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*e present research article is related to the analytical investigation of some nonlinear fractional-order Fisher’s equations. *e
homotopy perturbation technique and Shehu transformation are implemented to discuss the fractional view analysis of Fisher’s
equations. For a better understanding of the proposed procedure, some examples related to Fisher’s equations are presented. *e
identical behavior of the derived and actual solutions is observed. *e solutions at different fractional are calculated, which
describe some useful dynamics of the given problems. *e proposed technique can be modified to study the fractional view
analysis of other problems in various areas of applied sciences.

1. Introduction

In mathematical science, the construction of exact and
explicit solutions to nonlinear fractional-order partial dif-
ferential equations (PDEs) is very significant and is one of
the most exciting and especially active fields of study. It is
well recognized that it is possible to divide all nonlinear
PDEs into two parts: the nonintegrable ones and the inte-
grable partial differential equations. *ere is an infinite
number of exact solutions to the first form, i.e., the integrable
equations. *e most well-known problems among them are
the sine-Gordon equation, Korteweg-de Vries equation,
Boussinesq equations, Kawahara type equations, and non-
linear Schrodinger equation and the list can be expanded
with other fundamental integrable problems, but it is not our
purpose to give all the lists [1–5]. Nonlinear PDEs are
considered to be in the class of nonintegrable partial dif-
ferential equations with certain precise solutions or without
precise solutions and will need special care to achieve their
solutions because of the shape of the nonlinear differential
equation and the pole of its solution. *e Fitzhugh-Nagumo
equation, Fisher equation, Burger-Huxley equation, and
Ginzburg-Landau equation can be mentioned as the well-
known nonintegrable PDEs among them all [6–13].

Over the last few decades, considerable progress has been
made in developing methods for obtaining precise solutions
to nonlinear equations, but the progress accomplished is
insufficient. Since, from our point of view, there is no single
optimal way to achieve correct solutions to nonlinear dif-
ferential equations of all forms. Based on the researchers’
expertise and the sympathy for the method used, each
method has its benefits and shortcomings. Also, all these
techniques can be seen to be problem-dependent, namely,
that certain techniques perform well on some concerns, but
others do not.*erefore, it is very important to apply certain
well-known methods to nonlinear partial differential
equations in the literature that are not solved with that
method to look for potential new exact solutions or to check
current solutions with different approaches [14–17].

Fisher-Kolmogorov-Petrovsky-Piscounov (Fisher-KPP)
equation was first introduced by Fisher [18] and was later
renamed Fisher equation. FEs have numerous applications
in the fields of engineering and science [19–22]. *e re-
searchers investigated some important generalizations of
this equation [23–25]. Numerous reaction-diffusion equa-
tions have wavefronts that show a vital part in explaining
chemical, physical, and biological phenomena [26, 27]. *e
reaction-diffusion systems can explain how changes in the
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concentration of one or more chemicals occur. One is the
local chemical reactions that transform the substances into
each other and the other is the diffusion, which allows the
substances to spread through the air.

*e simplest equation for reaction-diffusion in one
spatial dimension,

ψI � Pψμμ + Q(ψ), (1)

where ψ(μ,I) shows single material concentration, P

represents diffusion coefficients, and Q represents all local
reactions. If R(ψ) � ψ(1 − ψ), we get FE which is used to
define the biological populations dispersion.*e Fisher-KPP
advection equation is used to define population dynamics in
advective environments [28]. *e partial differential equa-
tion proposed by Fisher is nonlinear as

ψI � Dψμμ + ψ(1 − ψ). (2)

Fisher proposed equation (2) as a model for gene se-
lection, with ψ denoting the population density. *e same
equation also arises in the autocatalytic chemical reactions,
nuclear reactor theory, flame propagation, neurophysiology,
and Brownian motion process. *e Fisher equation is
considered to be an important equation because of its vast
number of applications in the field of engineering.

*e homotopy perturbation technique was developed by
He [29, 30] in 1998. HPM provides the solution as a sum of
the sequence having an infinite sum that converges rapidly
to the exact results. HPM can be used to solve PDEs of higher
dimensions and nonlinearity effectively.

In the present research article, effective utilization of the
new developed technique, the homotopy perturbation
method and Shehu transform, has been implemented to
solve fractional FEs.*e suggested technique is very effective
for the solutions of other fractional PDEs because its re-
quired small computational work and higher degree accu-
racy. Moreover, the obtained results are in close resemblance
with the actual solution of all fractional FEs.

