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)e safety issue has become a critical obstacle that cannot be ignored in the marketization of autonomous vehicles (AVs). )e
objective of this study is to explore the mechanism of AV-involved crashes and analyze the impact of each feature on crash
severity. We use the Apriori algorithm to explore the causal relationship between multiple factors to explore the mechanism of
crashes. We use various machine learning models, including support vector machine (SVM), classification and regression tree
(CART), and eXtreme Gradient Boosting (XGBoost), to analyze the crash severity. Besides, we apply the Shapley Additive
Explanations (SHAP) to interpret the importance of each factor. )e results indicate that XGBoost obtains the best result
(recall� 75%; G-mean� 67.82%). Both XGBoost and Apriori algorithm effectively provided meaningful insights about AV-
involved crash characteristics and their relationship. Among all these features, vehicle damage, weather conditions, accident
location, and driving mode are the most critical features. We found that most rear-end crashes are conventional vehicles bumping
into the rear of AVs. Drivers should be extremely cautious when driving in fog, snow, and insufficient light. Besides, drivers should
be careful when driving near intersections, especially in the autonomous driving mode.

1. Introduction

In recent years, academia and industry have invested
enormous human andmaterial resources in the research and
development of AVs. One of their original intentions is to
reduce the rate of traffic accidents. Every year, the economic
loss caused by traffic accidents is 277 billion dollars, which is
twice as much as traffic congestion [1]. Drivers’ errors cause
90% of traffic accidents. More than 40% of fatal crashes are
related to alcohol, distraction, drug addiction, and fatigued
driving [2]. Even when nonhuman factors primarily cause
crashes, they usually include some human factors such as
distractions or unfamiliar driving skills. With improved AV
technology, fatal accident rates are likely to fall by at least
40%, and human factors may disappear. Many studies have
been carried out to explore the features that influence the
severity of conventional vehicle crashes [3, 4]. However, the
literature review shows that, relatively, few studies have
focused on factors influencing the severity of AV-involved
crashes. )e driving system of AVs is different from

conventional vehicles. )erefore, clarifying the mechanism
of AV-related crashes is of great importance to improve the
safety of AVs.

In the previous literature on the contributing factors of
AV-related crashes [5–8], less attention was paid to the
correlation between different factors. )ese research studies
have proposed various methods (such as classification and
regression trees and neural networks) to explore the features
and mechanism of the AV-involved crash. However, these
methods are based on the hypotheses that the factors are
independent of each other, and it is easy to ignore the causal
relationship between factors. Association rule mining is a
crucial technology among numerous data mining technol-
ogies, especially in analyzing the cause of traffic crashes,
because it does not rely on any assumptions and can discover
meaningful relationships hidden in large datasets [9].
)erefore, to interpret the interrelationships between
factors and further explore the mechanism of AV-involved
crashes, the association rule mining algorithms need to be
adopted.
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)e interpretability of model results is another valuable
issue. )ere are many machine learning methods (such as
random forest [10], classification and regression tree [11],
and gradient boosting model [12]) that have been utilized to
study the severity of traffic crashes. )ese models are more
complex and data-driven and have higher accuracy than
traditional calculation models [13]. However, these models
are usually regarded as a “black box” because the compli-
cated and nonlinear effects of features on the prediction
results cannot be explained [14]. )e current study uses
SHAP (Shapley Additive Explanations) to interpret how a
variable affects model prediction results. SHAP, proposed by
Lundberg and Lee [15], originated from cooperative game
theory. )e prediction results are explained by calculating
the contribution of individual variables to the results.

)e objective of this study is to explore themechanism of
AV-involved crashes and investigate the impact of each
feature on accident severity. We adopted 131 AV-involved
crash reports received in California from 2019 to October
2020. We used synthetic minority oversampling technique
(SMOTE) to balance the dataset. )e Apriori algorithm and
classification models are used for accident mechanism
analysis. We apply the SHAP to interpret how a variable
affects model classification results.

