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In this paper, we study the optimal execution problem by considering the trading signal and the transaction risk simultaneously.
We propose an optimal execution problem by taking into account the trading signal and the execution risk with the associated
decay kernel function and the transient price impact function being of generalized forms. In particular, we solve the stochastic
optimal control problems under the assumptions that the decay kernel function is the Dirac function and the transient price
function is a linear function. We give the optimal executing strategies in state-feedback form and the Hamilton-Jacobi-Bellman
equations that the corresponding value functions satisfy in the cases of a constant execution risk and a linear execution risk. We
also demonstrate that our results can recover previous results when the process of the trading signal degenerates.

1. Introduction

It is known that when traders execute a large order in a short
time, it will cause severe effect on the stock price in the stock
market. *is effect is called the price impact or the market
impact in academia. *e price impact is often adverse for
traders because they liquidate or build a large position in a
short time with worse average price compared to the initial
price. Hence, traders or financial institutions often bear an
extra cost due to the price impact except for some fixed cost
charged by exchange. Consequently, the topic on how to
reduce the cost caused by the price impact has received
much attention.

*e problem about reducing the cost caused by the
price impact is always expressed as an optimal execution
problem in the literature, i.e., looking for an optimal ex-
ecuting strategy to minimize the expected cost due to the
price impact. Plenty of works have been done on this topic.
Bertsimas and Lo [1] studied a discrete time model of price
impact with linear impact function and derived dynamic
optimal trading strategies to minimize the expected cost.
Almgren and Chriss [2] considered the continuous time
case of Bertsimas and Lo [1]. *ey choose the trade-off

between the expectation and the variance of the impact cost
as the optimization objective and then gave the explicit
solution by the variation method. In addition, they pro-
posed the concept of L-VaR. Almgren [3] further con-
sidered nonlinear impact functions and added risk terms in
the temporary impact process on the basis of Almgren and
Chriss [2]. Obizhaeva and Wang [4] (an early work pub-
lished later) studied the optimal executing strategy given
the dynamic structure of the demand and supply of the
equity. Alfonsi et al. [5] extended the model of Obizhaeva
and Wang [4] by allowing for a time-dependent resilience
rate with more generalized equilibrium dynamics for bid
and ask price. Alfonsi et al. [6] considered more general
shape of the LOB on the basis of Obizhaeva and Wang [4]
and gave the explicit form of optimal executing strategies.
*ey also illustrated the robustness of the optimal strategies
with respect to the shape function and resilience type.
Gatheral and Schied [7] assumed the asset price followed a
geometric Brownian motion and gave the explicit optimal
executing strategy with risk aversion. Almgren [8] assumed
the market liquidity and volatility were stochastic and time
varying, then proposed the HJB equation of the optimal
execution problem, and tried to solve it numerically.
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Gatheral et al. [9] studied the optimal execution problem in
the frame of transient price impact model. Under the as-
sumption of linear impact function, they characterized the
optimal executing strategy as the solution of a generalized
Fredholm integral equation of the first kind. *ey also
studied the existence problem. Cheridito and Sepin [10]
studied the discrete time case of the price impact model
with stochastic volatility and stochastic market liquidity.
Schoneborn [11] discussed three approaches that remedied
the flaw of the optimal executing strategy under the mean-
variance framework that big order and small order have the
same executing pattern. Cartea and Jaimungal [12] studied
the optimal execution problem by taking into account the
order flow of all other agents and gave the explicit solution
with linear impact function. Cheng et al. [13] considered
the execution risk under the framework of Almgren and
Chriss and solved the optimal execution problem with
different risk aversions. Jin [14] studied the optimal exe-
cution problem with an optimization objective of loss
probability and talked about the liquidity adjusted VaR.
Curato et al. [15] studied the transient impact model with
nonlinear impact function and solved the optimal exe-
cuting problem numerically.

*e previous works on the optimal execution problem are
mainly based on the framework of Almgren and Chriss [2] or
Gatheral et al. [9]. In the framework of Almgren and Chriss
[2], the price impact has two kinds of definitions, i.e., the
permanent impact and the temporary impact. Orders to be
executed are thought to contain some fundamental infor-
mation about the stock. *is information is absorbed into the
stock price in the trading and leads to a permanent impact on
the intrinsic price of the stock. *is is described by a per-
manent impact function of trading rate in the intrinsic price
process of the stock. In addition, the price that we can observe
in the market is affected by the trading at the moment and is
described by the intrinsic price plus a temporary impact
function of trading rate. In the framework of Gatheral et al.
[9], the intrinsic stock price is set to be a martingale, i.e., the
orders executed have no impact on the intrinsic price. Besides,
the observed price is not only affected by instant trading but
also affected by historical trading through a decay kernel
function and a transient impact function of trading rate. In
this paper, we combine the frameworks of Almgren and
Chriss [2] and Gatheral et al. [9]. More specifically, we
suppose trading gives rise to a permanent impact on the
intrinsic price of the stock, and the observed price is affected
by historical trading through a decay kernel function and a
price impact function of trading rate.