2. Preliminaries

2.1. Definition. *e fractional-order Riemann–Liouville
integral is define by [31, 32]

I
δ
0h(τ) �

1
Γ(α)

􏽚
η

0
(η − s)

α− 1
h(s)ds. (3)

2.2. Definition. *e fractional-order Caputo’s derivative of
h(η) is given as [31, 32]

D
α
ηh(η) � I

n− α
f

n
, n − 1< α< n, n ∈ N,

d
n

dηn h(η), α � n, n ∈ N.

(4)

2.3. Definition. *e integral of Shehu transformation is new
and similar to other integral transformation which is

described for exponential order functions. In set A, we take a
function which is described by [33–35]

A � ](η): ∃, ρ1, ρ2 > 0, |](η)|<Me
|η|/ρi( ), if η ∈ [0,∞).􏼚 (5)

*e Shehu transformation which is defined by S(·) for a
function ](η) is given as

S ](η)􏼈 􏼉 � V(s, μ) � 􏽚
∞

0
e

(− sη/μ)](η)dη, η> 0, s> 0.

(6)

*e Shehu transformation of a function ](η) is V(s, μ),
and then ](η) is known as the inverse of V(s, μ) which is
define as

S
− 1

V(s, μ)􏼈 􏼉 � ](η), for η≥ 0, S
− 1 is inverse Shehu transformation.

(7)

2.4. Definition. *e Shehu transformation for nth deriva-
tives is defined as [33–35]

S ](n)
(η)􏽮 􏽯 �

s
n

u
n V(s, u) − 􏽘

n−1

k�0

s

u
􏼒 􏼓

n− k− 1
](k)

(0). (8)

2.5. Definition. *e fractional-order derivatives of Shehu
transformation are given as [33–35]

S ](α)
(η)􏽮 􏽯 �

s
α

u
α V(s, u) − 􏽘

n−1

k�0

s

u
􏼒 􏼓

α− k− 1
](k)

(0), 0< β≤ n.

(9)

2.6. Definition. *e Mittag-Leffler function of Eα(z) for
α> 0 is given as

Eα(z) � 􏽘
∞

m�0

z
m

Γ(αm + 1)
, α> 0, z ∈ C. (10)

3. Homotopy Perturbation Transform Method

To explain the fundamental ideas of this method, we get the
following equation:

D
α
Iψ(μ,I) + Mψ(μ,I) + Nψ(μ,I) � h(μ,I), I> 0, 0< α≤ 1,

ψ(μ, 0) � g(μ), μ ∈ R,

(11)

where Dα
I � (zα/zIα) is Caputo‘s derivative, M, N is the

linear and nonlinear operator in μ, and h(μ,I) is the source
function.

By taking Shehu transformation, we can write (11) as
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S D
α
Iψ(μ,I) + Mψ(μ,I) + Nψ(μ,I)􏽨 􏽩 � S[h(μ,I)],

R(μ, s, u) �
g(μ)

s
+

u
α

s
α S[h(μ,I)] −

u
α

s
α S[Mψ(μ,I) + Nψ(μ,I)].

(12)

Now, using inverse Shehu transformation, we get

ψ(μ,I) � F(μ,I) − S
− 1 u

α

s
α S Mψ(μ,I) + Nψ(μ,I)􏼈 􏼉􏼢 􏼣,

(13)

where

F(μ,I) � S
− 1 g(μ)

s
+

u
α

s
α S[h(μ,I)]􏼢 􏼣

� g(μ) + S
− 1 u

α

s
α S[h(μ,I)]􏼢 􏼣.

(14)

Now, if ρ is the parameter perturbation, we can write as

ψ(μ,I) � 􏽘
∞

k�0
ρkψk(μ,I), (15)

where ρ is the perturbation parameter and ρ ∈ [0, 1].
*e nonlinear term can be decomposed as

Nψ(μ,I) � 􏽘
∞

k�0
ρk

Hn(ψ), (16)

where Hn are He’s polynomials of the form
ψ0,ψ1,ψ2, . . . ,ψn, and can be determined as

Hn ψ0,ψ1, . . . ,ψn( 􏼁 �
1
n!

z
n

zp
n N 􏽘

∞

k�0
ρkψk

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

ρ�0

. (17)

Using relations (15) and (16) in (2) and constructing the
homotopy, we get

􏽘

∞

k�0
ρkψk(μ,I) � F(μ,I) − ρ × S

− 1 u
α

s
α S M 􏽘

∞

k�0
ρkψk(μ,I) + 􏽘

∞

k�0
ρk

Hk(ψ)
⎧⎨

⎩

⎫⎬

⎭

⎧⎨

⎩

⎫⎬

⎭
⎡⎣ ⎤⎦. (18)

