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,emost important properties of the conformable derivative and integral have been recently introduced. In this paper, we propose
and prove some new results on conformable Laplace’s equation. We discuss the solution of this mathematical problem with
Dirichlet-type and Neumann-type conditions. All our obtained results will be applied to some interesting examples.

1. Introduction

,e idea of fractional derivative was first raised by L’Hospital
in 1695. After introducing this idea, many new definitions
have been formulated. ,e most well-known ones are
Riemann–Liouville and Caputo fractional definitions. For
more background information about these definitions, we
refer the reader to [1, 2]. A new definition of derivative and
integral has been recently formulated by Khalil et al. in [3].
,is new definition is a type of local fractional derivative [4].
,is definition was proposed to overcome some of diffi-
culties associated with solving the equations formulated in
the sense of classical nonlocal fractional definitions where
the solutions can be difficult to obtain or even impossible to
obtain. As a result, various research studies have been
conducted on the mathematical analysis of functions of a
real variable formulated in the sense of conformable defi-
nition such as Rolle’s theorem, mean value theorem, chain
rule, power series expansion, and integration by parts for-
mulas [3, 5, 6]. In [7], the conformable partial derivative of
the order α∈(0, 1] of the real-valued functions of several
variables and the conformable gradient vector has been
proposed, and conformable Clairaut’s theorem for partial
derivative has also been investigated. In [8], the Jacobian
matrix has been defined in the context of conformable
definition, and the chain rule for multivariable conformable

derivative has been also proposed. In [9], conformable
Euler’s theorem on homogeneous has been successfully
introduced.

Furthermore, many research studies have been con-
ducted on the theoretical and practical elements of con-
formable differential equations shortly after the proposition
of this new definition [4, 10–26]. Conformable derivative has
also been applied in modeling and investigating phenomena
in applied sciences and engineering such as the deterministic
and stochastic forms of coupled nonlinear Schrödinger
equations [27] and regularized long wave Burgers equation
[28] and the analytical and numerical solutions for (1 + 3)-
Zakharov–Kuznetsov equation with power-law nonlinearity
[29].

Laplace’s equation is used as indicator of the equilibrium
in applications such as heat conduction and heat transfer
[30]. Generally, to solve the Laplace equation, Legendre’s
differential equation, particularly the Legendre function or
as commonly known as Legendre polynomials, is used to
find a solution to the Laplace equation that indicates
spherical symmetry in the physical systems [31]. Laplace
equation can be widely seen in the field of heat transfer
where the temperature is at different locations when the
body's heat transfer is at the equilibrium point [30].
According to our knowledge, there are not many research
studies that have been done on investigating Laplace’s
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equation in the sense of conformable derivative; therefore,
all our results are considered new and worthy.

,is paper is organized as follows. In the next section, the
main concepts of conformable fractional calculus are pre-
sented. Next, we successively discuss the solution of con-
formable Laplace’s partial differential equation with
Dirichlet and Neumann conditions. Finally, the above re-
sults will be applied in some interesting examples to validate
their applicability.

2. Basic Definitions and Tools

Definition 1. Given a function f:[0,∞)⟶R. ,en, the
conformable derivative of order α [3] is defined by

Tαf( 􏼁(t) � limε⟶0
f t + εt1− α

􏼐 􏼑 − f(t)

ε
, (1)

for all t> 0, 0< α≤ 1. If f is α− differentiable in some (0, a),
a> 0, and limt⟶0h+(Taf)(t) exists, then it is defined as

Tαf( 􏼁(0) � limt⟶0 + Tαf( 􏼁(t). (2)

Theorem 1 (see [3]). If a function f:[0, ∞)⟶R is α-dif-
ferentiable at t0> 0, 0α≤1, then f is continuous at t0.

Theorem 2 (see [3]). Let 0α≤1 and let f, g be
α− differentiable at a point t> 0. 3en, we have

(i) Tα(af + bg) � a(Tαf) + b(Tαg), ∀a, b ∈ R.
(ii) Tα(tp) � ptp− α, ∀p ∈ R.
(iii) Tα(λ) � 0, for all constant functionsf(t) � λ.
(iv) Tα(fg) � f(Tαg) + g(Tαf).
(v) Tα(f/g) � g(Tαf) − f(Tαg)/g2.
(vi) If, in addition, f is differentiable, then

(Tαf)(t) � t1− α(df/dt)(t).