In the view of some practitioners in trading, the market
may not always be so efficient. *ere exsit signals in the stock
market with which the traders can predict the future return of
the stock to some extent. Indeed, some hedge funds make
profit with trading signals founded by technical analysis or
other ways. Cartea and Jaimungal [12] studied the optimal
executing strategy by incorporating order flow. In this work,
the trading rate of all other traders can be treated as a signal of
the intrinsic stock return. Motivated by these, we propose a
trading signal term in the intrinsic price process. In addition,

the experiences from practitioners indicate that a trading
signal usually has the properties of stationarity and mean
reversion.*erefore, we assume that the trading signal follows
an Ornstein–Uhlenbeck process. Besides, Cheng et al. [13]
suggested that the order delivered by traders may not be filled
fully, i.e., the traders can face the execution risk; therefore, we
investigate the optimal execution problem by taking into
account the trading signal and the execution risk simulta-
neously. More specifically, we propose an optimal execution
problem with a generalized kernel function and a generalized
transient impact function. To solve this optimal execution
problem, we set the kernel function to be the Dirac function,
which is compatible with the framework suggested in
Almgren and Chriss [2], and the transient impact function to
be a linear function. In this setting, we give analytical solutions
to the optimal execution problems with a constant execution
risk and a linear execution risk, respectively. Moreover, we
prove that our results can recover the results in Cheng et al.
[13] if the trading signal process degenerates, i.e., the mean
reversion speed of the trading signal degenerates to 0. Our
results can provide some insights for the hedge funds that
possess some trading signals to design their trading scheme.

*e rest of this paper is organized as follows. In Section
2, we describe our model. In Section 3, we propose our
optimal execution problem. In Section 4, we solve the op-
timal execution problemwith a constant execution risk and a
linear execution risk, respectively, and discuss the solutions.
In Section 5, we conclude this paper and point out some
directions for further work.

2. Model Settings

Suppose that we have a scheme of liquidating X shares of
stock in time interval [t0, T], and t0 � 0. At time t, the
amount of stock remaining to be liquidated is denoted as xt,
and thus xt0

� X.
We suppose the intrinsic stock price, which cannot be

observed directly in the market, follows the stochastic
process below:

dSt � θdxt + ρLtdt + σ1dBt, (1)

where Lt is trading signal and is defined in (4), Bt is a
standard Brownian motion, and θ, ρ, and σ1 are constant
parameters with ρ> 0, σ1 > 0.

In the setting of (1), we suppose that trading has a
permanent impact on the intrinsic stock price, and the
permanent impact function is set to be a linear function.*is
setting follows the existing works based on the framework of
Almgren and Chriss [2], such as Gatheral and Schied [7],
Cartea and Jaimungal [12], Cheng et al. [13], Jin [14], and so
on. Besides, we further suppose that the intrinsic price of the
stock is also affected by other factors, such as trading signals
and the trading rate of other traders.

In addition, we suppose the observed price of the stock
can be expressed as

􏽥St � St + 􏽚
t

t0

G(t − s)g vs( 􏼁ds, (2)
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where G(·) is the decay kernel function, g(·) is the transient
impact function, and vs is the trading rate.

In the setting of (2), we follow the framework of Gatheral
et al. [9]. *e form of (2) indicates that the trading before
time t has a decayed effect on the observed price at time t.
We note that when the decay kernel function is set to be the
Dirac function δ0(·), this model of observed price degen-
erates to the framework of Almgren and Chriss [2]. Indeed,
we have

􏽚
t

0
δ0(t − s)g vs( 􏼁ds � g vt( 􏼁, (3)

which is just the form in Almgren and Chriss [2].
*e experiences from practitioners indicate that a trading

signal usually has the properties of stationarity and mean
reversion. Motivated by this, we propose a signal process Lt in
(1) and suppose Lt follows an Ornstein–Uhlenbeck process as
below:

dLt � − cLtdt + σ2dWt, (4)

where c is the speed of mean reversion such that c> 0 and
Wt is a standard Brownian motion.

In practice, an order may not be executed fully due to the
shortage of liquidity in the market or some other technical
reasons. So, traders may face an execution risk. Some pre-
vious works have talked about this topic, and we follow the
setting in Cheng et al. [13].

We suppose the executing process follows the stochastic
process below:

dxt � − vtdt + m vt( 􏼁dZt, (5)

where xt is the amount of stock that remains to be liqui-
dated, vt is the trading rate, m(·) is a function that affects the
diffusion of this process, and Zt is a standard Brownian
motion.

For mathematical tractability, we suppose the standard
Brownian motions Bt, Wt, and Zt are independent.

3. Optimal Execution Problem

With the setting in previous parts, we propose our optimal
execution problem in this section.

Following the setting in Cheng et al. [13], we define our
PnL as the difference between the realized value by trading
and the initial intrinsic value of our position. Indeed, a
selling order always pushes the stock price down, so we
obtain lower price than the initial price, and thus the PnL is
always negative. Naturally, we wish the PnL to be larger.
Specifically, we define

PnLt � 􏽚
t

t0

St0
− 􏽥Su􏼐 􏼑dxu + xt St − St0

􏼐 􏼑. (6)

So, at time T, the PnL is

PnLT � 􏽚
T

t0

St0
− 􏽥Su􏼐 􏼑dxu + xT ST − St0

􏼐 􏼑. (7)

Note that at time T, we may have xT > 0 due to the
execution risk. In this case, we need to liquidate the
remaining shares immediately, so we put a punishment on
the remaining shares. We denote the punishment as λ(xT).
In the setting of Cheng et al. [13], the punishment function is
quadratic, i.e., λ(x) � − αx2 with α> 0, which is compatible
with the results of Almgren and Chriss [2]. In our work, we
also follow this treatment. Hence, we define the adjusted PnL
as

PnL adj � PnLT + λ xT( 􏼁. (8)

With all the settings above, we can get the specific form
of the adjusted PnL, which is illustrated in Proposition 1.

Proposition 1. With the settings of (1), (2), (4), (5), (7), and
(8) and the assumption that the Brownian motions Bt, Wt,
and Zt are independent, the adjusted PnL defined in (8) has
the following expression:

PnL adj � λ xT( 􏼁 +
θ
2

x
2
T − x

2
t0

􏼐 􏼑 + 􏽚
T

0
vt 􏽚

t

t0

G(t − s)g vs( 􏼁ds +
θ
2

m
2

vt( 􏼁 + ρLtxt􏼢 􏼣dt

− 􏽚
T

t0

m vt( 􏼁 􏽚
t

t0

G(t − s)g vs( 􏼁dsdZt + 􏽚
T

t0

σ1xtdBt.

