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In this paper, a new array structure of sparse nested array (SNA) for electromagnetic vector sensor is designed. An
electromagnetic vector sensor is composed of six spatially colocated, orthogonally oriented, diversely polarized antennas,
which can measure three-dimensional electric and magnetic field components. By introducing sparse factor (SF) between
every adjacent sensor, the proposed SNA has flexibility of extending the array aperture and reducing the mutual coupling
effect. Meanwhile, a low-complexity multiparameter estimation algorithm is proposed for SNA. First, the vectorization
operation for array manifold ensures the large degrees of freedom for multiparameter estimation, where the initial coarse
estimates decrease search range. In addition, the improved off-grid orthogonal matching pursuit method obtains joint
direction of arrival (DOA) and polarization estimates with a relatively small overcomplete dictionary because this off-grid
method achieves high performance even if the estimates do not fall on the grid of the dictionary. +eoretical analysis and
simulation results verify the superiority of the proposed array structure and the algorithm.

1. Introduction

Vector sensors, which are able to detect multiple physical
components of the signals, have been widely used in array
signal processing [1–3]. Compared with scalar sensor arrays,
vector sensor arrays show their advantages in estimation
accuracy, recognition accuracy, and antijamming capability
[4–6]. Moreover, vector sensor arrays can obtain joint es-
timates of multiple parameters, such as electromagnetic
vector sensor array (EVSA). EVSA can measure DOA and
polarization information at the same time because vector
sensor structure has the reception access of vector signals.

Resultantly, various DOA and polarization estimation
algorithms are proposed for EVSAs, where most of them are
inspired by the algorithms for scalar arrays. For example,
ESPRIT- (Estimating Signal Parameter via Rotational In-
variance Techniques-) based algorithm is proposed in [7, 8],
estimating both the arrival angles and the polarizations of

incoming narrow-band signals with invariance properties of
the EVSA.MUSIC (Multiple Signal Classification) algorithm
is also transformed for EVSA in [9], where the joint DOA
and polarization estimates are measured by peak search. For
alleviating the high computational burden in peak search, a
reduced-dimensional MUSIC algorithm is put forward [10],
where only two-dimensional peak search is necessary for 4
unknown parameters. In addition, [11] proposes a novel
rank reduction method for DOA, range, and polarization
estimation, but near-field signal hypothesis is limited.

Meanwhile, some other studies concentrate on the im-
provement of array structures for EVSAs. +e researched
algorithms are mainly based on half-wavelength interval
arrays, where the array aperture is restricted by the number
of sensors and mutual coupling effect has an adverse impact
on array performance. Moreover, this kind of array struc-
tures has the number of degrees of freedom (DOFs) less than
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the number of physical sensors, which means that algo-
rithms cannot work when signal numbers are more than
sensor numbers. To track the problems, sparse arrays are
presented in polarization environment to avoid compact
placement and increase the number of DOFs [12–18]. A
series of vector cross-product-based algorithms are intro-
duced in [12–14]. +is kind of algorithms extracts DOA
parameters by performing cross-product to Poynting vector
in received signal, which first breaks the limitation of half-
wavelength intervals for EVSA. Variable separation MUSIC/
MODE algorithm [15] achieves the unambiguous search
results for direction of arrivals, which is capable for sparse
uniform array structures, but polarization estimation is
ignored. +e study in [16] applies coprime array in polar-
ization sensors, obtaining joint DOA and polarization es-
timates with compressed sensing reconstruction algorithm.
Due to the vectorization operation for array manifold, the
number of DOFs is tremendously increased. In [18], sparse
representation (SR) idea is taken for three-parallel coprime
EVSA. However, all aforementioned papers focus on the
specific array structures and computational burden is rel-
atively high, which is not flexible for different actual engi-
neering requirements.

In this paper, we propose a flexible array structure
called sparse nested array (SNA), which can be considered
as an improvement of traditional nested array (NA). To be
specific, every sensor is equipped with six spatially colo-
cated, orthogonally oriented, diversely polarized antennas,
where three cocentered orthogonal electric dipoles and
magnetic loops are included. +e proposed SNA enjoys
flexible sensor interval benefitting from sparse factor (SF)
δ ≥ 1. +e subarrays 1 and 2 in SNA are both uniform
linear arrays composed of M and N sensors with intervals
δλ/2 (M + 1)δλ/2, where λ is the wavelength. +e interval
between the two subarrays is also (M + 1)δλ/2. SF is a
positive integer to adjust spacing between sensors overall.
By the enlargement of the array aperture, estimation
performance is improved and mutual coupling effect is
alleviated.