3e conformable derivative of certain functions using the
above definition is given as follows:

(i) Tα(1) � 0.
(ii) Tα(sin(at)) � at1− α cos(at).
(iii) Tα(cos(at)) � − at1− α sin(at).
(iv) Tα(eat) � aeat, a ∈ R.

Definition 2. ,e (left) conformable derivative starting from
a of a given function f:[a,∞)⟶R of order 0< α≤ 1 [5] is
defined by

T
a
αf( 􏼁(t) � lim∈⟶0

f t + ε(t − a)
1− α

􏼐 􏼑 − f(t)

ε
. (3)

When a� 0, it is expressed as (Tαf ) (t). If f is
α− differentiable in some a, b, then the following can be
defined:

T
a
αf( 􏼁(a) � limt⟶a + T

a
αf( 􏼁(t). (4)

Theorem 3 (chain rule) (see [5]). Let f, g:(a,∞)⟶R be
(left) α-differentiable functions, where 0< α≤ 1. By letting h
(t)� f (g(t)), h (t) is α-differentiable for all t≠ a and g (t)≠ 0;
therefore, we have the following:

T
a
αh( 􏼁(t) � T

a
αf( 􏼁(g(t)) · T

a
αg( 􏼁(t) · (g(t))

α− 1
. (5)

If t� a, then we obtain

T
a
αh( 􏼁(a) � lim

t⟶a+
T

a
αf( 􏼁(g(t)) · T

a
αg( 􏼁(t) · (g(t))

α− 1
.

(6)

Theorem 4 (see [5]). Assume f is infinitely α-differentiable
function, for some 0< α≤ 1 at the neighborhood of a point t0.
3en, f has the following fractional power series expansion:

f(t) � 􏽘
∞

k�0

k
T

t0
α􏼐 􏼑 t0( 􏼁

a
k
k!

t − t0( 􏼁
kα

, t0 < t< t0 +
1

R
α, (7)

Here, ((k)T
t0
α )(t0) means the application of the con-

formable derivative k times.

,e following definition is the conformable α-integral of
a function f starting from a≥ 0.

Definition 3. Ia
α(f)(t) � 􏽒

t

k�0(f(x)/x1− α) · dx, where the
integral is the usual Riemann improper integral, and α ∈ 0, 1
[2].

According to the above definition, the following can be
shown.

Theorem 5. Ta
αIa

α(f)(t) � f(t), for t≥ a, where f is any
continuous function in the domain of Iα [3].

Lemma 6. Let f: (a, b)⟶R be differentiable, and α ∈ 0, 1.
3en, for all a> 0, we have [5]

I
a
αT

a
α(f)(t) � f(t) − f(a). (8)

From [7, 8], the conformable partial derivative of a real-
valued function with several variables is defined as follows.

Definition 4. Let f be a real-valued function with n variables
and a � (a1, . . . , an) ∈ Rn be a point whose ith component is
positive. ,en, the limit can be expressed as follows:

lim∈⟶0
f a1, . . . , ai + εa1− α

i , . . . an􏼐 􏼑 − f a1, . . . , an( 􏼁

ε
. (9)

If the above limit exists, then we have the ith con-
formable partial derivative of f of the order α∈(0, 1] at a,
denoted by (zα/zxα

i )f(a).
Finally, some results on conformable Fourier series will

be recalled [22] as follows.
Let α∈(0, 1, and φ:0,∞)⟶R be defined by

φ(t) �
t
α

α
, (10)

and g:[0, ∞)⟶ R be any function. Let f: [0,∞)⟶R be
defined by f(t) � g(φ(t)).
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Definition 5. A function ft is called α-periodical with period
p if we have

f(t) � g(φ(t)) � g φ(t) +
p
α

α
􏼠 􏼡. (11)

Definition 6. Two functions f, h are called α-orthogonal on
[0, b] if 􏽒

b

0(f(t)h(t)/t1− α)dt � 0.