(9)

Proof. Applying Itô’s formula and with (1) and (5), we have

d xtSt( 􏼁 � xtdSt + Stdxt + dStdxt,

dStdxt � θ dxt( 􏼁
2

� θm
2

vt( 􏼁dt.
(10)

By integrating, we get

xTST � 􏽚
T

t0

xtdSt + 􏽚
T

t0

Stdxt + 􏽚
T

t0

θm
2

vt( 􏼁dt + xt0
St0

.

(11)

On the other hand, with (2), we have

􏽚
T

t0

St0
− 􏽥Su􏼐 􏼑dxu � St0

xT − xt0
􏼐 􏼑 − 􏽚

T

t0

Stdxu − 􏽚
T

t0

􏽚
t

t0

G(t − s)g vs( 􏼁dsdxt. (12)
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Combining (7), (8), (11), and (12), we get

PnL adj � λ xT( 􏼁 + 􏽚
T

t0

xtdSt + 􏽚
T

t0

θm
2

vt( 􏼁dt

− 􏽚
T

t0

􏽚
t

t0

G(t − s)g vs( 􏼁dsdxt.

(13)

Applying Itô’s formula to (5), we have

dx
2
t � 2xtdxt + m

2
vt( 􏼁dt. (14)

By integrating, we get

􏽚
T

t0

xtdxt �
1
2

x
2
T − x

2
t0

􏼐 􏼑 −
1
2

􏽚
T

t0

m
2

vt( 􏼁dt. (15)

Substituting (1), (5), and (15) into (13), we get expression
(9). □

*e expression in (9) indicates that the randomness of
the adjusted PnL comes from three stochastic sources, i.e.,
Brownian motions Bt, Wt, and Zt. In addition, it is worth
noting that the last two terms of (9) are Itô integrations and
thus are martingales. Hence, the expectation of the adjusted
PnL can be expressed as

Et0
(PnL_ adj) � Et0

λ xT( 􏼁 +
θ
2

x
2
T − x

2
t0

􏼐 􏼑 + 􏽚
T

0
vt 􏽚

t

t0

G(t − s)g vs( 􏼁ds +
θ
2

m
2

vt( 􏼁 + ρLtxt􏼢 􏼣dt􏼨 􏼩. (16)

Note that Et(·) represents E(·|xt � x, Lt � l) in here and
the other parts of the following context.

With the specific form of the adjusted PnL, it is natural
for us to propose an optimal execution problem. More
specifically, we look for an optimal trading rate process vt to
maximize the expected utility of the adjusted PnL with a
utility function. Here we choose the identity utility function
and formulate our optimal execution problem as follows:

max
vt,t0 ≤ t≤T

Et0
(PnL_ adj)

s.t.

dxt � − vtdt + m vt( 􏼁dZt,

xt0
� X,

dLt � − cLtdt + σ2dWt,

Lt0
� l0,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

where Et0
(PnL_ adj) satisfies (16).

So far, we have proposed our optimal execution problem
described in (17). In this optimal execution problem, we
assume the decay kernel function G(·) and the transient
price impact function g(·) are of generalized forms. *e
topic about the form of these two functions has been widely
discussed in the literature, such as Gatheral [16]. We note
that the choices of this two functions may lead to different

types of optimal execution problems, thus requiring dif-
ferent techniques to solve the corresponding optimal exe-
cution problems. In the next section, we choose some special
decay kernel functions and transient price impact functions
so that the optimal execution problem becomes a standard
stochastic optimal control problem, and we solve it under
different cases of execution risk.

4. Optimal Executing Strategy

In this section, we appropriately choose the decay kernel
function and the transient price impact function to solve the
optimal execution problem (17).

To make the problem more tractable, we choose the
Dirac function as the kernel decay function. Asmentioned in
Section 2, this case conforms to the setting of Almgren and
Chriss [2]. In addition, we set price transient impact
function g(·) as a linear function; more specifically,

g vt( 􏼁 � − ηvt, (18)

where η is a constant and η> 0. Besides, we follow the
treatment about the punishment function λ(·) in Cheng
et al. [13], i.e., λ(x) � − αx2 with α> 0. Hence, the expec-
tation of the adjusted PnL in (16) becomes

Et0
(PnL_ adj) � Et0

− αx
2
T +

θ
2

x
2
T − x

2
t0

􏼐 􏼑 + 􏽚
T

t0

− ηv
2
t +

θ
2

m
2

vt( 􏼁 + ρLtxt􏼢 􏼣dt􏼨 􏼩. (19)

Note that under the conditions above, the optimal ex-
ecution problem (17) has become a standard stochastic
optimal control problem. We define the value function as

V(t, x, l) � max
vs,t≤ s≤T

Et − αx
2
T +

θ
2

x
2
T − x

2
t􏼐 􏼑 + 􏽚

T

t
− ηv

2
s +

θ
2

m
2

vs( 􏼁 + ρLsxs􏼢 􏼣ds􏼨 􏼩. (20)
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According to (5) and (15), we have

x
2
T � x

2
t + 􏽚

T

t
m

2
vs( 􏼁 − 2vsxs􏼐 􏼑ds + 2􏽚

T

t
xsm vs( 􏼁dZt.

(21)

Substituting (21) into (20), we finally get

V(t, x, l) � max
vs,t≤ s≤T

Et 􏽚
T

t
− ηv

2
s +(θ − α)m

2
vs( 􏼁 +(2α − θ)vsxs + ρLsxs􏽨 􏽩ds􏼨 􏼩 − αx

2
. (22)

So far, the only undefined term in our optimal execution
problem is the function m(·). Note that the form of m(·)

determines the execution risk, and we follow the setting of
Cheng et al. [13]. More specifically, we solve the optimal
execution problem (17) with a constant execution risk and a
linear execution risk, respectively.