Meanwhile, from the perspective of algorithm,
cross-product of the Poynting vector is employed as the
coarse DOA initialization. In addition, after using the
properties of the covariance matrix to eliminate the po-
larization parameters, vectorization operation is taken to
construct virtual uniform array, which brings about large
DOFs of O(MN) with M + N sensors. +en we apply the
off-grid orthogonal matching pursuit (OGOMP) algorithm
to obtain high-precision multiparameter estimation.
Computational complexity is tremendously alleviated be-
cause the one-dimensional overcomplete dictionary in
OGOMP algorithm is established only around initial DOA
estimates. Traditional OMP algorithm [19] requires that all
target signals must fall on a preset grid. However, in actual
engineering applications, no matter how the grid is divided,
it is impossible to ensure that all target signals fall exactly
on the grid. When the target signal is off-grid, the esti-
mation performance of the system will be greatly reduced.
On the other hand, if the grid is divided too finely, it will
cause the system to have too much calculation burden.

Moreover, there is not any ambiguous or pairing problem
disturbing true values because OGOMP is an ambiguity-
free autopaired algorithm.

In short, we summarize the innovations of this paper as
follows:

(1) We design a new structure of nested array in EVSA,
where six-component electromagnetic vector sen-
sors are equipped, extending array aperture as well as
reducing mutual coupling effect. By the vectorization
operation of the manifold, high DOFs can be
obtained.

(2) We add sparse factor (SF) in every interval of NA,
constructing a new array structure called sparse
nested array (SNA), which enjoys scaled array ap-
erture and adjustable mutual coupling effect.
Meanwhile, the proposed array can maintain the
uniqueness of parameter estimates, which aims to be
suitable for different engineering scenarios.

(3) We propose a low-complexity off-grid OMP
(OGOMP) algorithm to measure joint DOA and
polarization estimates. Combined with the off-grid
idea that the target signals do not need to just fall on
the grid, OGOMP algorithm can use much smaller
one-dimensional overcomplete dictionary around
initial DOA estimates, tremendously alleviating
computational burden as well as performing good
estimation performance.

Notations. We use lower-case (upper-case) bold char-
acter to denote vector (matrix). (·)∗, (·)T, and (·)H are the
conjugate, transpose, and conjugate transpose of a matrix or
vector, respectively. (·)− 1 denotes matrix inverse and (·)+

denotes matrix pseudoinverse. ⊕ represents Hadamard
product. ⊗ denotes the Kronecker product and ⊙ represents
the Khatri-Rao product. diag(·) symbolizes a diagonal
matrix that uses the elements of the matrix as its diagonal
element. abs(·) is absolute value operator and angle(·) is
phase operator. | · ||1 denotes 1 norm and || · ||F denotes
Frobenius norm.

2. Preliminaries

2.1.DataModel. Consider an array with a certain amount of
electromagnetic vector sensors and every sensor herein is
equipped with three cocentered orthogonal electric dipoles
and magnetic loops, which is shown in Figure 1 [20].

Assume that there are K far-field narrow-band signals
impinging on the array with P electromagnetic vector
sensors distributed at y-axis with Dp � d0dp , p � 1, 2,

. . . , P, which is demonstrated in Figure 2.
d0 � λ/2 is the unit spacing between adjacent sensors,

dp ∈ Z, and λ symbolizes the wavelength. +e K signals
are all completely polarized from yoz plane with incidence
angles θk, k � 1, 2, . . . , K. +e three electric components
and magnetic components of the k-th signal at x, y, z-axes
are received by the loops and dipoles, which can be
represented as [21]
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where sex,k, sey,k, sez,k denote the electric components and
shx,k, shy,k, shz,k denote the magnetic components of the loops
and dipoles. se,k � [sex,k, sey,k, sez,k] and sh,k � [shx,k, shy,k,

shz,k] are orthogonal to each other and also to the k-th
source’s direction of propagation. ck ∈ [0, π/2] is the aux-
iliary polarization angle and ηk ∈ [− π, π) represents the
polarization phase difference, respectively. Resultantly, the
data model of the received signal at t time can be expressed
as [17]

x(t) � (A⊙ S)b(t) + n(t) � Asb(t) + n(t), (2)

where A � [a1, a2, . . . , aK] is the directional matrix and ak �

[ejD12π sin θk/λ, . . . , ejDP2π sin θk/λ] denotes the directional
vector for k − th signal containing DOA information. Sk �

[s1, s2, . . . , sK] is the polarization vector matrix, b(t) ∈ CJ×1

symbolizes the signal vector, and n(t) denotes the additive
white Gaussian noise complex vector. ⊙ represents the
Khatri–Rao product.