Definition 7. Let f: [0, ∞)⟶R be a given piecewise con-
tinuous α-periodical with a period p. ,en, we define the
following:

(i) ,e cosine α-Fourier coefficients of f are expressed as
an � 2α/ pα 􏽒

p

0 f(t)cos(ntα/α)(dt/t1− α), n �

1, 2, 3, . . ..
(ii) ,e sine α-Fourier coefficients of f are expressed as

bn � 2α/ pα 􏽒
p

0 f(t)sin(n(tα/α))dt/t1− α, n �

1, 2, 3, . . ..

Remark 1. ,e following can be proven easily:

(i) cos(n(tα/α)) and cos(m(tα/α)) are orthogonal on
[0, (α2π)(1/α)], for all n≠m.

(ii) sin(n(tα/α)) and sin(m(tα/α)) are orthogonal on
[0, (α2π)(1/α)], for all n≠m.

(iii) sin(n(tα/α)) and cos(m(tα/α)) are orthogonal on
[0, (α2π)(1/α)], for all n, m.

Definition 8. Let f: [0, ∞)⟶R be a given piecewise con-
tinuous function which is α-periodical with period p. ,en,
the conformable α− Fourier series of f associated with the
interval [0, p] is expressed as

S(f)(t) �
a0

2
+ 􏽘
∞

n�1
an cos n

t
α

α
􏼠 􏼡 + bn sin n

t
α

α
􏼠 􏼡􏼠 􏼡, (12)

where an and bn, are as stated in Definition 7.

Theorem 6. 3e conformable Fourier series of a piecewise
continuous α-periodical function converges pointwise to the
average limit of the function at each point of discontinuity and
to the function at each point of continuity.

3. Conformable Laplace’s Partial
Differential Equation

In this section, we solve the two-dimensional conformable
Laplace’s partial differential equation which is expressed in
the following form:

z
α

zx
α

z
α
u(x, y)

zx
α􏼠 􏼡 +

z
α

zy
α

z
α
u(x, y)

zy
α􏼠 􏼡 � 0. (13)

As in the classical case, we propose this equation only
with boundary conditions at the limit of the enclosure where
the equation is fulfilled, whichmust have a certain regularity.
,ese boundary conditions can be of two types:

(i) Dirichlet conditions: these are conditions in the
function u (x, y).

(ii) Neumann conditions: these are conditions imposed
on the conformable partial derivatives of u (x, y) of
the order zαu(x, y)/zxαor zαu(x, y)/zyα.

,e geometry of the region R where equation (13) is
satisfied is very important, and we can only calculate so-
lutions if they have certain regularity conditions.

3.1. Dirichlet Conditions. Let us discuss the solution of the
following conformable Laplace’s partial differential
equation:

z
α

zx
α

z
α
u(x, y)

zx
α􏼠 􏼡 +

z
α

zy
α

z
α
u(x, y)

zy
α􏼠 􏼡 � 0, 0≤ x≤ a, 0≤y≤ b,

u(x, 0) � u(x, b) � 0, 0≤x≤ a,

u(0, y) � 0, 0≤y≤ b,

u(a, y) � f(y), 0≤y≤ b.

(14)

We will use the separation of variables technique [22].
So, let u(x, y) � P(x)Q(y). By substituting it in equa-

tion (13), we obtain the following:

dα

dx
α

dαp(x)

dx
α􏼠 􏼡Q(y) + P(x)

dα

dy
α

dαQ(y)

dy
α􏼠 􏼡 � 0. (15)

By ignoring the trivial solution u ≡ 0 and assuming that
P(x)≠ 0 and Q(x)≠ 0, we have

1
P(x)

dα

dx
α

dαP(x)

dx
α􏼠 􏼡 � −

1
Q(y)

dα

dy
α

dαQ(y)

dy
α􏼠 􏼡. (16)

Hence, for some constant λ,

1
P(x)

dα

dx
α

dαP(x)

dx
α􏼠 􏼡 � −

1
Q(y)

dα

dy
α

dαQ(y)

dy
α􏼠 􏼡 � λ. (17)

Consequently, we have
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dα

dx
α

dαP(x)

dx
α􏼠 􏼡 − λP(x) � 0,

dα

dy
α

d
α
Q(y)

dy
α􏼠 􏼡 + λQ(y) � 0.

