Jm � diag[exp(−jdmη1), exp(−jdmη2),
. . . , exp(−jdmηK)] ∈ CK×K, m � 1, 2, . . . , M.

We define the following matrix:

EQQ1 �

BJ1
BJ2
. . .

BJM−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Θ �

EQQ11
EQQ12

. . .

EQQ1(M−1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

EQQ2 �

BJ2
BJ3
. . .

BJM

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Θ �

EQQ22
EQQ23

. . .

EQQ2M

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(28)

We also define the matrix Qm, where
Qm � (EQQ1(m− 1))

+(EQQ2m), m � 2, . . . , M. &erefore, we
can take the diagonal elements of Qm and then obtain

νm � diag exp −j dm − dm−1( 􏼁η1( 􏼁, exp −j dm − dm−1( 􏼁η2( 􏼁, . . . , exp −j dm − dm−1( 􏼁ηK( 􏼁􏼂 􏼃 ∈ C
K×K

, m � 2, . . . , M. (29)

We sort the diagonal elements and then define the
following matrix:

V �

1 1 . . . 1

exp −j d2 − d1( 􏼁η1( 􏼁 exp −j d2 − d1( 􏼁η2( 􏼁 . . . exp −j d2 − d1( 􏼁ηK( 􏼁

. . . . . . . . . . . .

exp −j dm − dm−1( 􏼁η1( 􏼁 exp −j dm − dm−1( 􏼁η2( 􏼁 . . . exp −j dm − dm−1( 􏼁ηK( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (30)

According to equation (30), we can obtain the estimation
of the DOA:
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􏽢θk �
1

M − 1
􏽘

M

m�2
arcsin

c

2π􏽢fk dm − dm−1( 􏼁
angle Vmk( 􏼁􏼠 􏼡, (k � 1, 2, . . . , K). (31)

&e main steps for implementing the method in this
paper under the condition of a nonuniform array are as
follows:

(i) Step 1: according to equations (10), (12), and (25),
we reconstruct the new covariance matrix.

(ii) Step 2: we apply eigenvalue decomposition to the
new covariance matrix, and then we reconstruct the
signal subspace Ess. According to equations (14) and
(15), we construct matrices E1 and E2, respectively.

(iii) Step 3: we use equation (Ψ � E+
1E2) to perform

eigenvalue decomposition and obtain F−1 and 􏽢Φ.
Finally, we estimate the frequency parameter 􏽢fk

according to equation (18).
(iv) Step 4: we can obtain the matrix EQQ according to

equation (27). &en, we can also construct matrices
EQQ1 and EQQ2.

(v) Step 5: we can obtain matrix V according to
equation (30). Finally, we estimate the DOA pa-
rameter 􏽢θk according to equation (31).

3. Results and Discussion

3.1. Performance Analysis of the Proposed Method

3.1.1. Method Complexity. In this section, we focus on the
performance analysis with respect to complexity.

Complexity is mainly measured by the number of complex
multiplications and the running time required by a given
method. For the ESPRIT method in [16], the complexity is
O(M2P2N + M3P3 + 2K2M(P − 1) + 8K3 + 2K2(M − 1)).
For the improved ESPRIT method in [20], the complexity
required to calculate the covariance matrix RY is
O(M2P2N). &e complexity required for eigenvalue de-
composition is O(M3P3). &e complexity of calculatingΨ �

E+
1E2 is O(2K2M(P − 1) + 2K3). &en, the eigenvalue de-

composition complexity of Ψ � E+
1E2 is O(K3). When es-

timating the DOA, the complexity is O(2K3 + 2K2

(M − 1)P). &erefore, the complexity of the improved ES-
PRIT method is O(M2P2N + M3P3 + 2K2M(P − 1)+

5K3 + 2K2(M − 1)P).
For the proposed method, the preprocessing complexity

is O(M2P2N + M3P3). &e complexity of frequency esti-
mation is O(2K2M(P − 1) + 3K3). In addition, the com-
plexity of DOA estimation is O(2K3 + 2K2(M − 1)P).
&erefore, the complexity of the proposed method is
O(M2P2N + M3P3 + 2K2M(P − 1)

+5K3 + 2K2(M − 1)P + 1). It should be noted that in the
preprocessing of this paper, we only need to calculate the
covariance matrix RY and the eigenvalue decomposition,
which means that we do not require additional calculations
to construct the matrix RJ.