2. Literature Review

)e method of improving traffic safety through advanced
driving assistance system (such as antilock brake system
(ABS), electronic stability program (ESP), autonomous
emergency braking (AEB), and lane-keeping assist system
(LKA)) has been used in the automotive industry for many
years. Statistics show that these systems have effectively
improved vehicle safety and reduced the rate of traffic ac-
cidents [2]. As the level of AV technology increases, the
driving tasks gradually transferred from the driver to the
autonomous driving system. Since AVs have a strong en-
vironmental perception (such as the vehicle to everything
(V2X)), data processing, and rapid response capabilities,
they can make up for the driver’s inherent shortcomings to a
certain extent [13]. It is foreseeable that, with the devel-
opment of AV technology, traffic safety problems will be
further alleviated. In the 1970s, Haddon proposed a theory
from the perspective of human-vehicle-environment, which
divided the crash into three stages: precrash, crash, and
postcrash [16]. )e three factors at each stage of the crash
process are arranged and combined to form the famous
Haddon matrix, shown in Table 1.

With the development of AV technology, the causes of
traffic accidents are significantly changed. As shown in
Figure 1, drivers make driving decisions based on complex
environmental information and vehicle status for conven-
tional vehicles. )erefore, if the vehicle is in danger of
collision, the driver needs to quickly make a decision based
on the current driving scene and combined with his own
experience. However, the situation for AVs is different. As
shown in Figure 1, the AV technology eliminates the driver’s
unstable factor. In the preset operation design domain
(ODD), AVs rely on their sensors to perceive all

environmental information (including traffic information,
environmental conditions, and road conditions) and make
driving decisions [16]. Simultaneously, through human-
computer interaction techniques, V2X, and other technol-
ogies, AVs share some of their driving status with other
traffic participants. If an accident occurs in the ODD, the
primary responsibility is the AV. )erefore, to protect
passengers’ safety and avoid accident liability, the AV
manufacturer will carry out comprehensive testing and
verification before the AV launch. )us, based on the
perception of the environment and the infrastructure’s
support, the traffic accidents caused by human drivers may
disappear under ideal circumstances. )e Haddon matrix
will change accordingly. However, limited by current AV
technology and transportation facilities, this goal cannot be
achieved in the short term.

)e previous studies on the safety of AV technology were
carried out in analyzing driver behavior in the driving
simulator and testing the autonomous driving system’s
stability in closed environments. To avoid potential colli-
sions and improve traffic efficiency, some research studies
concentrate on trajectory optimization of AVs. Omidvar
et al. [17] designed an AV trajectory optimization algorithm
for closed road signalized intersections. )e algorithm can
optimize the signal control scheme before the AVs arrive at
the intersection, control the vehicle’s speed, and ensure that
the vehicles can quickly pass the intersection. Li et al. [18]
developed an integrated local trajectory optimization
scheme and tracking control framework to avoid obstacles in
time. With safety and comfort as the objective function, the
best trajectory plan is selected. Zhu et al. [19] proposed a
speed control method for AVs based on vehicle speed
prediction, which improves vehicle operating efficiency and
comfort. Many studies use driving simulators to analyze the
characteristics of drivers. In the environment of automatic
driving, attention should be paid to drivers’ physiological
and psychological reactions. Winter et al. [20] found that
drivers do not need to monitor the vehicle’s automation
process for a long time when driving a highly automated
vehicle. )ey can shift their attention to nondriving-related
tasks without affecting the safety of the vehicle. However, the
insufficient sample size is one of the limitations of AV safety
testing. Both field and driving simulator research attempt to
analyze the safety problems of AVs from the perspective of
vehicle control and human factors. However, we also need to
fully explore the mechanism of AV-involved crashes and
analyze the impact of each feature on crash severity. Table 2
lists the studies conducted on AV-involved crashes. )is
table presents a list of variables used in the studies, analysis
methods, and the significant factors obtained from the study.