(18)

,e boundary conditions can be written as follows:

u(x, 0) � P(x)Q(0) � 0,

u(x, b) � P(x)Q(b) � 0.
(19)

Since x is arbitrary, it follows that

Q(0) � Q(b) � 0. (20)

,us, we have the following contour problem:

dα

dy
α

dαQ(y)

dy
α􏼠 􏼡 + λQ(y) � 0,

Q(0) � 0,

Q(b) � 0,

(21)

whose solution depends on the separation parameter, λ.
Now, we have the following:

(1) λ� 0. ,en, equation (18) becomes
(dα/dyα)(dαQ(y)/dyα) � 0, whose general solution
is obtained by integrating twice with respect to x.

Q(y) � A
y
α

α
+ B. (22)

By using the following boundary conditions, we have:

Q(0) � 0⟹B � 0,

Q(b) � 0⟹Ab + B � 0.
(23)

Since b≠ 0λ � − μ2, the solution of the previous system is
A�B� 0, and we obtain Q (y)� 0. Hence, there is no
nontrivial solution when λ� 0.

(2) λ< 0, say λ � − μ2. ,en, equation (18) becomes
(dα/dyα)(dαQ(y)/dyα) − μ2Q(y) � 0, which has a
general solution as follows:

Q(y) � Ae
μ yα/α( ) + Be

− μ yα/α( ). (24)

By using the following boundary conditions, we have:

Q(0) � 0⟹A + B � 0,

Q(b) � 0⟹Ae
μ bα/α( )

+ Be
− μ bα/α( )

� 0.
(25)

,e previous equations form a homogeneous linear
system in the unknowns A and B. ,e determinant of the
matrix of the coefficients is expressed as

1 1

e
μ bα/α( )

e
− μ bα/α( )

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� e

μ bα/α( )
− e

− μ bα/α( )
� 2 sinh μ

b
α

α
􏼠 􏼡􏼠 􏼡,

(26)

and since μ≠ 0, the only solution of the system is the trivial
A�B� 0, and we obtain Q (y)� 0. Hence, there is no
nontrivial solution when λ< 0.

(3) λ> 0, say λ � μ2 ,en, equation (18) becomes
(dα/dyα)(dαQ(y)/dyα) + μ2Q(y) � 0, which has a
general solution as follows:

Q(y) � A cos μ
y
α

α
􏼠 􏼡 + B sin μ

y
α

α
􏼠 􏼡. (27)

By using the following boundary conditions, we have:

Q(0) � 0⟹A � 0,

Q(b) � 0⟹A cos μ
b
α

α
􏼠 􏼡 + B sin μ

b
α

α
􏼠 􏼡 � 0,

(28)

where

B sin μ
b
α

α
􏼠 􏼡 � 0. (29)

Since we do not want the trivial solution, B� 0 and

sin μ
b
α

α
􏼠 􏼡 � 0⟺ μ

b
α

α
􏼠 􏼡 � nπ, n ∈ N, (30)

and then we obtain

μ � nπ
α
b
α, (31)

and the value of λ � μ2 is written as

λ � n
2π2 α

2

b
2α, n ∈ N. (32)

Since λwas an arbitrary constant, then for each n ∈N, we
would have a possible solution of the conformable ordinary
differential equation as follows:

λn � n
2π2

α2

b
2α⟹Qn(y) � Bn sin nπ

y

b
􏼒 􏼓

α
􏼒 􏼓. (33)

Substituting these values for λn in the other conformal
differential equation, we have

dα

dx
α

dαP(x)

dx
α􏼠 􏼡 − n

2π2 α
2

b
2α p(x) � 0, (34)

whose solution for each n ∈N is of the following form:

Pn(x) � Cne
nπ(x/b)α

+ Dne
− nπ(x/b)α

, Cn, Dn ∈ R. (35)
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By using the initial condition u (0, y)� 0, we have

u(0, y) � P(0)Q(y) � 0, (36)

which by arbitrary y leads to P (0)� 0, and therefore, we
obtain

Pn(0) � Cn + Dn � 0⟹Dn � − Cn, (37)

and the function Pn (x) is given by

Pn(x) � Cn e
nπ(x/b)α

− e
− nπ(x/b)α

􏼐 􏼑 � 2Cnsinh nπ
x

b
􏼒 􏼓

α
􏼒 􏼓.