4.1. Constant Execution Risk. Note that for the constant
execution risk, the function m(·) in (5) is a constant, i.e.,

m vt( 􏼁 ≡ m0, (23)

where m0 > 0.
Under this circumstance, the value function (22)

becomes

V(t, x, l) � max
vs,t≤ s≤T

Et 􏽚
T

t
− ηv

2
s +(2α − θ)vsxs + ρLsxs􏼃􏽨 ds􏼨 􏼩 − αx

2
+(θ − α)m

2
0(T − t). (24)

Under the conditions above, we solve the optimal exe-
cution problem (17) and get the following result in *eorem
1.

Theorem 1. Let G(·) � δ0(·), g(x) � − ηx, λ(x) � − αx2,
m(·) ≡ m0, and η> 0, α≥ 0, α − (θ/2)> 0. 8e optimal exe-
cution problem (17) has a unique solution with state-feedback
form:

v
∗
t �

1
T − t + β

xt −
ρ 1 − e

− c(T− t)
􏼐 􏼑(cβ − 1) + c(T − t)􏽨 􏽩

2ηc
2
(T − t + β)

Lt,

(25)

where β � (2η/2α − θ) and β> 0.
In addition, the value function (24) satisfies the following

HJB equation:

Vt +
1
2

m
2
0Vxx +

1
2
σ22Vll − clVl + ρlx + θm

2
0

+ max
v

− ηv
2

− Vx + θx( 􏼁v􏽮 􏽯 � 0,

(26)

with terminal condition V(T, x, l) � − αx2.
Moreover, V(t, x, l) can be expressed as

V(t, x, l) � F1(t) − α( 􏼁x
2

+ G1(t)l
2

+ H(t)xl

+ m
2
0 􏽚

T

t
F1(s)ds + σ22 􏽚

T

t
G1(s)ds

+(θ − α)m
2
0(T − t),

(27)

where F1(t), G1(t), and H(t) are defined as (38), (43), and
(41).

Remark 1. We remark that we assume α> (θ/2) to make
sure β> 0.

Proof. Instead of taking the standard method to solve the
stochastic control problem (17), we use the method of
completing the square.

Suppose F1(t), F2(t), G1(t), G2(t), and H(t) are
bounded differentiable functions with F1(T) � 0, F2(T) � 0,
G1(T) � 0, G2(T) � 0, and H(T) � 0.

Applying Itô’s formula, we have

F1(T)x
2
T � F1(t)x

2
t + 􏽚

T

t
F1′(s)x

2
sds + 􏽚

T

t
2F1(s)xsdxs

+ 􏽚
T

t
F1(s) dxs( 􏼁

2
.

(28)

With equation (5), we have

F1(T)x
2
T � F1(t)x

2
t

+ 􏽚
T

t
F1′(s)x

2
s − 2F1(s)xsvs + m

2
0F1(s)􏽨 􏽩ds

+ 􏽚
T

t
2m0F1(s)xsdZs.

(29)

Taking similar procedures, we have
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F2(T)xT � F2(t)xt + 􏽚
T

t
F2′(s)xs − F2(s)vs􏼂 􏼃ds + 􏽚

T

t
m0F2(s)dZs,

G1(T)L
2
T � G1(t)L

2
t + 􏽚

T

t
G1′(s)L

2
s − 2cG1(s)L

2
s + σ22G1(s)􏽨 􏽩ds + 􏽚

T

t
2σ2G1(s)LsdWs,

G2(T)LT � G2(t)Lt + 􏽚
T

t
G2″(s)Ls − cG2(s)Ls􏼂 􏼃ds + 􏽚

T

t
σ22G2(s)dWs,

H(T)LTxT � H(t)Ltxt + 􏽚
T

t
H′(s)Lsxs − H(s)Lsvs − cH(s)xsLs􏼂 􏼃ds + 􏽚

T

t
m0H(s)IsdZs + 􏽚

T

t
σ2H(s)xsdWs.

(30)

For convenience, we define J(t, x, l) as

J(t, x, l) � Et 􏽚
T

t
− ηv

2
s +(2α − θ)vsxs + ρLsxs􏽨 􏽩ds􏼨 􏼩,

(31)

and hence

V(t, x, l) � max
vs,t≤ s≤T

J(t, x, l) − αx
2

+(θ − α)m
2
0(T − t).

(32)

Note that F1(T) � 0, F2(T) � 0, G1(T) � 0, G2(T) � 0,
and H(T) � 0; then, we have

J(t, x, l) � J(t, x, l) + Et F1(T)x
2
T + F2(T)xT􏽮

+ G1(T)L
2
T + G2(T)LT + H(T)LTxT􏽯.

(33)

With the conclusions above, we have

J(t, x, l) � Et 􏽚
T

t
− ηv

2
s + F1′(s)x

2
s + G1′(s) − 2cG1(s)􏼂 􏼃L

2
s + 2α − θ − 2F1(s)􏼂 􏼃xsvs􏽨􏼨

− H(s)Lsvs + H′(s) − cH(s) + ρ􏼂 􏼃xsLs − F2(s)vs + F2′(s)xs

+ G2′(s) − cG2(s)􏼂 􏼃Ls􏼃ds􏼩 + F1(t)x
2

+ G1(t)l
2

+ H(t)xl + 􏽚
T

t
m

2
0F1(s) + 􏽚

T

t
σ22G1(s)ds.