Construct the covariance matrix:

Rs � E x(t)xH
(t)􏽨 􏽩 � A⊙ S diag σ21, σ

2
2, . . . , σ2K􏼐 􏼑􏽨 􏽩(A⊙ S)

H
,

(3)

where E[·] denotes the expectation operation. In practice,
snapshots J received are finite and they can be approximately
calculated by

Rs ≈
1
J

􏽘

J

j�1
x(t)xH

(t). (4)

Meanwhile, it is also recognized that we can recon-
struct the covariance matrix separately according to the
six-component received electric and magnetic signals.
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where σ2k, k � 1, 2, . . . , K denotes the power of the k-th
signal. By splitting S and calculating the covariance matrix
individually for the six components, we put the polarization
information into diag function. Note that

sex,ks
∗
ex,k + sey,ks

∗
ey,k + sez,ks

∗
ez,k � 1, (6)

shx,ks
∗
hx,k + shy,ks

∗
hy,k + shz,ks

∗
hz,k � 1. (7)

Consequently, the covariance matrix without polariza-
tion information can be obtained.

R � Rex + Rey + Rez � Rhx + Rhy + Rhz,

� Adiag σ21, · · · , σ2K􏼐 􏼑AH
.

(8)

2.2.Mutual Coupling. +e data model established in Section
2.1 is in the case of free mutual coupling. In actual engi-
neering, there might be serious mutual coupling effect be-
tween sensors, especially in adjacent sensors close to each
other. +e data model considering the influence of mutual
coupling is expressed as [22]

Y � [(CA)⊙ S]BT
+ N, (9)

where C is a P × P matrix reflecting interelement coupling
(IEC), which is determined by the array manifold. C can be
established according to different criteria. In this paper,
B-banded mutual coupling model is employed based on
Toeplitz property. Resultantly, mutual coupling matrix C is
defined as

... y

z

d0d1 d0d2 d0d3 d0dP

θ

Figure 2: Array model.

y

x

z

Figure 1: Internal structure of sensor element.
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where cn � c1e
− j(n− 1)π/8/n, (2≤ n≤B) and c1 is the basic

mutual coupling strength with sensor intervals d0 � λ/2.
di, dj, (1≤ i≤P, 1≤ j≤P) denote the position of the sensor
elements. B represents the maximum distance in which
mutual coupling takes effect among sensors. Due to the
introduction of mutual coupling matrix, a standard of
coupling leakage (Γ) can be set for judging the strength of
mutual coupling.

Γ �
‖C − diag(C)‖F

‖C‖F

, (11)

where | · ||F denotes Frobenius norm.

Remark 1. Because three orthogonal electric dipoles and
magnetic loops in an electromagnetic sensor are designed as
a whole part, the interpolarization coupling (IPC) can be
measured in application. In this case, we eliminate the in-
fluence of IPC in received signal model and only consider the
effect of IEC.

3. Array Structure Design

3.1. SparseNestedArray. +e structure of sparse nested array
(SNA) is presented in Figure 3. +e first subarray, which is
marked by black circles, is a uniform linear array with M

sensors. +e internal spacing between adjacent sensors is
δd0, where δ ∈ N+ is named as sparse factor. +e second
subarray marked with white squares contains N sensors,
which is also a uniform linear array whose interval between
sensors is (M + 1)δd0. +e total numbers of sensors are
M + N � P. Both subarray 1 and subarray 2 lie on y-axis and
theM-th sensor in subarray 1 and the first sensor in subarray
2 have the δd0 interval.

Compared with traditional NA [23], the proposed SNA
is developed by the sparse factor δ to unfold sensor interval.
It is indicated in Figure 3 that when δ � 1, NA is a special
case of SNA.