&e reason is that, according to equation (11), RJ has the
following expression:

RJ � JY∗Y∗HJH
�

0 . . . 0 1

. . . 0 1 0

0 . . . . . . . . .

1 0 . . . 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Y0

Y1

. . .

YP− 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∗ Y0

Y1

. . .

YP− 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∗H 0 . . . 0 1

. . . 0 1 0

0 . . . . . . . . .

1 0 . . . 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

Y∗P−1

. . .

Y∗1
Y∗0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Y0 Y1 . . . YP−1􏼂 􏼃

0 . . . 0 1

. . . 0 1 0

0 . . . . . . . . .

1 0 . . . 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

�

Y∗P−1Y0 Y∗P−1Y1 . . . Y∗P−1YP−1

. . . . . . . . . . . .

Y∗1Y0 Y∗1Y1 . . . Y∗1YP−1

Y∗0Y0 Y∗0Y1 .. . . . . Y∗0YP−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

0 . . . 0 1

. . . 0 1 0

0 . . . . . . . . .

1 0 . . . 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

Y∗P−1YP−1 . . . Y∗P−1Y1 Y∗P−1Y0

. . . . . . . . . . . .

Y∗1YP−1 . . . Y∗1Y1 Y∗1Y0

Y∗0YP−1 . . . Y∗0Y1 Y∗0Y0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(32)

while the covariance matrix RY

RY � YYH
�

Y0

Y1

. . .

YP−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Y0

Y1

. . .

YP− 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

H

�

Y0

Y1

. . .

YP−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Y∗0 Y∗1 . . . Y∗P−1􏼂 􏼃 �

Y0Y
∗
0 Y0Y

∗
1 . . . Y0Y

∗
P−1

Y1Y
∗
0 Y1Y

∗
1 . . . Y1Y

∗
P−1

. . . . . . . . .

YP−1Y
∗
0 YP−1Y

∗
1 . . . YP−1Y

∗
P−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (33)
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By observing equations (32) and (33), we find that
through simple moment transformation, we can transform
the matrix RY into the matrix RJ. &erefore, when pre-
processing, we do not need additional complex multipli-
cations to reconstruct the matrix RJ.

For the PM, the complexity of frequency estimation is
O(M2P2N + 4K3 + M2P2K + PMK2 + 2K2(M − K)). In
addition, the complexity of DOA estimation is O(K2(M−

K) + 2K3 + 2K2(M − 1)). &erefore, the complexity of the
PM is O(M2P2N + 6K3 + M2P2K + PMK2 + 3K2(M − K)

+2K2(M − 1)). &e CR method is also applicable to the PM.
&erefore, the complexity of the CR-PM is O(M2P2N +

6K3 + M2P2K + PMK2 + 3K2 (M − K) + 2K2(M − 1)).
Figures 2 and 3 present the complexity comparison of

these algorithms versus the number of signal sourcesK and the
number of snapshots N with M=12 and P=3, respectively.
Table 1 compares the running time of these algorithms under
the condition of an i7-8550U CPU with K=3, N=200, and
2000 Monte Carlo simulations. Figures 2 and 3 show that the
complexity of the method proposed in this paper is almost the
same as that of the ESPRIT method in [16] and that of the
improved ESPRIT method in [20] and is much higher than
that of the PM and that of the CR-PM. In addition, the
running time of the proposedmethod does not increase much.
Moreover, through subsequent analysis, within the SNR range
from −15 dB to −1 dB, the advantages of the proposed method
are more obvious. In particular, when SNR=−15 dB, com-
pared with the improved ESPRIT method, the frequency es-
timation accuracy of the method proposed in this paper is an
approximately 25.50% improvement; the DOA estimation
accuracy of the method proposed in this paper is an ap-
proximately 31.95% improvement. &erefore, we can confirm
that by increasing the utilization of the originally received data,
we can improve the parameter estimation accuracy and the
noise robustness of the proposed method.

3.1.2. 5e Advantages of the Proposed Method. In this sec-
tion, we summarize the advantages of the proposed method
in this paper as follows:

(1) Under the condition of a uniform or a nonuniform
array, the method can effectively estimate the DOAs
and frequencies of source signals. It can also realize
automatic pairing without an additional parameter
pairing process since the method has the same fuzzy
column matrix for both parameters.