Determining the cause of a traffic crash is the most
critical process for taking preventive measures to reduce the
severity and traffic crashes. )e Apriori algorithm proposed
by Agrawal et al. [21] is the most commonly used association
rule mining algorithm. It has been widely used in traffic
safety analysis [22–24]. Xu et al. [9] used the Apriori al-
gorithm to explore the causes of traffic crashes with heavy
casualties and their interdependent relationship in China.
)e results indicated that serious casualty crashes resulted

2 Mathematical Problems in Engineering



from complex interactions between traffic participants,
vehicle, road, and environmental conditions. Montella et al.
[25] applied the Apriori algorithm to analyze the Italian
PTW collision to find the interdependencies and differences
between the collision features. Yu et al. [23] adopted the
Apriori algorithm to recognize risk factors that are prom-
inently linked to the severity of crash accidents. Many
studies have begun to use SHAP for model interpretation. In
terms of traffic safety, Mihaita et al. [26] applied the SHAP to
study the influence of various characteristics on crash du-
ration. Parsa et al. [1] adopted the SHAP to explain the
individual features’ importance on accident detection. Zhou
et al. [14] applied the SHAP to interpret the influence factors
of the severity of car and truck driver injury in the car-truck
collision.

By combining the Apriori algorithm and classification
models to explore the mechanism of AV-involved crashes,
this study provides some useful information for taking
preventive measures to promote the safety of AVs.

3. Data Analysis and Feature Extraction

3.1. Data Sources. )e Department of Motor Vehicles
(DMV) was required to provide AV-related crash reports

within ten business days of an accident. )is study adopted
131 crash reports received in California from 2019 to Oc-
tober 2020. We extract AV-related information from crash
reports such as type of collision, crash severity, vehicle in-
formation, and weather. According to the heat map (shown
in Figure 2) of the accident location, we find that the crash
mainly occurred in Northeast San Francisco because it is the
primary test site for AVs.

3.2. Imbalanced Data Treatment. By nature, accident data
are unbalanced because most crashes cause property dam-
age, and a few lead to injuries. )e techniques applied to
cope with imbalanced data can be divided into two groups:
oversampling and undersampling. )e undersampling
technique often leads to the loss of a large amount of data,
leading to decreased model accuracy. )erefore, over-
sampling is usually preferred. In this study, we adopted
SMOTE to cope with imbalanced data.

3.3. Variable Collinearity Analysis. Multicollinearity refers
to the distortion or difficulty of estimation due to the high
correlation between explanatory variables in a linear re-
gression model. Variance inflation factor (VIF) is a common

Table 1: Haddon matrix.

Phase Human factors Vehicle factors Environment factors

Precrash

Information Road worthiness Road design and road layout
Attitudes Lighting Speed limits

Impairment Braking Pedestrian facilities
Police enforcement Speed management Other safety devices

Crash Use of restraints Occupant restraints Crash-protective roadside objectsImpairments Other safety devices’ crash-protective design

Postcrash First-aid skills Ease of access Rescue facilities
Access to medics Fire risk Congestion

Traffic, weather, road condition, other road users, etc.

Environment

Sense and think
Human

Handover, control

Vehicle status

Vehicle 

Simple sense: sensors
Simple think: controllers

Act: actuators

(a)

Traffic, weather, road condition, other road users, etc.

Handover, control

Vehicle status

Sense: sensors
Think: controllers

Act: actuators

Environment

Automated vehicleHuman
Sense and think

(b)

Figure 1: (a) Conventional and (b) autonomous vehicles’ human-vehicle-environment interaction diagram.

Table 2: Methods and significant factors in previous studies.

Study Variables used in the studies Analysis methods Significant factors
Wang and
Li [6] Crash severity, collision type, roadway characteristics CART models Location (highway), accident

liability

Xu et al. [5] Type of intersection, type of collision, roadway
characteristics, weather

Binary logistic regression
model

Driving mode, collision
location, roadside parking

Boggs et al.
[7]

County, test year, time of the day, vehicle state, type of crash,
crash severity

Hierarchical Bayesian
heterogeneity-based model Weather condition

Chen et al.
[8]

Crash severity, collision type, weather, vehicle damage,
accident location, weather, vehicle state, land-used data XGBoost model Weather condition, location

(intersection)
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indicator to measure variables’ multicollinearity [27–29].
We used SPSS 26.0 to calculate the VIF value of each var-
iable. When the VIF value is greater than 10, there is serious
collinearity between the two variables. It is recommended to
eliminate one of the variables [30]. Finally, we selected nine
categorical variables. )e variables’ description and distri-
bution are shown in Table 3.