(34)

To use the method of completing square, we compare the
first integration term above with

􏽚
T

t
− η vs − g1(s)xs − g2(s)Ls􏼈 􏼉

2ds, (35)

where g1(s), g2(s) are functions of s.
Matching coefficients, we can get the following ODE

system:

F1′(s) � − ηg
2
1(s),

2α − θ − 2F1(s) � 2ηg1(s),

G1′(s) − 2cG1(s) � − ηg
2
2(s),

− H(s) � 2ηg2(s),

H′(s) − cH(s) + ρ � − 2ηg1(s)g2(s),

F2(s) � 0,

F2′(s) � 0,

G2′(s) − cG2(s) � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(36)

with terminal conditions F1(T) � 0, F2(T) � 0, G1(T) � 0,
G2(T) � 0, and H(T) � 0.

To solve F1(s), we eliminate g1(s) in the first row of (36)
and get the ODE below:

F1′(s) +
1
η

α −
1
2
θ − F1(s)􏼒 􏼓

2
� 0. (37)

Solving this special Riccati equation with the terminal
condition, we have

F1(t) �
η
β

−
η

T − t + β
, (38)

where β � (2η/2α − θ). Consequently, we have

g1(t) �
1

T − t + β
. (39)

To solve H(s), we eliminate g2(s) in the third row of (36)
and get the ODE below:

H′(s) + − c − g1(s)􏼂 􏼃H(s) + ρ � 0. (40)

Substituting (39) into this linear ODE, we solve it to have

H(t) �
ρ 1 − e

− c(T− t)
􏼐 􏼑(cβ − 1) + c(T − t)􏽨 􏽩

c
2
(T − t + β)

. (41)

Consequently, we have

g2(t) � −
ρ 1 − e

− c(T− t)
􏼐 􏼑(cβ − 1) + c(T − t)􏽨 􏽩

2ηc
2
(T − t + β)

. (42)
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Substituting (42) into the ODE in the second row of (36),
we solve the ODE to get

G1(t) � ηe
2ct

􏽚
T

t
e

− 2cs
g
2
2(s)ds. (43)

In addition, it is obvious that F2(t) ≡ 0 and G2(t) ≡ 0
from (36).

With the results above, we have

J(t, x, l) � Et 􏽚
T

t
− η vs − g1(s)xs − g2(s)Ls􏼈 􏼉

2ds􏼨 􏼩 + F1(t)x
2

+ G1(t)l
2

+ H(t)xl + 􏽚
T

t
m

2
0F1(s) + 􏽚

T

t
σ22G1(s)ds

≤F1(t)x
2

+ G1(t)l
2

+ H(t)xl + 􏽚
T

t
m

2
0F1(s) + 􏽚

T

t
σ22G1(s)ds.

(44)

*e inequality above indicates that vs � g1(s)xs+

g2(s)Ls is the unique solution to maximize J(t, x, l) and thus
the unique solution to the optimal execution problem (17).
As a consequence, the value function V(t, x, l) has the
following expression:

V(t, x, l) � F1(t) − α( 􏼁x
2

+ G1(t)l
2

+ H(t)xl

+ m
2
0 􏽚

T

t
F1(s)ds + σ22 􏽚

T

t
G1(s)ds

+(θ − α)m
2
0(T − t).

(45)

Taking the partial derivatives of V(t, x, l), we have

Vt � F1′(t)x
2

+ G1′(t)l
2

+ H′(t)xl − m
2
0F1(t) − σ22G1(t) − (θ − α)m

2
0,

Vxx � 2F1(t) − 2α,

Vll � 2G1(t),

Vx � 2F1(t)x + H(t)l − 2αx,

Vl � 2G1(t)l + H(t)x.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(46)

*en, it is straightforward to verify that V(t, x, l) satisfies
the HJB equation below:

Vt +
1
2
m

2
0Vxx +

1
2
σ22Vll − clVl + ρlx + θm

2
0

+ max
v

− ηv
2

− Vx + θx( 􏼁v􏽮 􏽯 � 0.

(47)

□

*is theorem indicates that the optimal executing
strategy vt is a linear combination of the remaining position
xt and the trading signal Lt and thus a dynamic executing
strategy. Note that when ρ � 0 and letting α⟶ +∞, we
have v∗t � (xt/T − t), which is an adaptive VWAP strategy.
Furthermore, we denote the weight of Lt in (20) as w(c), i.e.,

w(c) � −
ρ 1 − e

− c(T− t)
􏼐 􏼑(cβ − 1) + c(T − t)􏽨 􏽩

2ηc
2
(T − t + β)

, (48)

and provide the following results of Corollary 1.

Corollary 1. With the assumptions in 8eorem 1, the weight
w(c) of the trading signal Lt in the expression of the optimal
executing strategy (25) is monotonic increasing with respect to
the mean reversion speed c of the trading signal for
c ∈ (0, +∞). In addition, when limiting c to 0, the limitation
of w(c) exists and can be expressed as

lim
c⟶0

w(c) � −
ρ
4η

T − t + β −
β2

T − t + β
􏼠 􏼡. (49)

Proof. We prove the monotonicity first. For convenience,
we define 􏽥w(c) as

􏽥w(c) �
1 − e

− c(T− t)
􏼐 􏼑(cβ − 1) + c(T − t)

c
2 , (50)

and hence w(c) � − (ρ/2η(T − t + β))􏽥w(c).
Taking the derivative of 􏽥w, we have
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􏽥w′(c) �
e

− c(T− t)

c
3 β(T − t)c

2
− (T − t − β)c − 2􏽮

− [(T − t + β) − 2]e
c(T− t)

􏽯.