(2) For incoherent signal sources whose angles are close
together, this method can perform effective identi-
fication and parameter estimation.

(3) Compared with those of the PM, the CR-PM, the
ESPRIT method [16], and the improved ESPRIT
method [20], the frequency and DOA estimation
accuracies of the proposed method are greatly im-
proved, and this method has superior estimation
performance. Moreover, the proposed method has
better anti-noise performance and stronger
robustness.

3.2. Numerical Simulation. In the simulation, we assume
that the array receives signals emitted by K incoherent far-
field sources. We also use the root mean square error
(RMSE) metric to evaluate the DOA and frequency esti-
mation performances of the proposed method; we define the
RMSEs as

RMSEDOA �
1
K

􏽘

K

k�1

�������������

1
L

􏽘

L

l

􏽢θk,l − θk􏼐 􏼑
2

􏽶
􏽴

,

RMSEfrequency �
1
K

􏽘

K

k�1

��������������

1
L

􏽘

L

l

􏽢fk,l − fk􏼐 􏼑
2

􏽶
􏽴

,

(34)

where 􏽢θk,l and 􏽢fk,l are the estimated values of θk and fk,
respectively, in the lth Monte Carlo simulation and L is the
number of Monte Carlo simulations. In this paper, we set
L= 2000.

3.2.1. Performance Analysis of the Proposed Method in a
Uniform Array. In this section, we assume that the array
receives signals emitted by three incoherent far-field sources.
&e DOAs and operating frequencies of the signals are (θ1,
f1) = (15°, 1MHz), (θ2, f2) = (40°, 2.1MHz), and (θ3, f3) = (50°,
3.1MHz). SNR= 0 dB, M= 12 is the number of array ele-
ments, P= 3 is the number of delay values, d= 50 denotes the
distances between the array elements, and N= 400 and K= 3
are the numbers of snapshots and signal sources, respec-
tively. &e scatter diagram of the joint frequency and DOA
estimation of the proposed method in this paper is shown in
Figure 4. Figure 4 shows that the proposed method is ef-
ficient in estimating the frequency and DOA results for a
uniform array.

3.2.2. Performance Analysis under Different Numbers of
Array Elements M. We set d= 50m, K= 3, P= 3, and
N= 400. We also set different numbers of array elements
(M= 8, 12, and 16). &e SNR range is from −15 dB to 15 dB
(step: 2 dB), and the RMSEs of the frequency and DOA
estimates of the method proposed in this paper are shown in
Figures 5 and 6, respectively.

We can see from Figures 5 and 6 that the method
proposed in this paper can achieve high estimation per-
formance within the SNR range of −15 dB to 15 dB (step:
2 dB) under different numbers of array elements. &e esti-
mation performance is stable under the condition of a low
SNR. Moreover, we can see that the SNR has a great impact
on the estimation accuracies of the frequency and DOA.&e
higher the SNR is, the higher the parameter estimation
accuracies of the method for these two parameters. With the
increase in the number of array elements, the DOA and
frequency estimation accuracies of the method proposed in
this paper improve. Furthermore, the RMSEs of the pro-
posed method are greatly reduced. &is is because as the
number of array elements increases, the space diversity gain
increases [29].
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3.2.3. Performance Analysis under Different Numbers of
Snapshots N. We set d= 50m, K= 3, P= 3, and M= 12. We
also set different numbers of snapshots (N= 100, 400, and
800). &e SNR range is from −15 dB to 15 dB (step: 2 dB),

and the RMSEs of the frequency and DOA estimations of the
method proposed in this paper are shown in Figure 7 and 8,
respectively. We can see from Figure 7 and 8 that when the
SNR is within the range of −15 dB to 15 dB (with steps of
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Figure 2: Comparison of algorithm complexity under different
snapshots N.

Table 1: Running time of these methods.