4. Methodology

4.1. Association Rule Mining. )e Apriori algorithm iden-
tifies sets of items (i.e., the crash patterns in our study) that
occur together in a given event (i.e., a crash in our research).
It is the most basic and widely used algorithm in association
rule mining. It uses layer-by-layer iterative search to cal-
culate frequent itemsets in the database and determine
strong association rules. )e association rules can be
expressed as X>Y (where Xmeans antecedent and Ymeans
consequent). )at is to say, when X appears in the dataset, Y
may also occur. In this study, the Apriori algorithm inter-
prets the interrelationships between factors and further
explores the mechanism of AV-involved crash.

In the Apriori algorithm, lift (L), support (S), and
confidence (C) are three essential indicators for discovering
association rules. S means the percentage of occurrence of
several related data in the complete dataset, which can be
calculated as

support(X, Y) � P(XY) �
number(XY)

N
, (1)

where number (XY) is the frequency of X and Y appearing in
the dataset at the same time and N is the total number of
samples.

C can be interpreted as the conditional probability P (Y|X)
(the probability of finding itemset Y in crashes given that the
dataset already contains X). It can be calculated as

confidence(X⇒Y) � P(Y|X) �
P(XY)

P(X)
. (2)

We used S and C to exclude meaningless rules. L means
the effect of antecedent on the probability of consequent and
is used to determine whether the rule has actual value. It can
be calculated as

lift(X⇒Y) �
P(Y|X)

P(Y)
�
confidence(X⇒Y)

P(Y)
. (3)

When the value of L is greater than 1, it indicates that X’s
occurrence increases the probability of Y’s occurrence;
otherwise, it is an invalid rule.

In general, the rationality of a rule is judged by support,
confidence, and lift of the rule, but in the crash dataset, the
same support has different values for the classification
factors under different variables. )erefore, when mining
accident association rules, the reference value of the support
indicator is small. )e confidence is essentially a conditional
probability, representing the probability of the following
itemset appears when the previous itemset occurs. )us, the
confidence indicator will be used as the primary indicator for
later analysis and screening. We used Python 3.6 to code the
Apriori algorithm.

4.2. Classification Models. )e mining of association rules
for traffic accidents can explore the causal relationship
between multiple factors to explore the mechanism of AV-
involved crashes. Besides, we use classification models to
investigate the primary factors affecting the severity of the
accident. )is section briefly introduces each classification
model and classification performance evaluation indicators.
We used the Scikit-learn (sklearn) library in Python 3.6 to
code the following models.

Figure 2: Heat map of the accident location.
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4.2.1. XGBoost Model. )e XGBoost model is a boosting
algorithm, which generates multiple weak learning classifiers
through fitting residual and finally accumulates the gener-
ated weak learning classifier to obtain the strong learning
classifiers [31]. Chen and Guestrin made some improve-
ments based on the gradient boosting [32] and presented
XGBoost in 2016. XGBoost expands second-order Taylor of
the loss function in the optimization process and introduces
the second-order derivative information, which makes the
model converge faster in the training process. In addition,
XGBoost also adds a regularization term to the loss function
to suppress model complexity and prevent overfitting. )e
regularized objective Lk for the kth iteration can be expressed
in the following equation:

Lk � 􏽘
n

i�1
l y

(i)
, 􏽢y

(i)
k􏼐 􏼑 + 􏽘

k

j�1
Ω fj􏼐 􏼑, (4)

where n is the sample number, 􏽢y
(i)
k is the prediction value

of sample i at iteration k, and l is the original loss function.

Ω represents the regularization term, as shown in the fol-
lowing equation:

Ω(f) � ΥT +
1
2
λ􏽘

T

j�1
ω2

J. (5)

Here, T is the number of leaf nodes, and c and λ are two
constants employed to constrain the degree of
regularization.