(38)

,e solution of the partial derivative equation will be, for
each n, of the following form:

un(x, y) � Pn(x)Qn(y)

� 2Cnsinh nπ
x

b
􏼒 􏼓

α
􏼒 􏼓Bn sin nπ

y

b
􏼒 􏼓

α
􏼒 􏼓

� cnsinh nπ
x

b
􏼒 􏼓

α
􏼒 􏼓sin nπ

y

b
􏼒 􏼓

α
􏼒 􏼓,

(39)

with cn � 2CnBn.
Since the equation is linear, any linear combination of

solutions is another solution; therefore, we can consider it as
a formal general solution:

u(x, y) � 􏽘
∞

n�1
Cnsinh nπ

x

b
􏼒 􏼓

α
􏼒 􏼓sin nπ

y

b
􏼒 􏼓

α
􏼒 􏼓, (40)

and using the last boundary condition u(a, y) � f(y), we
have

u(a, y) � 􏽘

∞

n�1
cnsinh nπ

a

b
􏼒 􏼓

α
􏼒 􏼓sin nπ

y

b
􏼒 􏼓

α
􏼒 􏼓

� 􏽘
∞

n�1
dn sin nπ

y

b
􏼒 􏼓

α
􏼒 􏼓 � f(y).

(41)

Finally, we can calculate the value of the coefficients dn, if
we observe the expression as the conformable α− Fourier
series of the odd extension of f (y); therefore, we obtain

dn � cnsinh nπ
a

b
􏼒 􏼓

α
􏼒 􏼓 �

2α
b
α 􏽚

b

0

f(y)sin nπ
y

b
􏼒 􏼓

α
􏼒 􏼓

dy

y
1− α,

(42)

where

dn �
2α

b
αsinh nπ(a/b)

α
( 􏼁

􏽚

b

0

f(y)sin nπ
y

b
􏼒 􏼓

α
􏼒 􏼓

dy

y
1− α. (43)

3.2. Neumann Conditions. Let us discuss the solution of the
following problem with Neumann-type conditions:

z
α

zx
α

z
α
u(x, y)

zx
α􏼠 􏼡 +

z
α

zy
α

z
α
u(x, y)

zy
α􏼠 􏼡 � 0, 0≤x≤ a, 0≤y≤ b,

(44)

z
α
u(x, 0)

zy
α􏼠 􏼡 � 0, 0≤ x≤ a,

z
α
u(x, b)

zy
α􏼠 􏼡 � 0, 0≤ x≤ a,

z
α
u(0, y)

zx
α􏼠 􏼡 � f(y), 0≤y≤ b,

z
α
u(a, y)

zx
α􏼠 􏼡 � 0, 0≤y≤ b.

(45)

We can see in this case that the boundary conditions
involve the conformable partial derivatives of u.

All conditions are boundary. As we did previously, we
use the method of separation of variables [22]:

u(x, y) � P(x)Q(y), (46)

which will lead us to the following two conformable ordinary
differential equations:

dα

dx
α

dαP(x)

dx
α􏼠 􏼡 − λP(x) � 0, (47)

dα

dy
α

dαQ(y)

dy
α􏼠 􏼡 + λQ(y) � 0. (48)

,e differences with the Dirichlet-type conditions ap-
pear when establishing the boundary conditions of these
problems. Observe that in this case, (zαu(x, 0)/zyα) � 0 and
(zαu(x, b)/zyα) � 0; therefore, the boundary conditions for
the conformable differential equations are obtained as
follows:

z
α
u(x, y)

zy
α � P(x)

dα

dy
α

dαQ(y)

dy
α􏼠 􏼡⟹

z
α
u(x, 0)

zy
α � P(x)

dα

dy
α

dαQ(0)

dy
α􏼠 􏼡⟹

dα

dy
α

dαQ(0)

dy
α􏼠 􏼡 � 0,

z
α
u(x, b)

zy
α � P(x)

dα

dy
α

dαQ(b)

dy
α􏼠 􏼡⟹

dα

dy
α

d
α
Q(b)

dy
α􏼠 􏼡 � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(49)
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We verify the following:

z
α
u(a, y)

zx
α �

dα

dx
α

dαP(a)

dx
α􏼠 􏼡Q(y) � 0⟹

dα

dx
α

dαP(a)

dx
α􏼠 􏼡 � 0.