Methods Running time (s)
PM 2.3291
CR-PM 2.6634
ESPRIT 2.8223
Improved ESPRIT 2.8454
CR-ESPRIT 3.1177
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Figure 4: Parameter estimation for a uniform array.
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Figure 5: RMSEs of fk under different numbers of array elements.
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2 dB), the RMSEs of the proposed method demonstrate that
with different snapshots, the algorithm can still maintain
high estimation performance. Even in a situation with a low
SNR, the estimation performance is still stable. As the
number of snapshots increases, the estimation accuracy of
the method proposed in this paper is enhanced, the per-
formance is more precise, and the RMSEs of the frequency
and DOA estimations of the proposed method decrease.

3.2.4. Performance Analysis under Different Delay Values P.
We set d= 50m, K= 3, N= 400, and M= 12. We also set
different delay values (P= 2, 3, and 4). &e range of the SNR
is from −15 dB to 15 dB (step: 2 dB), and the RMSEs of the
frequency and DOA estimations of the method proposed in
this paper are shown in Figures 9 and 10, respectively. In
Figures 9 and 10, under different delay values, the proposed
method maintains high DOA and frequency estimation
performance when the SNR ranges from −15 dB to 15 dB.
&e estimation performance is stable even in a situation with
a low SNR. As the delay value increases, the estimation
accuracy of the method proposed in this paper is enhanced,
the performance is more precise, and the RMSEs of the DOA
and frequency estimations of the method decrease.

3.2.5. Performance Analysis under Different Numbers of
Signal Sources K. We set d= 50m, P= 3, N= 400, and
M= 12. We also set different numbers of signal sources
(K= 2, 3, and 4). &e range of the SNR is from −15 dB to
15 dB (step: 2 dB), and the RMSEs of the frequency and DOA
estimations of the method proposed in this paper are shown
in Figures 11 and 12, respectively. In Figures 11 and 12,
under different numbers of signal sources, the proposed
method maintains high DOA and frequency estimation
performance when the SNR ranges from −15 dB to 15 dB.
&e estimation performance is stable even in a situation with
a low SNR. As the number of signal sources increases, the
estimation accuracy of the method proposed in this paper
makes the performance more imprecise, and the RMSEs of
the DOA and frequency estimations of the proposed method
increase. As the number of signal sources increases, the
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Figure 6: RMSEs of the DOA under different array elements.

–10 100 15–15 –5 5
SNR (dB)

10–3

10–2

10–1

100

RM
SE

 (M
H

z)

N = 100
N = 400
N = 800

Figure 7: RMSEs of fk under different numbers of snapshots.

–10 100 15–15 –5 5
SNR (dB)

10–1

100

101

102

RM
SE

 (°
)

N = 100
N = 400
N = 800

Figure 8: RMSEs of the DOA under different numbers of
snapshots.

10 Mathematical Problems in Engineering



interference between sources increases, and the frequency
and DOA estimation performances deteriorate [30].

3.2.6. Identification Performance Analysis for Signal Sources
with Close Angles. We set d= 50m, K= 2, P= 4,N= 200, and
M= 12. In this section, we focus on exploring the recog-
nition and identification abilities of the proposed method
when the signal sources are at relatively close angles. &e
DOAs and operating frequencies of the signals are (θ1, f1)
= (15°, 1MHz) and (θ2, f2) = (17°, 2.1MHz). We also set

SNR= 5 dB. As shown in Figure 13, for signal sources with
close angles, the proposed method can also perform effective
identification and parameter estimation.

3.2.7. Performance Analysis of the Proposed Method in a
Nonuniform Array. In an actual field receiving system, the
assumed reception model is different from the true model
even after a calibration procedure [31]. &erefore, in this
section, we mainly discuss the performance analysis under
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the condition of a nonuniform array, such as array element
position deviation [32] and uneven distance between array
elements.

In this section, we assume that the array receives signals
emitted by three incoherent far-field sources.&e DOAs and
operating frequencies of the signals are (θ1, f1) = (15°,
1MHz), (θ2, f2) = (20°, 1.9MHz), and (θ3, f3) = (30°,
2.8MHz). SNR= 0 dB,M= 12, P= 5, N= 300, and K= 3. For
analyzing array element position deviation, we set d= [0; 50;
101; 149; 200; 251; 300; 352; 401; 449; 501; 548] m. For
uneven distance between array elements, we set d= [0; 40;
100; 150; 195; 235; 310; 365; 395; 450; 500; 540]m.&e scatter
diagram of the joint frequency and DOA estimation of the
proposed method in this paper is shown in Figures 14 and
15. Figures 14 and 15 show that the proposed method is
efficient in estimating the frequency and DOA results for
both nonuniform array conditions.