On comparing coefficient of ρ on both sides, we obtain

ρ0: ψ0(μ,I) � F(μ,I),

ρ1: ψ1(μ,I) � S
− 1 u

α

s
α S Mψ0(μ,I) + H0(ψ)􏼈 􏼉􏼢 􏼣,

ρ2: ψ2(μ,I) � S
− 1 u

α

s
α S Mψ1(μ,I) + H1(ψ)􏼈 􏼉􏼢 􏼣,

⋮

ρk
: ψn(μ,I) � S

− 1 u
α

s
α S Mψk−1(μ,I) + Hk−1(ψ)􏼈 􏼉􏼢 􏼣,

k> 0, k ∈ N.

(19)

*e component ψk(μ,I) can be calculated easily, which
leads us to the convergent series rapidly. By taking ρ⟶ 1,
we obtain

ψ(μ,I) � lim
M⟶∞

􏽘

M

k�1
ψk(μ,I). (20)

*e obtained result is in the form of series and easily
converges to exact solution of the problem.

4. Test Problems

To show the validity of the suggested technique, the fol-
lowing test problems are solved.

4.1. Example. Consider the fractional-order Fisher equation
is given by

D
α
Iψ � ψμμ + ψ(1 − ψ), 0< α≤ 1, (21)

with initial condition
ψ(μ, 0) � β. (22)

Applying Shehu transform to (21), we have
s
α

u
α S[ψ(μ,I)] −

s
α− 1

u
α ψ(μ, 0) � S ψμμ + ψ(1 − ψ)􏼐 􏼑.

S[ψ(μ,I)] �
β
s

+
u
α

s
α S ψμμ + ψ(1 − ψ)􏼐 􏼑􏽨 􏽩.

(23)

Using inverse Shehu transformation, we get

ψ(μ,I) � β + S
− 1 u

α

s
α S ψμμ + ψ(1 − ψ)􏼐 􏼑􏽮 􏽯􏼢 􏼣. (24)

Applying the abovementioned homotopy perturbation
technique as in (18), we get

􏽘

∞

k�0
ρkψk(μ,I) � β + ρ S

− 1 u
α

s
α S 􏽘

∞

k�0
ρkψk(μ,I)⎛⎝ ⎞⎠

μμ

+ 􏽘
∞

k�0
ρkψk(μ,I) 1 − 􏽘

∞

k�0
ρkψk(μ,I)⎛⎝ ⎞⎠⎛⎜⎝ ⎞⎟⎠

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦. (25)
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Comparing the coefficient of power ρ, we get

ρ0: ψ0(μ,I) � β,

ρ1: ψ1(μ,I) � S
− 1 u

α

s
α S ψ0μμ + ψ0 − ψ2

0􏽮 􏽯􏼢 􏼣 � β(1 − β)
I

α

Γ(α + 1)
,

ρ2: ψ2(μ,I) � S
− 1 u

α

s
α S ψ1μμ + ψ1 − 2ψ0ψ1􏽮 􏽯􏼢 􏼣 � β(1 − β)(1 − 2β)

I
2α

Γ(2α + 1)
,

ρ3: ψ3(μ,I) � S
− 1 u

α

s
α S ψ2μμ + ψ2 − ψ2

1 − 2ψ0ψ2􏽮 􏽯􏼢 􏼣 � β − 5β2 + 8β3 − 4β4􏼐 􏼑
I

3α

Γ(3α + 1)

− β2 − 2β3 + β4􏼐 􏼑
Γ(2α + 1)

Γ(α + 1)
2

I
3α

Γ(3α + 1)
.

⋮

(26)

Now, by taking ρ⟶ 1, we obtain convergent series
form solution as

ψ(μ,I) � ψ0 + ψ1 + ψ2 + ψ3 + · · · ,

ψ(μ,I) � β + β(1 − β)
I

α

Γ(α + 1)
+ β(1 − β)(1 − 2β)

I
2α

Γ(2α + 1)
+ β − 5β2 + 8β3 − 4β4􏼐 􏼑

I
3α

Γ(3α + 1)

− β2 − 2β3 + β4􏼐 􏼑
Γ(2α + 1)

Γ(α + 1)
2􏼠 􏼡

I
3α

Γ(3α + 1)
+ · · · .

(27)

Putting α � 1, we get the same solution,

ψ(μ,I) �
β expμ

1 − β + β expI
. (28)

Figure 1 compares the exact solution and approximate
solution for the nonlinear fractional-order Fisher equation
at α � 1. Figure 2 represents the graph of 2D of exact and
analytical solutions and the second graph in Figure 2 shows
the different fractional-order graphs of α.