(50)

Using equation (48) and the conditions found for
(dα/dyα)(dαQ(y)/dyα), we have the following boundary
problem:

dα

dy
α

dαQ(y)

dy
α􏼠 􏼡 + λQ(y) � 0,

dαQ(0)

dy
α􏼠 􏼡 � 0,

dαQ(b)

dy
α􏼠 􏼡 � 0.

(51)

We distinguish according to the value of λ. Now, we
obtain the following:

(1) λ� 0. ,en, equation (48) becomes
(dα/dyα)(dαQ(y)/dyα) � 0, whose general solution
is obtained by integrating twice with respect to y:

Q(y) � A
y
α

α
+ B, (52)

with A, B ∈R arbitrary constants. By using the following
boundary conditions, we have:

dαQ(0)

dy
α􏼠 􏼡 � 0,

dαQ(b)

dy
α􏼠 􏼡 � 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

⇔A � 0. (53)

,erefore, Q (y)�B, and then u (x, y)� P (x) B.
Using equation (44), we obtain

z
α
u(x, y)

zx
α �

dαP(x)

dx
α􏼠 􏼡B⟹

z
α

zx
α

z
α
u(x, y)

zx
α􏼠 􏼡 �

dα

dx
α

dαP(x)

dx
α􏼠 􏼡B

z
α
u(x, y)

zy
α􏼠 􏼡 � 0⟹

z
α

zy
α

z
α
u(x, y)

zy
α􏼠 􏼡 � 0􏼩,

z
α

zx
α

z
α
u(x, y)

zx
α􏼠 􏼡 +

z
α

zy
α

z
α
u(x, y)

zy
α􏼠 􏼡 �

dα

dx
α

dαP(x)

dx
α􏼠 􏼡B + 0 � 0,

(54)

where either B� 0, but then we should have the null solution,
or (dα/dxα)(dαP(x)/dxα) � 0, and therefore, we have

P(x) � Cx + D. (55)

We have as a possible solution:

u(x, y) � P(x)Q(y) � ACx + A D � ρx + σ, (56)

with ρ�AC and σ �AD. If we now use the boundary
condition (zαu(a, y)/zxα) � 0, we have

z
α
u(x, y)

zx
α � ρ⟹

z
α
u(a, y)

zx
α � 0⟹ρ � 0. (57)

In this case, equation (44) has the following solution:

u(x, y) � σ. (58)

(2) λ< 0, say λ � − μ2. ,en, the equations are written as
follows:

dα

dy
α

dαQ(y)

dy
α􏼠 􏼡 − μ2Q(y) � 0,

dαQ(0)

dy
α􏼠 􏼡 � 0,

dαQ(b)

dy
α􏼠 􏼡 � 0,

(59)

which has the following general solution:

Q(y) � Ae
μ yα/α( ) + Be

− μ yα/α( ), (60)

By using the following boundary conditions, we obtain:

dαQ(y)

dy
α � Aμe

μ yα/α( ) − Bμe
− μ yα/α( ). (61)
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So,

dαQ(0)

dy
α � Aμ − Bμ � 0⟹μ(A − B) � 0⟹A − B � 0

dαQ(b)

dy
α � Aμe

μ bα/α( )
− Bμe

− μ bα/α( )
� 0⟹μ Ae

μ bα/α( )
− Be

− μ bα/α( )
􏼐 􏼑 � 0⟹Ae

μ bα/α( )
− Be

− μ bα/α( )
� 0

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

. (62)

From the first equation above, A�B, and by substituting
it in the second equation, we have

Ae
μ bα/α( )

− Be
− μ bα/α( )

� 0⟹A e
− μ bα/α( )

− e
− μ bα/α( )

􏼐 􏼑 � 0.

(63)

In this case, we will have two options:

A � 0⟹trivial solution,

e
μ bα/α( )

− e
− μ bα/α( )

� 0⟹e
μ bα/α( )

� e
− μ bα/α( )⟹b � 0⟹trivial solution.

(64)

(3) λ> 0, say λ� µ2.