3.2.8. Analysis of the Performances of Different Methods.
In this section, we focus on analyzing the performances of
different methods. We assume that the array receives signals
emitted by two incoherent far-field sources. &e DOAs and
operating frequencies of the signals are (θ1, f1) = (15°, 1MHz)
and (θ2, f2) = (40°, 2.1MHz). We set d= 50m, K= 2, P= 2,
N= 400, andM= 12. &e range of the SNR is from −15 dB to
15 dB (step: 2 dB), and the RMSEs of the Cramer–Rao lower
bound (CRLB), the PM, the CR-PM, the ESPRIT method
[16], the improved ESPRIT method [20], and the method
proposed in this paper with respect to the frequency and
DOA estimations are shown in Figures 16 and 17,
respectively.

To quantitatively illustrate, under the condition of a low
SNR, compared with the improved ESPRITmethod [20], the
estimate improvement of themethod proposed in this paper,
we define the relative improvement ratio as

ratiofrequency � 1 −
RMSEfrequency(CR − ESPRIT)

RMSEfrequency(Improved ESPRIT)
× 100%, (35)

ratioDOA � 1 −
RMSEDOA(CR − ESPRIT)

RMSEDOA(Improved ESPRIT)
× 100%. (36)

According to the definitions of equations (35) and (36),
we show the relative improvement ratio in Figures 18
and 19.

As shown in Figures 16 and 17, when the SNR is within
the range of −15 dB to 15 dB (in steps of 2 dB), the estimation
accuracy of the proposed method is better than that of the
PM, the CR-PM, the ESPRITmethod [16], and the improved
ESPRIT method [20] in terms of both the DOA and fre-
quency. Among them, the ESPRIT method has extremely

poor angle estimation accuracy since it cannot automatically
pair parameters.

As shown in Figures 18 and 19, when SNR=−15 dB to
−1 dB, compared with the improved ESPRIT method, the
estimation accuracy of the proposed method is greatly
improved. In particular, when SNR=−15 dB, compared
with the improved ESPRIT method, the frequency estima-
tion accuracy of the method proposed in this paper is an
approximately 25.50% improvement; the DOA estimation
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Figure 13: &e identification ability of the proposed method.
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accuracy of the method proposed in this paper is an ap-
proximately 31.95% improvement. However, when
SNR=−1 dB to 15 dB, the relative improvement ratio
fluctuates around zero. &is result illustrates that the esti-
mation accuracy of the proposed method is almost the same
as that of the improved ESPRITmethod. For fluctuation, we
surmise that the reason for this phenomenon may be the
result of too few simulations in this paper.

In summary, a comprehensive analysis of Figures 16–19
shows that the estimation accuracy of the proposed method
is improved over that of the PM, the CR-PM, the ESPRIT

method, and the improved ESPRIT method. &e results
further verify that the method proposed in this paper has
good anti-noise performance and stability under different
SNRs. &erefore, compared to the PM, the CR-PM, the
ESPRIT method, and the improved ESPRIT method, the
method proposed in this paper is more suitable for use in a
complex electromagnetic environment.
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Figure 14: Parameter estimation for array element position
deviation.
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4. Conclusions

For linear arrays, this paper proposes a joint angle and
frequency estimation method based on CR-ESPRIT.We first
preprocess the received signal by taking full advantage of the
conjugate information contained in the originally received
data, and we reconstruct a new total covariance matrix.
&en, we use the LS-ESPRIT algorithm to estimate the
frequency parameter. According to the unique relationship
between angles and frequencies, we estimate the DOAs
based on the reconstructed received signal. &e complexity
of the method proposed in this paper is almost the same as
that of the ESPRIT and the improved ESPRIT. Numerical
simulations and comparisons with the PM, the CR-PM, the
ESPRIT method, and the improved ESPRIT method prove
the superiority of the proposed method. In a real space
environment, under the condition of a uniform or a

nonuniform array, this method can realize the automatic
pairing of the estimated DOAs and frequencies of radiation
source signals without an additional parameter pairing
process. Moreover, this method has high accuracy and
strong anti-noise performance when conducting parameter
estimation.
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