4.2. Example. Consider the fractional-order Fisher equation
is given by

D
α
Iψ � ψμμ + 6ψ(1 − ψ), 0< α≤ 1, (29)

with initial conditions

ψ(μ, 0) �
1

1 + expμ( 􏼁
2. (30)

Applying Shehu transform of (29), we have

s
α

u
α S[ψ(μ,I)] −

s
α− 1

u
α ψ(μ, 0) � S ψμμ + 6ψ(1 − ψ)􏼐 􏼑.

S[ψ(μ,I)] �
1
s

1
1 + expμ( 􏼁

2 +
u
α

s
α

· S ψμμ + 6ψ(1 − ψ)􏼐 􏼑􏽨 􏽩.

(31)

Using inverse Shehu transformation, we get

ψ(μ,I) �
1

1 + expμ( 􏼁
2 + S

− 1 u
α

s
α S ψμμ + 6ψ(1 − ψ)􏼐 􏼑􏽮 􏽯􏼢 􏼣.

(32)

Applying the abovementioned homotopy perturbation
technique as in (18), we get

􏽘

∞

k�0
ρkψk(μ,I) �

1
1 + expμ( 􏼁

2 + ρ S
− 1 u

α

s
α S 􏽘

∞

k�0
ρkψk(μ,I)⎛⎝ ⎞⎠

μμ

+ 6 􏽘
∞

k�0
ρkψk(μ,I) 1 − 􏽘

∞

k�0
ρkψk(μ,I)⎛⎝ ⎞⎠⎛⎜⎝ ⎞⎟⎠

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦. (33)
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Figure 1: *e graphs of exact and HPTM solutions for equation (21) at α � 1.
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Figure 2: *e graphs of exact and HPTM solutions and different fractional-order α of example 1.
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Comparing the coefficient of power ρ, we get

ρ0: ψ0(μ,I) �
1

1 + expμ( 􏼁
2,

ρ1: ψ1(μ,I) � S
− 1 u

α

s
α S ψ0μμ + 6ψ0 − 6ψ2

0􏽮 􏽯􏼢 􏼣 � 10
expμ

1 + expμ( 􏼁
3

I
α

Γ(α + 1)
,

ρ2: ψ2(μ,I) � S
− 1 u

α

s
α S ψ1μμ + 6ψ1 − 12ψ0ψ1􏽮 􏽯􏼢 􏼣 � 50

expμ −1 + 2 expμ( 􏼁

1 + expμ( 􏼁
4

I
2α

Γ(2α + 1)
,

ρ3: ψ3(μ,I) � S
− 1 u

α

s
α S ψ2μμ + 6ψ2 − 6ψ2

1 − 12ψ0ψ2􏽮 􏽯􏼢 􏼣 � 50expμ 5 − 6 expμ(

−15 exp2μ, n + 20 exp3μ − 12 expμ
Γ(2α + 1)

(Γ(α + 1))
2􏼡

I
3α

1 + expμ( 􏼁
6 Γ(3α + 1)

.

⋮

(34)

Now, by taking ρ⟶ 1, we obtain convergent series
form solution as

ψ(μ,I) � ψ0 + ψ1 + ψ2 + ψ3 + · · ·

�
1

1 + expμ( 􏼁
2 + 10

expμ

1 + expμ( 􏼁
3

I
α

Γ(α + 1)
+ 50

expμ −1 + 2 expμ( 􏼁

1 + expμ( 􏼁
4

I
2α

Γ(2α + 1)

+ 50expμ 5 − 6 expμ − 15 exp2μ + 20 exp3μ − 12 expμ
Γ(2α + 1)

(Γ(α + 1))
2􏼠 􏼡

I
3α

1 + expμ( 􏼁
6 Γ(3α + 1)

+ · · · .

(35)

Putting α � 1, we get the same solution

ψ(μ,I) �
1

1 − expμ− 5I
􏼐 􏼑

2. (36)

Figure 3 compares the exact solution and approximate
solution for the nonlinear fractional-order Fisher equation
at α � 1. Figure 3 represents the graph of 2D of exact and
analytical solutions and the second graph in Figure 3 shows
the different fractional-order graphs of α of example 2.