3.2. Interpolation for Virtual Array. According to the basic
knowledge of array signal processing, P sensors can achieve
P − 1 degrees of freedom (DOFs). Nevertheless, some sparse
arrays can further enlarge DOFs by their equivalent virtual
arrays and perform estimation algorithm with the recon-
structed virtual signals. In this paper, difference coarray is
employed to obtain virtual array of SNA. According to (8),
reconstructed covariance matrix R is a P × P matrix with
DOA information received by the array. By vectorizing the
covariance matrix, the equivalent virtual array signals are
expressed as [24]

z � vec(R) � A∗ ⊙A( 􏼁bT
s , (12)

where A∗ ⊙A � [a∗1 ⊗ a1, a∗2 ⊗ a2, . . . , a∗K ⊗ aK] ∈ CP2×K de-
notes the virtual directional matrix. bs � [σ21, . . . , σ2K] is the

equivalent one-snapshot signal vector. We can find that the
position of virtual sensor element is located at Dδ, where

D � d0 di − dj􏼐 􏼑| i, j � 1, 2, . . . , P􏽮 􏽯. (13)

Obviously, there exist repeated elements in set D. By
removing these elements, a unique subset Du is established.
+e virtual location of the received signal after vectorization
is modeled as

Du � d0du| − [N ×(M + 1) − 1]≤du ≤ [N ×(M + 1) − 1], du ∈ Z􏼈 􏼉.

(14)

Consequently, only the data of |Du| � 2(N × (M + 1) −

1) + 1 rows is necessary for DOA estimation. By selecting the
corresponding rows in z, the reconstructed virtual received
signals are built using the full DOFs.

zu � Aub
T
s , (15)

where Au � [au(θ1), au(θ2), . . . au(θK)] ∈ C|Du|×K is the
equivalent virtual array located at Duδ, which is a uniform
linear array, and every adjacent virtual sensor has the in-
terval of δd0.

3.3. Discussion

3.3.1. Virtual Array Configuration. Compared with
coprime array, nested array is a kind of completely aug-
mented array whose virtual array is continuous without
holes. Define unit length as half wavelength λ/2. In order to
give an intuitive understanding, we demonstrate the virtual
sensor elements of typical coprime array M � 5, N � 4 and
nested array M � N � 4, where δ � 1.Both NA and CA
have 8 physical sensors because there is a shared sensor for
CA. Black circles and white squares denote the physical
sensors belonging to the first and second subarrays, re-
spectively. +e black crosses represent the virtual sensor
elements. From the comparison of Figures 4 and 5, NA has
39 virtual sensor elements and all of them are continuous
without holes. Meanwhile, CA only has 27 virtual sensor
elements and there are 6 missing elements in
− 14, − 13, − 9, 9, 13, 14{ }, which are marked by red crosses.
As a result, CA is unable to make full use of information on
the whole virtual array, acquiring fewer DOFs and smaller
array aperture than NA.

1 2 M... y

z

2 N...1

δd0 δd0

θ

(M + 1)δd0

Figure 3: Structure of sparse nested array.
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Definition 1 (array aperture). Array aperture is defined as
the length of the total linear array, which is one of the criteria
evaluating array performance.

3.3.2. Engineering Problems of Sparse Array. According to
Section 2, mutual coupling effect decreases exponentially
along with the sensor interval. Resultantly, small intervals
should be prevented possibly. Sparse arrays, due to the
inherent merits of loose array structure, have much lower
mutual coupling effect than traditional arrays with half-
wavelength intervals. +e proposed SNA in this paper solves
the problems of compact array structure of NA in the first
subarray, as well as providing a relatively flexible array
configuration. Moreover, with the increase of sparse factor δ,
mutual coupling effect can be further alleviated.

Notation. Although sparse factor provides many gains in
array performance, it is not an unlimited number in practice.
+e three main factors limiting sparse factor are array
decorrelation, far-field hypothesis, and grid misidentifica-
tion. +e first two factors are due to actual engineering and
the third is due to algorithm limitation. We discuss the
factors, respectively, in the following part.