Another development of XGBoost is the application of
an additive learning approach that combines the most re-
liable tree model fk(xi) into the current classification model
to provide the mth iteration prediction result. )erefore,
equation (5) can be expressed further as follows:

Lk � 􏽘
n

i�1
l y

(i)
, 􏽢y

(i)
k− 1 + fk x

(i)
􏼐 􏼑􏼐 􏼑 +Ω fk( 􏼁 + 􏽐

k− 1

j�1
Ω fj􏼐 􏼑. (6)

Additionally, XGBoost utilizes the second-order Taylor
expansion to the objective function, and equation (6) can be
expressed further as

Lk � 􏽘
n

i�1
l y

(i)
, 􏽢y

(i)
k− 1 + gi ∗fk x

(i)
􏼐 􏼑 +

1
2

hi ∗fk x
(i)

􏼐 􏼑􏼒 􏼓􏼔 􏼕

+Ω fk( 􏼁 + C.

(7)

Here, gi � 􏽢yk− 1
l(yi, 􏽢yk− 1) and hi � δ2􏽢yk− 1

l(yi, 􏽢yk− 1) are the
first and second derivatives of the loss function, respectively,
and C represents the constant.

4.2.2. CART Model. )e CART model is a decision tree
learning algorithm that uses the Gini index (as shown in
equations (8) and (9)) to select and classify attributes [4].)e
smaller the Gini value, the higher the purity of the dataset
and the better the classification effect.

Gini(D) � 1 − 􏽘 p
2
i , (8)

Gini index(D) � 􏽘
DV

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

D
Gini DV( 􏼁. (9)

Here, D is the dataset, piis the probability that category i

appears inD, a is the attribute to be divided; v is the desirable
value of attribute a, and DV is the sample with the value of V

in the dataset. )e decision tree generated by the CART
algorithm is a binary tree, and the segmentation steps are as
follows:

(1) Select the attribute with the minimum Gini coeffi-
cient as the segmentation point for each binary tree
node

(2) Select the optimal segmentation point for this node
from all the optimal attribute values as this node’s
segmentation rule

(3) Repeat the above steps to continue the left and right
nodes’ segmentation until all samples belong to the
same category and stop the segmentation

Table 3: Variables’ description and distribution.

Variable No. of crashes Distribution (%)
TOC (type of collision)
Head-on� 0 11 8.60
Side swipe� 1 20 15.05
Rear end� 2 85 64.52
Broadside� 3 15 11.83
PMAV (the precrash movement of AVs)
Stopped� 0 51 38.71
Moving� 1 80 61.29
PMCV (the precrash movement of conventional vehicles)
Stopped� 0 12 9.16
Moving� 1 119 90.84
VD (vehicle damage)
None� 0 10 7.52
Minor� 1 80 60.07
Mod� 2 35 26.89
Major� 3 5 3.82
DM (precrash driving mode)
Conventional� 0 69 52.69
Autonomous� 1 62 47.31
AL (accident location)
Intersection� 1 62 47.31
Street� 2 46 35.48
Highway� 3 18 13.98
Parking lot� 4 4 3.23
W (weather conditions)
Clear� 1 99 75.57
Cloudy� 2 22 16.79
Raining� 3 6 4.58
Fog/visibility� 4 4 3.05
L (lighting conditions)
Daylight� 1 85 64.52
Dusk-dawn� 2 3 2.15
Dark-street lights� 3 44 33.33
CS (crash severity)
Uninjured� 0 106 80.65
Injured� 1 25 19.35
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4.2.3. SVM Model. Among various machine learning al-
gorithms, SVM has been widely used in classification and
regression research. )e core idea of the algorithms is to
construct the optimal hyperplane to improve classification
precision. For a linear classification problem, two parallel
hyperplanes are chosen to maximize the distance between
different classes. For nonlinear classification problems, the
classification problem is transformed into higher-dimen-
sional space by using three basic kernel functions involving
linear, polynomials, and Gaussians. Take the binary classi-
fication as an example, and there is a training set as the
following:

xi, yi( 􏼁, i � 1, 2, . . . , n, xi ∈ R
d
, yi � ± 1, (10)

where yi is the category label to which the sample belongs to,
d is the dimension of the sample, and n is the number of
training samples. An optimal separating hyperplane is cal-
culated by the following formula:

H: w
T ∗ x + b � 0, (11)

where w is an n-dimensional vector and b is the offset. )e
label of a sample can be represented by the following
equation:

f(x) �
1 if w

T ∗x + b≥ 1,

− 1 if w
T ∗x + b≤ 1.