4.3. Example. Consider the fractional-order Fisher equation
is given by

D
α
Iψ � ψμμ + ψ 1 − ψ6

􏼐 􏼑, 0< α≤ 1, (37)

with initial conditions

ψ(μ, 0) �
1

1 + exp(3/2)μ
􏼐 􏼑

(1/3)
. (38)

Applying Shehu transform of (37), we have

s
α

u
α S[ψ(μ,I)] −

s
α− 1

u
α ψ(μ, 0) � S ψμμ + ψ 1 − ψ6

􏼐 􏼑􏼐 􏼑,

S[ψ(μ,I)] �
1
s

1

1 + exp(3/2)μ
􏼐 􏼑

(1/3)
+

u
α

s
α

· S ψμμ + ψ 1 − ψ6
􏼐 􏼑􏼐 􏼑􏽨 􏽩.

(39)

Using inverse Shehu transformation, we get

ψ(μ,I) �
1

1 + exp(3/2)μ
􏼐 􏼑

(1/3)
+ S

− 1

·
u
α

s
α S ψμμ + ψ 1 − ψ6

􏼐 􏼑􏼐 􏼑􏽮 􏽯􏼢 􏼣.

(40)

Applying the abovementioned homotopy perturbation
technique as in (18), we get
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􏽘

∞

k�0
ρkψk(μ,I) �

1

1 + exp(3/2)μ
􏼐 􏼑

(1/3)
+ ρ S

− 1 u
α

s
α S 􏽘

∞

k�0
ρkψk(μ,I)⎛⎝ ⎞⎠

μμ

⎛⎜⎝
⎧⎪⎨

⎪⎩
⎡⎢⎢⎢⎢⎢⎣

+ 􏽘
∞

k�0
ρkψk(μ,I) 1 − 􏽘

∞

k�0
ρkψk(μ,I)⎛⎝ ⎞⎠

6

⎛⎝ ⎞⎠⎞⎠
⎫⎪⎬

⎪⎭
⎤⎥⎥⎥⎥⎥⎦.

(41)

Comparing the coefficient of the same power of ρ, we get

ρ0: ψ0(μ,I) �
1

1 + exp(3/2)μ
􏼐 􏼑

(1/3)
,

ρ1: ψ1(μ,I) � S
− 1 u

α

s
α S ψ0μμ + ψ0 − ψ7

0􏽮 􏽯􏼢 􏼣 �
5 exp(3/2)μ

4 1 + exp(3/2)μ
􏼐 􏼑

(4/3)

I
α

Γ(α + 1)
,

ρ2: ψ2(μ,I) � S
− 1 u

α

s
α S ψ1μμ + ψ1 − 7ψ6

0ψ1􏽮 􏽯􏼢 􏼣 �
25 exp(3/2)μ exp(3/2)μ

− 3􏼐 􏼑

16 1 + exp(3/2)μ
􏼐 􏼑

(7/3)

I
2α

Γ(2α + 1)
,

⋮

(42)
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Figure 3: *e graphs of exact and HPTM solutions and different fractional-order α for equation (29).
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Now, by taking ρ⟶ 1, we obtain convergent series
form solution as

ψ(μ,I) � ψ0 + ψ1 + ψ2 + ψ3 + · · · .

ψ(μ,I) �
1

1 + exp(3/2)μ
􏼐 􏼑

1/3 +
5 exp(3/2)μ

4 1 + exp(3/2)μ
􏼐 􏼑

4/3
I

α

Γ(α + 1)
+
25 exp(3/2)μ exp(3/2)μ

− 3􏼐 􏼑

16 1 + exp(3/2)μ
􏼐 􏼑

(7/3)

I
2α

Γ(2α + 1)
+ · · · .

(43)

Putting α � 1, we get the same solution

ψ(μ,I) �
1
2
tanh

15
8
I −

3
4
μ􏼒 􏼓 +

1
2

􏼚 􏼛
(1/3)

. (44)

Figure 4 compares the exact solution and approximate
solution for the nonlinear fractional-order Fisher equation
at α � 1. Figure 4 represents the graph of 2D of exact and
analytical solutions and the second graph in Figure 4 shows
the different fractional-order graphs of α.

5. Conclusion

In this paper, some computational works have been done
to analyze Fisher’s equations’ fractional view analysis. For
this purpose, the Shehu transformation is mixed with the
homotopy perturbation method and derived a useful
hybrid technique to handle the solution. *e graphical

representation of the solution of some illustrative ex-
amples is shown to be in closed contact. *e fractional
problem solution is convergent toward the integer-order
solutions. Moreover, the accuracy of the proposed method
is high and required less number of calculations. *e
suggested method can solve other fractional-order
problems because of its simple and straight forward
implementation.
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Figure 4: *e graphs of exact and HPTM solutions and different fractional-order α for equation (37).
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