Array decorrelation: suppose that a narrow-band signal
is expressed as

s(t) � a(t)e
j ω0t+ϕ(t)[ ], (16)

where a(t) denotes the slowly varying amplitude modula-
tion function, which is considered abiding during signal
reception time, ω0 � 2πf0 is the carrier frequency, and ϕ(t)

represents the phase modulation function. Mark the re-
ceived signal on the array as [s(t1), s(t2), . . . , s(tP)]. +e
amplitude modulation function must guarantee

[max|a(t)| − min|a(t)|]/max|a(t)|< q, (17)

where t ∈ [t1, t2, . . . , tP] and 0< q< 1 depends on actual
needs. With the increase of sparse factor, array decorrelation
occurs, which will tremendously affect estimation
performance.

Far-field hypothesis: we assume that all signals are all
from the far field, which satisfy the condition that

Z≥
2ς2

λ
, (18)

where Z denotes the minimum distance from any signal to
the array. ς represents the array aperture.

Grid misidentification: this problem often occurs in low
signal-to-noise ratio (SNR) environments because the noise

generates a much larger phase shift in directional matrix,
which may undermine the orthogonality of search algo-
rithms [25]. On the other hand, ESPRIT-based algorithms
need ambiguity elimination operations. Arrays with large
sparse factor have small grids, which leads to closer am-
biguous values. In low SNR, it is easy to mismatch with
wrong estimates.

3.4. PerformanceAnalysis. For intuitive comparison, Table 1
lists the DOFs after vectorization operation, array aperture,
and mutual coupling effect for SNA, SCA, and traditional
uniform linear array (TULA) [26] with all 8 physical sensors.
For simplicity, label ⌊a, b, c, d, e⌋ is utilized to indicate that
subarray 1 has a sensors with bδd0 intervals and subarray 2
has c sensors with dδ d0 intervals and e denotes the number
of sparse factors δ.

It is revealed in Table 1 that both nested array and coprime
array outperform traditional uniform linear array. By en-
larging sparse factor or increasing the number of physical
sensors, SNA and SCA achieve larger array aperture and lower
mutual coupling. Meanwhile, NA has more DOFs and ex-
tended array aperture than CAwith the same physical sensors.

4. DOA and Polarization Estimation Algorithm

Orthogonal matching pursuit (OMP) algorithm is consid-
ered as a typical compressed sensing method to obtain DOA
estimates. However, an overcomplete dictionary is necessary
for orthogonal verification, which takes relatively high
computational complexity. Moreover, orthogonal verifica-
tion is essentially a searching process, where grid density
affects both estimation accuracy and computational burden.
+e two indexes check and balance with each other. Off-grid
orthogonal matching pursuit (OGOMP) solves off-grid
problem and guarantees good performance. Based on the
scalar OGOMP algorithm [27], we propose a low-
complexity DOA and polarization estimation algorithm for
SNA, which mainly includes DOA initialization and accu-
rate DOA and polarization estimation.

4.1. Initial DOA Estimation. According to the covariance
matrix Rs, eigendecomposition can be performed to obtain
signal subspaceEs ∈ C6(M+N)×K. On the other hand, the first to
(M − 1)-th sensors have rotation invariance with the second
to M-th sensors in subarray 1 and the first to (N − 1)-th
sensors have rotation invariance with the second to N-th
sensors in subarray 2. +erefore, we can decompose the signal
subspace Es.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19–1–2–3–4–5–6–7–8–9–1
0

–1
1

–1
2

–1
3

–1
4

–1
5

–1
6

–1
7

–1
8

–1
9

Figure 4: Virtual sensor elements of NA. M � N � 4.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16–1–2–3–4–5–6–7–8–9–1
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3

–1
4

–1
5

–1
6

Figure 5: Virtual sensor elements of CA. M � 5, N � 4.
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Es1 � Es[1: 6(M − 1)],

Es2 � Es[7: 6M],

Es3 � Es[6M + 1: 6(M + N − 1)],

Es4 � Es[6M + 7: 6(M + N)],

(19)

where Es[a: b] represents the line a to b of Es. By eigen-
decomposition of Es1

+Es2 and Es3
+Es4, eigenvectors T12,T34

and eigenvalues v12 � [ejδd02π sin θ1/λ, . . . , ejδd02π sin θK/λ] and
v34 � [ej(M+1)δd02π sin θ1/λ, . . . , ej(M+1)δd02π sin θK/λ] can be
calculated, where the eigenvectors are nonsingular K × K

matrices with full rank. We employ a vital characteristic in
array signal processing [7].