,en, the equations are expressed as follows:

dα

dy
α

dαQ(y)

dy
α􏼠 􏼡 − μ2Q(y) � 0,

dαQ(0)

dy
α􏼠 􏼡 � 0,

dαQ(b)

dy
α􏼠 􏼡 � 0,

(65)

which has the following general solution:

Q(y) � A cos μ
y
α

α
􏼠 􏼡 + B sin μ

y
α

α
􏼠 􏼡. (66)

We need the following equation:

dαQ(y)

dy
α � − μA sin μ

y
α

α
􏼠 􏼡 + Bμ cos μ

y
α

α
􏼠 􏼡, (67)

to be able to use the boundary conditions as follows:

dαQ(y)

dy
α � μB � 0

dαQ(b)

dy
α � − μA sin μ

b
α

α
􏼠 􏼡 + Bμ cos μ

b
α

α
􏼠 􏼡

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

⟹

B � 0

− μA sin μ
b
α

α
􏼠 􏼡 � 0

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

⟹μ
b
α

α
� nπ, (68)

and therefore, we have

μ � nπ
α
b
α, n ∈ N, (69)

and for each value of n, we will have the following
function:

Qn(y) � An cos nπ
y

b
􏼒 􏼓

α
􏼒 􏼓. (70)

With these values and equation (47), we obtain

dα

dx
α

dαP(x)

dx
α􏼠 􏼡 − μ2P(x) � 0⟹

dα

dx
α

dαP(x)

dx
α􏼠 􏼡 − n

2π2
α

b
2α P(x) � 0,

(71)

which has as a general solution as follows:

P(x) � Ce
μ xα/α( )

+ De
− μ xα/α( )

. (72)
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As we have seen before: (dαP(a)/dxα) � 0.

dαP(x)

dx
α � Cμe

μ xα/α( )
− Dμ e

− μ xα/α( )⟹
dαP(a)

dx
α

� Cμe
μ aα/α( )

− Dμ e
− μ aα/α( )

� 0⟹Ce
μ aα/α( )

� De
− μ aα/α( )

.

(73)

,en for each n, we have

Pn(x) � Cn e
nπ(x/b)α

+ e
− nπ(x/b)α

e
2nπ(a/b)α

􏼐 􏼑. (74)

,e formal solution is the linear combination of all
solutions that we have obtained in the case λ� 0.

u(x, y) � σ + 􏽘
∞

n�1
An cos nπ

y

b
􏼒 􏼓

α
􏼒 􏼓Cn e

nπ(x/b)α
+ e

− nπ(x/b)α

􏼐 􏼑,

� σ + 􏽘
∞

n�1
Cn cos nπ

y

b
􏼒 􏼓

α
􏼒 􏼓 e

nπ(x/b)α
+ e

− nπ(x/b)α
e
2nπ(a/b)α

􏼐 􏼑,

(75)

where cn �AnCn has been taken. ,e values of cn are obtained using the boundary con-
dition: (zαu(0, y)/zxα) � f(y)

z
α
u(x, y)

zx
α � 􏽘

∞

n�1
cnnπ

α
b
α cos nπ

y

b
􏼒 􏼓

α
􏼒 􏼓 e

nπ(x/b)α
− e

− nπ(x/b)α
e
2nπ(a/b)α

􏼐 􏼑,

z
α
u(0, y)

zx
α � 􏽘

∞

n�1
Cnnπ

α
b
α 1 − e

2nπ(a/b)α

􏼐 􏼑 cos nπ
y

b
􏼒 􏼓

α
􏼒 􏼓

� 􏽘
∞

n�1
dn cos nπ

y

b
􏼒 􏼓

α
􏼒 􏼓 � f(y),

dn � Cnnπ
α
b
α 1 − e

2nπ(a/b)α

􏼐 􏼑,

(76)

All values of cn are obtained from the boundary con-
dition: ..., which are known as the coefficients of the con-
formable α-Fourier series of the even extension of the even
extension of f (y); therefore, we obtain

dn � Cnnπ
α
b
α 1 − e

2nπ(a/b)α

􏼐 􏼑 �
2α
b
α 􏽚

a

0

f(y)cos nπ
y

b
􏼒 􏼓

α
􏼒 􏼓

dy

y
1− α,

(77)

where

cn �
2

nπ 1 − e
2nπ(a/b)α

􏼐 􏼑
􏽚

a

0

f(y)cos nπ
y

b
􏼒 􏼓

α
􏼒 􏼓

dy

y
1− α. (78)