⎧⎨

⎩ (12)

4.2.4. Evaluation Indicator. )e confusion matrix, also
called the error matrix, is a multidimensional measurement
indicator representing accuracy evaluation. It is mainly used
to compare the classification result with the actual measured
value and display the classification’s accuracy in a confusion
matrix (see Table 4) [33].

)e overall accuracy is measured as follows:

accuracy �
TP + TN

TP + TN + FN + FP
. (13)

Regrettably, this indicator may not apply to unbalanced
data. Because the number of injuries in the current study is
significantly lower than the number of noninjuries, overall
accuracy can be high even if all minority instances are
misclassified. We used the G-mean to evaluate the classifi-
cation accuracy of unbalanced data. It is considered a rea-
sonable indicator for assessing unbalanced data by balancing
the classification accuracy of minority and majority in-
stances [34]. )e G-mean is calculated as follows:

G − mean �

�����������������
TP

TP + FN
∗

TN
TN + FP

􏽲

. (14)

)e recall rate indicates the classification accuracy of
minority instances, as shown in the following equation:

recall �
TP

TP + FN
. (15)

Finally, we choose the G-mean and recall rate as indi-
cators to measure the model performance because we need
to identify injury accidents as much as possible.

4.3. Model Results’ Interpretation. )e objective of estab-
lishing the crash severity classification model is to reveal the
relationship between each factor and the crash severity.
Subsequently, corresponding countermeasures can be
implemented to reduce the crash severity. )erefore, the
interpretability of the model output is as important as its
accuracy.

We apply the SHAP to interpret how a specific variable
influences model classification results. It was proposed by
Lundberg and Lee and originated from the cooperative game
theory [15]. It produces a predicted value for each sample,
and the SHAP value is allocated to each feature in the
sample. )e importance of each feature on the model output
v(N) (ϕi is the importance of feature i) is assigned based on
its boundary contributions. )e following equation calcu-
lates the Shapley values:

Φi � 􏽘
S⊆N i{ }

|S|!(n − |S| − 1)!

n!
[v(S∪ i{ }) − v(s)]. (16)

)e linear function of binary feature g is determined
according to the following formula:

g z′( 􏼁 � ϕ0 + 􏽘
M

i�1
ϕizi
′. (17)

Here, z′ ∈ 0, 1{ }M, when the feature is detected, it is
equal to 1; otherwise, it is equal to 0, andM is the number of
input features.

5. Results and Discussion

5.1. Association Rule Analysis. In previous studies, the
threshold of Lwas usually set at 1, and the threshold of S and
C was usually set at 10–20% [24]. In the current study,
association rules were generated by setting the min-support
equal to 0.2, min-confidence equal to 0.2, and min-lift equal
to 1. A total of 90 association rules were generated. As shown
in Figure 3, it is a bubble chart of all association rules. )e
following will be an excavation analysis of uninjured and
injured crashes, respectively.

5.1.1. Association Rules for Uninjured Crashes. )ere were
106 uninjured crashes in the dataset, accounting for 80.65%.
We sorted the obtained rules according to the confidence
index and deleted the rules with no obvious value. Finally,
we obtained the top 10 strong association rules, as shown in
Table 5.

)e above results show that the ten strong association
rules for uninjured accidents have a high overlapping rate of
factors and are the most common factors under related
variables. )is rule conforms to objective facts and proves
the rationality of the results of association rules from the

Table 4: Confusion matrix.

Predicted positive Predicted negative
Actual positive True positive (TP) False negative (FN)
Actual negative False positive (FP) True negative (TN)
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side. Among the factors involved in the ten strong associ-
ation rules for uninjured crashes, “TOC� 2,” “PMCV� 1,”
“L� 1,” and “W� 1” are the most frequent itemsets. It shows
that most uninjured crashes occurred in ordinary situations.
According to rules 5 and 7, the precrash movement of AVs
has stopped (“PMAV� 0”), and then the conventional ve-
hicle is still moving forward (“PMCV� 1”), and the type of
collision is rear-ended (“TOC� 2”). It shows that most rear-
end crashes are conventional vehicles bumping into the rear
of AVs, consistent with previous research results [35].

5.1.2. Association Rules for Injury Crashes. )ere were 25
injury crashes in the dataset, accounting for 19.35%. )e
same as the previous section, the top 10 strong association
rules are shown in Table 6.