Es � AsT. (20)

+us, the estimate As is measured by

As �
Es[1: 6M]T− 1

12

Es[6M + 1: 6(M + N)]Τ− 1
34

⎧⎨

⎩

⎫⎬

⎭. (21)

+e next step is extracting the DOA parameters from
As � [a1 ⊗ s1, a2 ⊗ s2, . . . , aK ⊗ K] as the initial estimation
results. Here, we eliminate the directional matrix
A � [a1, a2, . . . , aK] by v12, v34 to estimate the polarization
vector matrix 􏽢S � [s1, s2, . . . , sK], which is expressed as

sk �
1
2M

􏽘

M

i�1

As,k[6(i − 1) + 1: 6i]

||As,k[6(i − 1) + 1: 6i||1
v[k]
12􏼐 􏼑

− j(i− 1)

+
1
2N

􏽘

N

i�1

As,k[6M + 6(i − 1) + 1: 6M + 6i]

||As,k[6M + 6(i − 1) + 1: 6M + 6i||1
v[k]
34􏼐 􏼑

− j(i− 1)
,

(22)

where As,k denotes the k − th row of As,k and v[k] is the k-th
element of v. As is revealed in (22), each term on the right
side of the equation is an estimate of sk, which uses up the
full information of As to get more precise results.

According to (1), the normalized Poynting vector Pk can
be estimated with vector cross-product estimator, which is
expressed as [15]

Pk �

Px,k

Py,k

Pz,k

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � se,k × sh,k �

0

sin θ

cos θ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (23)

where only DOA information is involved in Pk. Based on the
analysis above, we can obtain the coarse initial DOA
estimates.

􏽢θk,ini �
1
2

arcsin P[2]
k + arccos P[3]

k􏽨 􏽩, (24)

where P[i] denotes the i-th element of P.

4.2. Precise DOA Estimation with Low Complexity. In this
part, we propose an off-grid OMP (OGOMP) algorithm,
which can obtain accurate joint DOA and polarization
estimates.

First, we can establish an overcomplete dictionary partly
taken from Au:

Q(θ) � au θ1( 􏼁, au θ2( 􏼁, . . . , au θQ􏼐 􏼑􏽨 􏽩 ∈ C Du| |×Q
, Q≫K,

(25)

where the angular interval is r � θi+1 − θi, 1≤ i≤Q − 1 and θi

is near the initial DOA estimates. Define a deviation vector
ξ ∈ RQ×1 and every element − r/2≤ ξq ≤ r/2, q � 1, 2, . . . , Q

refers to the deviation with grid. +e directional vector after
grid division will be close to the directional vector of the
actual target signal with the first-order Taylor expansion
principle, which can be expressed as

aut θi + ξi( 􏼁 ≈ au θi( 􏼁 +
zau θi( 􏼁

zθi

ξi, i � 1, 2, . . . , Q, (26)

where au(θi) denotes the directional vector of θi in over-
complete dictionary corresponding to virtual array manifold
after vectorization and z(·) represents the partial derivative.
+erefore,
Qt � [aut(θ1 + ξ1), aut(θ2 + ξ2), . . . , aut(θQ + ξQ)] can be
regarded as the sum of two matrices.

Qt � Q + ΘΛ, (27)

where Θ(θ) � [zau(θ1)/zθ1, zau(θ2)/zθ2, . . . , zau(θQ)/zθQ]

and Λ � diag(ξ).
Since the vectorized received signal zu is only associated

with DOA information, we construct the following function
to verify the orthogonality:

P � max
�������������������

Q θi( 􏼁zu

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ Θ θi( 􏼁zu

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏽱

, i � 1, 2, . . . , Q.

(28)

When θi + ξi approaches the true incident angle, (28)
achieves a peak value. Compared with (27), (28) still has
orthogonality without Λ because the vectorized received
signal can also be represented as

zu � (Q + Θdiag(ξ))HT
s � QHT

s + Θ ξ⊕HT
s􏼐 􏼑, (29)

where HT
s denotes sparse signal vector with k nonzero

values. It can be indicated from (29) that ifΘ is orthogonal to
the q − th element HT

s
[q], it is also orthogonal to (ΛHT

s )[q],
q � 1, 2, . . . , Q.