(51)

Further, we define a(c) as

a(c) � β(T − t)c
2

− (T − t − β)c − 2 − [(T − t + β) − 2]e
c(T− t)

,

(52)

and hence 􏽥w′(c) � (e− c(T− t)/c3)a(c) and a(0) � 0.
Taking the derivative of a(t), we have

a′(c) � 2β(T − t)c − (T − t − β) − e
c(T− t)

· [(T − t)(T − t + β)c + β − (T − t)],
(53)

with a′(0) � 0.
Again, taking the derivative of a′(c), we have

a″(c) � 2β(T − t) − e
c(T− t)

(T − t)
2
(T − t + β)c + 2β(T − t)􏽨 􏽩.

(54)

So, it is straightforward to verify that a″(c)< 0 for
c ∈ (0, +∞) with β> 0, T − t> 0, and ec(T− t) > 1. Since
a′(0) � 0, we conclude that a′(c)< 0 for c ∈ (0, +∞).
Furthermore, with a(0) � 0, we conclude that a(c)< 0 for
c ∈ (0, +∞), and thus 􏽥w′(c)< 0 for c ∈ (0, +∞). Finally, the
definition of 􏽥w(c) indicates that w′(c)> 0 for c ∈ (0, +∞),
which means w(c) is monotonic increasing with respect to c

for c ∈ (0, +∞).
In addition, given the Taylor expansion of e− c(T− t) as

e
− c(T− t)

� 1 − (T − t)c +
1
2
(T − t)

2
c
2

+ o c
2

􏼐 􏼑, (55)

we then have

1 − e
− c(T− t)

􏼐 􏼑(cβ − 1) + c(T − t)

� β(T − t)c
2

+
1
2
(T − t)

2
c
2

+ o c
2

􏼐 􏼑.

(56)

Substituting this to (48) and taking the limit, we get
(49). □

We remark that the corollary above indicates our result
can recover the result of Cheng et al. [13] with the mean
reversion speed c of the trading signal Lt degenerating to 0.

4.2. Linear Execution Risk. For the linear execution risk, the
function m(·) in (5) is a linear function, i.e.,

m vt( 􏼁 � m0vt, (57)

where m0 > 0.
In this case, the execution risk is related to the trading

rate. Specifically, the faster we trade, the bigger the proba-
bility that our orders cannot be fully filled.*is is in line with
our intuition and reality in the market. Indeed, the liquidity
of market is limited. If we trade very fast, our orders may
merely be filled partially.

Now the value function (22) is of the following form:

V(t, x, l) � max
vs,t≤ s≤T

Et 􏽚
T

t
(θ − α)m

2
0 − η􏽨 􏽩v

2
s +(2α − θ)vsxs + ρLsxs􏽨 􏽩ds􏼨 􏼩 − αx

2
. (58)

*en, we solve the optimal execution problem (17) and
get the following theorem.

Theorem 2. Let G(·) � δ0(·), g(x) � − ηx, λ(x) � − αx2,
m(vt) � m0vt, and η> 0, α> 0, m0 > 0. In addition, we as-
sume α − (θ/2)> 0 and the inequality below holds:

log
(θ/2) − η/m2

0􏼐 􏼑

α − (θ/2)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+ 1 −

(θ/2) − η/m2
0􏼐 􏼑

α − (θ/2)
+

T

m
2
0
< 0. (59)

8en, the optimal execution problem (17) has a unique
solution with state-feedback form:

v
∗
t �

A1(t) − α +(θ/2)

A1(t) + θ − α( 􏼁m
2
0 − η

xt −
ρe

− c(T− t)

2
􏽚

T

t

e
c(T− s)

α − (θ/2) − A1(s)
ds · Lt􏼢 􏼣, (60)

where A1(t) � E(t) + α − (θ/2) and E(t) is defined as

E(t) � inf E|q(E) � log α −
θ
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+

(θ/2) − η/m2
0􏼐 􏼑

α − (θ/2)
−

T − t

m
2
0

⎧⎨

⎩

⎫⎬

⎭,

(61)

where q(x) � log|x| − (k/x), k � (θ/2) − (η/m2
0).

In addition, the value function V(t, x, l) defined as (58)
satisfies the HJB equation below:

Vt +
1
2
σ22Vll − clVl + ρlx + max

v

m
2
0
2

Vxx + θm
2
0 − η􏼠 􏼡v

2
􏼨

− θx + Vx( 􏼁v
⎫⎬

⎭ � 0,

(62)

with terminal condition V(T, x, l) � − αx2.
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Moreover, V(t, x, l) can be expressed as follows:

V(t, x, l) � A1(t) − α( 􏼁x
2

+ B1(t)l
2

+ C(t)xl + σ22 􏽚
T

t
B1(s)ds,

(63)

where B1(t) and C(t) are defined as (79) and (77).

Remark 2. We remark that the condition α> (θ/2) makes
sure that log(α − (θ/2)) and (1/α − (θ/2)) are well defined.

Condition (59) guarantees that the optimal solution makes
the optimal problem achieve the maximum.

Proof. We use the method of completing the square to solve
the optimal execution problem again.

Suppose A1(t), A2(t), B1(t), and C(t) are bounded
differentiable functions with A1(T) � 0, A2(T) � 0, B1(T) �

0, B2(T) � 0, and C(T) � 0.
Applying Itô’s formula and with (5), we have

A1(T)x
2
T � A1(t)x

2
t + 􏽚

T

t
A1′(s)x

2
s − 2A1(s)xsvs + m

2
0A1(s)v

2
s􏽨 􏽩ds + 􏽚

T

t
2m0A1(s)xsvsdZs,

A2(T)xT � A2(t)xt + 􏽚
T

t
A2′(s)xs − A2(s)vs􏼂 􏼃ds + 􏽚

T

t
m0A2(s)vsdZs,

B1(T)L
2
T � B1(t)L

2
t + 􏽚

T

t
B1′(s)L

2
s − 2cB1(s)L

2
s + σ22B1(s)􏽨 􏽩ds + 􏽚

T

t
2σ2B1(s)LsdWs,

B2(T)LT � B2(t)Lt + 􏽚
T

t
B2′(s)Ls − cB2(s)Ls􏼂 􏼃ds + 􏽚

T

t
σ22B2(s)dWs,

C(T)LTxT � C(t)Ltxt + 􏽚
T

t
C′(s)Lsxs − C(s)Lsvs − cC(s)xsLs􏼂 􏼃ds + 􏽚

T

t
m0C(s)IsvsdZs + 􏽚

T

t
σ2C(s)xsdWs.