)e top ten strong association rules for injury crashes
involve more factors than uninjured crashes from the above
results. )ere are some unconventional factors (such as
“W� 2,”, “VD� 2,” and “DM� 1”), indicating that unfa-
vorable conditions often accompany the occurrence of in-
jury accidents. )is rule conforms to objective facts and
proves the rationality of the results of association rules from
the side. Compared with Table 5, injury crashes are more
likely to occur on cloudy days (“W� 2”). According to rules

1 and 6, the AVs were still moving before the collision on a
cloudy day indicating that the autonomous driving system
failed to apply emergency measures. It could be caused by
the detector failing to find anomalies in time when there is
insufficient light. Besides, the driver may distract their at-
tention to secondary tasks when the drive mode is auto-
matic, so it is more likely to be injured in an accident (rules 7
and 9).

5.2. ClassificationModel Results. We divided the test set and
training set according to the ratio of 7 : 3. We used the grid
search to decide the best combination of parameters to
prevent overfitting of the model. )e performances for each
classification model are reported in Table 7.

Table 7 shows that the XGBoost model represented better
than the other models because it has the highest G-mean and
recall (G-mean� 67.82%; recall� 75.00%). Although the overall
accuracy is low (overall accuracy� 61.10%), the G-mean and
recall are the main indicators for unbalanced data because we
want to recognize more injury crashes. In summary, the
XGBoost model canmore accurately identify injured accidents.
)en, we used the SHAP to explain the results of the XGBoost
model. Figure 4 shows the impact of features on AV-involved
crashes. )e ordinate represents the features and is sorted
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Figure 3: Bubble chart for association rules.

Table 5: Strong association rules of uninjured crashes.

Rule ID
Association rules

S C L
Antecedents Consequents

1 W� 1 +TOC� 2 PMCV� 1 0.570 1.000 1.009
2 L� 1 +W� 1 PMCV� 1 0.589 1.000 1.009
3 DM� 0 +W� 1 PMCV� 1 0.514 1.000 1.009
4 TOC� 2 +VD� 1 PMCV� 1 0.523 1.000 1.009
5 PMAV� 0 +TOC� 2 PMCV� 1 0.598 1.000 1.009
6 DM� 0 PMCV� 1 0.533 0.983 0.992
7 PMAV� 0 + PMCV� 1 TOC� 2 0.598 0.970 1.059
8 DM� 0 + PMCV� 1 W� 1 0.514 0.965 1.054
9 DM� 0 PMCV� 1 +W� 1 0.514 0.948 1.035
10 L� 1 + PMCV� 1 W� 1 0.589 0.940 1.027
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according to the importance, and the abscissa is the Shapley
value. Each point in the figure represents a sample. Color
represents the size of the feature value.

Obviously, the greater the degree of vehicle damage is,
the more likely it is to cause a severe accident. )e inter-
pretation of the model results suggests that weather is an-
other key feature. Particularly, in low-visibility conditions,
such as fog and snow, injury accidents are more likely to
occur [36]. )is is probably due to the sensors’ worse
perception performance in extreme weather [37]. According
to Hasirlioglu et al. [38], the reflector can only detect a short
distance in foggy weather, and crashes are more likely to
occur in this situation.

)e next most important features are accident location
and driving mode. )e possibility of a crash is higher at
intersections [39]. )is is probably due to the complex and
changeable traffic environment at intersections because
vehicles, nonmotor vehicles, and pedestrians are highly
mixed [40, 41]. According to crash reports, AVs usually
switch to the conventional driving mode when they arrive at
intersections because intelligent transportation facilities are

not perfect enough now. )ese infrastructures can increase
vehicle stability during driving and improve the safety of all
traffic participants [42]. In terms of driving mode, Figure 4
illustrates that the automatic driving mode will increase the
risk of injury, surprising. )is is probably because the driver
diverts their attention to secondary tasks (such as playing
mobile phones) in the automatic driving mode, so it is more
likely to be injured in an accident.