Note that in this case, it must be satisfied that the in-
dependent term of the conformable α− Fourier series d0/2

must be 0; therefore, for the solution of the problem with the
Neumann conditions to be u (x, y), the following compat-
ibility condition must be verified as follows:

d0 �
2α
b
α 􏽚

a

0

f(y)
dy

y
1− α � 0⟹􏽚

a

0

f(y)
dy

y
1− α � 0. (79)

4. Examples

In this section, we will use the above results to solve some
conformable Laplace partial differential equations.

Example 1. Let us solve the solution of the following
problem with Dirichlet-type conditions:

z
α

zx
α

z
α
u(x, y)

zx
α􏼠 􏼡 +

z
α

zy
α

z
α
u(x, y)

zy
α􏼠 􏼡 � 0, 0≤x≤ 1, 0≤y≤ 1,

u(x, 0) � u(x, 1) � 0, 0≤x≤ 1,

u(0, y) � 0 0≤y≤ 1,

u(1, y) � 100, 0≤y≤ 1,

(80)
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where α ∈ (0, 1].

Solution. Using equations (40) and (43), we get

u(x, y) � 􏽘
∞

n�1
cnsinh nπ

x

b
􏼒 􏼓

α
􏼒 􏼓 sin nπ

y

b
􏼒 􏼓

α
􏼒 􏼓, (81)

where

cn �
200α

sinh(nπ)
􏽚

1

0

sin nπy
α

( 􏼁
dy

y
1− α �

200 1 − (− 1)
n

( 􏼁

nπ sinh(nπ)
, n ∈ N.

(82)

Example 2. Let us solve the solution of the following
problem with Neumann-type conditions:

z
α

zx
α

z
α
u(x, y)

zx
α􏼠 􏼡 +

z
α

zy
α

z
α
u(x, y)

zy
α􏼠 􏼡 � 0, 0≤x≤ a, 0≤y≤ b,

z
α
u(x, 0)

zy
α􏼠 􏼡 � 0, 0≤x≤ a,

z
α
u(x, b)

zy
α􏼠 􏼡 � 0 0≤ x≤ a,

z
α
u(0, y)

zx
α􏼠 􏼡 �

b
α

2
− y

α
, 0≤y≤ b,

z
α
u(a, y)

zx
α􏼠 􏼡 � 0, 0≤y≤ b,

(83)

where α ∈ (0, 1].
Solution. First, note that the function f(y) � (bα/2) −

yα satisfies the compatibility condition given by equation
(30).

􏽚

b

0

b
α

2
− y

α
􏼠 􏼡

dy

y
1− α � 0. (84)

,e formal solution of this problem is given by

u(x, y) � σ + 􏽘

∞

n�1
cncos nπ

y

b
􏼒 􏼓

α
􏼒 􏼓 e

nπ(x/b)α
+ e

− nπ(x/b)α
e
2nπ(a/b)α

􏼐 􏼑,

(85)

where

cn �
2

nπ 1 − e
2nπ(a/b)α

􏼐 􏼑
􏽚

b

0

b
α

2
− y

α
􏼠 􏼡cos nπ

y

b
􏼒 􏼓

α
􏼒 􏼓

dy

y
1− α �

2b
2α

(− 1)
n

− 1( 􏼁

αn
3π3 1 − e

2nπ(a/b)α

􏼐 􏼑
. (86)

5. Conclusion

In this research paper, we have proposed some results re-
ferring to the conformable Laplace’s partial differential
equation. ,e definitions of conformable derivative and
integral have been applied to construct some of the results
and relationships in our study. ,e solution of conformable
Laplace’s partial differential equation with Dirichlet-type
and Neumann-type conditions has been successfully
established. ,e findings of this research study indicate that
the results obtained in the sense of conformable derivative
coincide with the results obtained in classical integer-order

case. Finally, some interesting examples are presented to
show the validity and potentiality of our obtained results to
be applied in future research works in various applications in
the field of natural sciences or engineering.
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