(64)

Again, we define J(t, x, l) as

J(t, x, l) � Et 􏽚
T

t
(θ − α)m

2
0 − η􏽨 􏽩v

2
s +(2α − θ)vsxs + ρLsxs􏽨 􏽩ds􏼨 􏼩.

(65)

Note that A1(T) � 0, A2(T) � 0, B1(T) � 0, B2(T) � 0,
and C(T) � 0, and we have

J(t, x, l) � J(t, x, l) + Et A1(T)x
2
T + A2(T)xT􏽮

+ B1(T)L
2
T + B2(T)LT + C(T)LTxT􏽯.

(66)

With the conclusions above, we have

J(t, x, l) � Et 􏽚
T

t
A1(s) + θ − α( 􏼁m

2
0 − η􏽨 􏽩v

2
s + A1′(s)x

2
s + B1′(s) − 2cB1(s)􏼂 􏼃L

2
s􏽮

+ 2α − θ − 2A1(s)􏼂 􏼃xsvs − C(s)Lsvs + C′(s) − cC(s) + ρ􏼂 􏼃xsLs

− A2(s)vs + A2′(s)xs + B2′(s) − cB2(s)􏼂 􏼃Ls􏼉ds + A1(t)x
2

+ B1(t)l
2

+ C(t)xl + 􏽚
T

t
σ22B1(s)ds.

(67)

We define D(s) � [A1(s) + θ − α]m2
0 − η. Note that

under the assumptions in the theorem we have D(s)< 0,
which will be verified later. We compare the first integration
term above with

􏽚
T

t
D(s) vs − p1(s)xs − p2(s)Ls􏼈 􏼉

2ds, (68)

where p1(t) and p2(t) are deterministic functions of t.
Matching coefficients, we get the ODE system as follows:

A1′(s) � D(s)p
2
1(s),

2α − θ − 2A1(s) � − 2 D(s)p1(s),

B1′(s) − 2cB1(s) � D(s)p
2
2(s),

− C(s) � − 2 D(s)p2(s),

C′(s) − cC(s) + ρ � 2 D(s)p1(s)p2(s),

A2(s) � 0,

A2′(s) � 0,

B2′(s) − cB2(s) � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(69)
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with terminal conditions A1(T) � 0, A2(T) � 0, B1(T) � 0,
B2(T) � 0, and C(T) � 0.

To solve A1(t), we eliminate p1(s) in the first row of (69),
and then we have

4A1′(s) A1(s) + θ − α( 􏼁m
2
0 − η􏽨 􏽩 − 2α − θ − 2A1(s)􏼂 􏼃

2
� 0,

(70)

with A1(T) � 0.
Solving this ODE, we have

log α −
θ
2

− A1(t)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+

(θ/2) − η/m2
0􏼐 􏼑

α − (θ/2) − A1(t)

� log α −
θ
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+

(θ/2) − η/m2
0􏼐 􏼑

α − (θ/2)
−

T − t

m
2
0

.

(71)

We denote E(t) � A1(t) − α + (θ/2) and q(x) � log|x|−

(k/x), k � (θ/2) − (η/m2
0), and then we have

q(E(t)) � log α −
θ
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+

(θ/2) − η/m2
0􏼐 􏼑

α − (θ/2)
−

T − t

m
2
0

. (72)

Hence, we define E(t) as

E(t) � inf E|q(E) � log α −
θ
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼨

+
(θ/2) − η/m2

0􏼐 􏼑

α − (θ/2)
−

T − t

m
2
0

⎫⎬

⎭, t ∈ [0, T].

(73)

*us,

A1(t) � E(t) + α −
θ
2
. (74)

Now we verify that D(t)< 0. Note that D(t)< 0 is
equivalent to E(t)< − k according to (74). When k≤ 0, q(x)

is monotonic decreasing on (− ∞, 0), and its value domain
on (− ∞, 0) is (− ∞,∞). According to the definition of E(t),
we conclude that E(t)< 0, and thus E(t)< − k. When k> 0,

q(x) is monotonic decreasing on (− ∞, − k) and monotonic
increasing on (− k, 0). Besides, the value domain of q(x) on
interval (− ∞, − k) and interval (− k, 0) is (q(− k), +∞). So if
q(E(t)) > q(− k) for any t in [0, T], according to the defi-
nition of E(t), we conclude that E(t)< − k. Note that
q(E(t)) is monotonic increasing on [0, T]. So, it suffices to
make q(E(0))> q(− k) hold, which is just guaranteed by
assumption (59). So, we conclude that D(t)< 0.

With A1(t) and according to (69), we have

p1(t) � −
α − (θ/2) − A1(t)

A1(t) + θ − α( 􏼁m
2
0 − η

. (75)

To solve C(t), we eliminate p2(t) in the third row of (69)
to get

C′(t) + − c + p1(t)􏼂 􏼃C(t) + ρ � 0. (76)

Solving this ODE with (75), we have

C(t) � ρe
− c(T− t)α − (θ/2) − A1(t)

α − (θ/2)
􏽚

T

t

(α − (θ/2))e
c(T− s)

α − (θ/2) − A1(s)
ds.