6. Conclusion

)e objective of this study is to explore the mechanism of
AV-involved crashes and analyze the impact of each feature
on crash severity. We employ 131 accident reports involving
AVs received in California from 2019 to October 2020. We
use the Apriori algorithm to explore the causal relationship
between multiple factors to explore the mechanism of
crashes. Given the imbalanced crash severity distribution, we
apply the SMOTE to balance the dataset. )ree different
classification models are used to compare the classification
performance: XGBoost, CART, and SVM. )e result shows

Table 6: Strong association rules for injury crashes.

Rule ID
Association rules

S C L
Antecedents Consequents

1 W� 2 + PMAV� 1 CS� 1 0.792 1 1
2 W� 2 +CS� 1 PMCV� 1 0.792 1 1
3 VD� 2 + TOC� 2 CS� 1 0.667 1 1
4 VD� 2 +W� 2 CS� 1 0.625 1 1
5 TOC� 2 PMCV� 1 +CS� 1 0.792 1 1
6 L� 2 + PMAV� 1 +W� 2 CS� 1 0.583 0.680 1
7 DM� 1 +TOC� 2 CS� 1 0.542 0.627 1
8 AL� 1 PMCV� 1 +CS� 1 0.542 0.533 1
9 DM� 1 + PMCV� 1 CS� 1 0.583 0.507 1
10 W� 2 + L� 1 +CS� 1 PMCV� 1 0.583 0.507 1

Table 7: Model testing results.

Models
Evaluation indicator

Overall accuracy (%) G-mean (%) Recall (%)
XGBoost 64.10 67.82 75.00
CART model 66.67 65.07 62.50
SVM model 71.79 55.00 30.75
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Figure 4: Impact of features on AV-involved crashes.

8 Mathematical Problems in Engineering



that the XGBoost model can better recognize the injured
crashes involving AVs. We apply the SHAP (Shapley Ad-
ditive Explanations) to interpret how a specific variable
influences model classification results. Both the XGBoost
and the Apriori algorithm effectively provided meaningful
insights about AV-involved crash characteristics and their
relationship.

For the analysis of crashmechanisms involvingAVs, we use
the Apriori algorithm to mine association rules for uninjured
and injured crashes, respectively. Among the top ten strong
association rules for uninjured crashes, we can find that most
rear-end collisions are conventional vehicles bumping into the
rear of AVs. It is probably because the AVs have stopped before
the collision, while the conventional vehicles are still moving
forward (“PMAV� 0+TOC� 2”⟶ “PMCV� 1”). Among
the top ten strong association rules for injured crashes, we can
find that the AVs were still moving before the collision on a
cloudy day. It could be caused by the detector failing to find
anomalies in time when there is insufficient light
(“L� 2+PMAV� 1+W� 2”⟶ “CS� 1”). Besides, the driver
may distract their attention to secondary tasks in the automatic
driving mode, so it is more likely to be injured in an accident
(“DM� 1+TOC� 2”⟶ “CS� 1”). For the crash severity
analysis, XGBoost generates the best result (overall accu-
racy� 64.10%, G-mean� 67.82%, and recall� 75%). To make
the results of the XGBoost model more informative, we apply
the SHAP to analyze the impact of each feature on crash se-
verity. Among all these features, vehicle damage, weather
conditions, accident location, and driving mode are the most
critical features.)e greater the degree of vehicle damage is, the
more likely it is to cause a severe accident. Injured accidents are
more possible to occur in low-visibility conditions (such as fog
and snow). Intersections are more prone to injury accidents,
especially in the automatic driving mode. )is study may
provide some help in reducing the severity of AV-involved
crashes. For example, autonomous vehicle drivers should be
extremely cautious when driving in low-visibility conditions
(e.g., fog and snow). )ey should be more careful when driving
near intersections, especially in the autonomous driving mode.
It is recommended to use vehicle sensors with strong stability
and high sensitivity.

However, the current study has certain limitations.
Firstly, this study’s sample size and variables could be ex-
tended to increase the model result’s reliability. In the future,
we will collect driver characteristics, traffic flow information
before the crash, and vehicle speed to understand the
mechanism of AV-involved crashes. Secondly, this study
uses only crash reports received in California for modeling.
Future research should continue to collect accident data
from other countries and regions because driving habits and
traffic laws in different countries and regions may be
completely different.
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