(77)

Consequently,

p2(t) � −
ρe

− c(T− t)
A1(t) − α +(θ/2)􏼂 􏼃

2 A1(t) + θ − α( 􏼁m
2
0 − η􏽨 􏽩

􏽚
T

t

e
c(T− s)

α − (θ/2) − A1(s)
ds.

(78)

Moreover, solving the ODE of B1(t) in the second row of
(69) with p2(t), we have

B1(t) � e
2ct

􏽚
T

t
e

− 2cs
A1(t) + θ − α( 􏼁m

2
0 − η􏽨 􏽩p

2
2(s)ds.

(79)

In addition, it is obvious that A2(t) ≡ 0 and B2(t) ≡ 0
from (69).

With the results above, we have

J(t, x, l) � Et 􏽚
T

t
D(s) vs − p1(s)xs − p2(s)Ls􏼈 􏼉

2ds􏼨 􏼩 + A1(t)x
2

+ B1(t)l
2

+ C(t)xl

+ 􏽚
T

t
σ22G1(s)ds≤A1(t)x

2
+ B1(t)l

2
+ C(t)xl + 􏽚

T

t
σ22G1(s)ds.

(80)

*e inequality above indicates vt � p1(t)xt + p2(t)Lt is
the unique solution to maximize J(t, x, l) and thus the
unique solution to the optimal execution problem (60).
*erefore, the value function (58) can be expressed as

V(t, x, l) � A1(t) − α( 􏼁x
2

+ B1(t)l
2

+ C(t)xl + σ22 􏽚
T

t
B1(s)ds.

(81)

To calculate the partial derivatives on V(t, x, l), we have

Vt � A1′(t)x
2

+ B1′(t)l
2

+ C′(t)xl − σ22B1(t),

Vxx � 2A1(t) − 2α,

Vll � 2B1(t),

Vx � 2A1(t)x + C(t)l − 2αx,

Vl � 2B1(t)l + C(t)x.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(82)

*en, it is straightforward to verify that V(t, x, l) satisfies
the HJB equation below:
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Vt +
1
2
σ22Vll − clVl + ρlx + max

v

m
2
0
2

Vxx + θm
2
0 − η􏼠 􏼡v

2
− θx + Vx( 􏼁v􏼨 􏼩 � 0. (83)

□

Note that the optimal strategy (60) is also a linear
combination of the remaining position xt and the trading
signal Lt. *is means that the trading signal can affect the
optimal execution strategy. In addition, the weights of these
two terms are affected by the parameter m0 of the execution
risk, and thus the optimal executing strategy is also affected
by the execution risk.

We remark that in the case of linear execution risk, the
optimal executing strategy (60) can also recover the result in
Cheng et al. [13] with mean reversion speed c degenerating
to 0. To illustrate this conclusion, we note that definition (73)
implies E(t) is bounded for t ∈ [0, T] and the verification
process of H(t)< 0 in the proof of *eorem 2 implies that
the value domain of E(t) for t ∈ [0, T] does not include 0.

Hence, the function (ec(T− t)/E(t)) is bounded for t ∈ [0, T].
With E(t) � A1(t) − α + (θ/2), we have

lim
c⟶0

􏽚
T

t

e
c(T− s)

α − (θ/2) − A1(s)
ds � 􏽚

T

t

1
α − (θ/2) − A1(s)

ds.

(84)

ODE (70) indicates

ds

α − (θ/2) − A1(s)
�

m
2
0 A1(s) + θ − α − η/m2

0􏼐 􏼑􏽨 􏽩

α − (θ/2) − A1(s)􏼂 􏼃
3 dA1(s).

(85)

By integration, we have

􏽚
T

t

1
α − (θ/2) − A1(s)

ds � m
2
0

(1/2) (θ/2) − η/m2
0􏼐 􏼑􏼐 􏼑 − (α − (θ/2))

(α − (θ/2))
2 +

1
α − (θ/2) − A1(t)

−
(1/2)((θ/2) − η/m2

0􏼐 􏼑􏼑

α − (θ/2) − A1(t)􏼂 􏼃
2

⎧⎨

⎩

⎫⎬

⎭. (86)

Finally, we have

lim
c⟶0

p2(t) �
ρ

2 A1(t) + θ − α − η/m2
0􏼐 􏼑􏽨 􏽩

(1/2) (θ/2) − η/m2
0􏼐 􏼑􏼐 􏼑 − (α − (θ/2))

(α − (θ/2))
2 α −

θ
2

􏼠 􏼡 − A1(t)􏼢 􏼣 + 1 +
(1/2)((θ/2) − η/m2

0􏼐 􏼑􏼑

α − (θ/2) − A1(t)

⎧⎨

⎩

⎫⎬

⎭,

(87)

which is just the form in Cheng et al. [13].

5. Conclusion

In this paper, we study the optimal execution problem by
taking into account the trading signal and the execution risk
simultaneously. More specifically, we combine the frameworks
of Almgren and Chriss [2] andGatheral et al. [9] and propose a
trading signal term, which follows an Ornstein–Uhlenbeck
process, in the intrinsic price process of the stock. In addition,
the execution process is affected by execution risk. Under these
settings, we propose an optimal executing problem with the
decay kernel function and transient impact function being of
generalized form. *en, we solve the optimal execution
problemwith the decay kernel being theDirac function and the
transient impact function being a linear function in the cases of
the constant execution risk and the linear execution risk, re-
spectively.We give analytical solutions to the optimal execution
problems and prove that our result can recover previous work
when the mean reversion speed of the trading signal process
degenerates to 0.

Further work can try other types of decay kernel
functions and nonlinear transient impact functions. Besides,

other utility functions of the adjusted PnL can be taken into
account. Empirical work can also be conducted to validate
and calibrate the theoretical model.
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