After the first search around initial DOA estimates, we
construct 􏽥A � [au(θm1

), zau(θm1
)/zθm1

] from Q and Θ
corresponding to max(P). +us, according to (29), least-
squares criterion is employed to estimate HT

s
[m1] and

(ΛHT
s )[m1], which is expressed as

HT
s

m1[ ]

ΛHT
s􏼐 􏼑

m1[ ]

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦ � 􏽥A􏽥A

H 􏽥A􏽥A􏼒 􏼓
− 1

􏽥A􏽥A
Hzu. (30)

+e other K − 1 signals are also measured by (28). In
particular, the rows in zu corresponding to θm1

, θm2
, · · · , θmk

which have been estimated should be removed. Hence, the
virtual received signal zu is updated:
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zu � zu − 􏽘
k

i�1
au θmi

􏼐 􏼑,
zau θmi

􏼐 􏼑

zθmi

⎡⎣ ⎤⎦
HT

s
mi[ ]

ΛHT
s􏼐 􏼑

mi[ ]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (31)

+e maximum value in each search corresponds to an
incident angle. Eliminating sparse signal vector HT

s
[mk],

ξmk
, k � 1, 2, . . . , K can be computed by (30). +e accurate

and ambiguity-free DOA estimates are obtained with K

iterations.
􏽢θk,est � θmk + ξmk

, k � 1, 2, . . . , K. (32)

4.3. Polarization Estimation. Inspired from (5), we can also
construct a cross-correlation covariance matrix among the 6
electric and magnetic components. We focus on two
combinations: electric components of the x-axis and z-axis
and magnetic components of the x-axis and z-axis.

Rex,ez � Adiag σ21sex,1s
∗
ez,1, σ

2
2sex,2s

∗
ez,2, . . . , σ2Ksex,Ks

∗
ez,K􏼐 􏼑AH

,

(33)

Rhx,ez � Adiag σ21shx,1s
∗
ez,1, σ

2
2shx,2s

∗
ez,2, . . . , σ2Kshx,Ks

∗
ez,K􏼐 􏼑AH

.

(34)

Performing vectorization operation similar to Section
3.2, (33) and (34) are transformed to

rex,ez � A∗ ⊙A σ21sex,1s
∗
ez,1, σ

2
2sex,2s

∗
ez,2, . . . , σ2Ksex,Ks

∗
ez,K􏽨 􏽩

T

� A∗ ⊙ASex,ez,

rhx,ez � A∗ ⊙A σ21shx,1s
∗
ez,1, σ

2
2shx,2s

∗
ez,2, . . . , σ2Kshx,Ks

∗
ez,K􏽨 􏽩

T

� A∗ ⊙AShx,ez,

(35)

where A can be computed by DOA estimates.
Sex,ez � [σ21sex,1s∗ez,1, σ

2
2sex,2s∗ez,2, . . . , σ2Ksex,Ks∗ez,K]T and Shx,ez

� [σ21shx,1s∗ez,1, σ
2
2shx,2s∗ez,2, . . . , σ2Kshx,Ks∗ez,K]T. +e cross-

correlation covariance matrices after vectorization operation
still contain polarization information, which provides a basis
for polarization estimation. Least-squares criterion is uti-
lized as

Sex,ez � AHA􏼐 􏼑
+
AHrex,ez,

Shx,ez � AHA􏼐 􏼑
+
AHrhx,ez.

(36)

According to the definition in (1), auxiliary polarization
angle and polarization phase difference estimates are ob-
tained by eliminating the power of signals.

􏽢ck,est � arctan abs
S[k]

hx,ez

S[k]
ex,ez

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦,

􏽢ηk,est � − angle
S[k]

ex,ez

S[k]
hx,ez

⎛⎝ ⎞⎠,

(37)

where k � 1, 2, . . . , K.

4.4. Discussion. +e proposed algorithm aims to jointly
estimate DOA and polarization parameters with low com-
plexity. +ere are mainly two steps where computational
burden is effectively reduced. +e first is the DOA initial-
ization during which only eigendecomposition approach is
used. +us, coarse initial DOA estimates are obtained.
Benefitting from that, we require no global overcomplete
dictionary for orthogonal verification. +e second step is
reducing the dimensions of overcomplete dictionary from
three to one because the two polarization parameters are
both eliminated by the construction of the new covariance
matrix R and the process of OGOMP algorithm is only
related to DOA. In addition, benefitting from OGOMP
algorithm, not only is the accuracy guaranteed but also the
search interval is not strictly required. When the incident
angle is not involved in the dictionary, estimation perfor-
mance can also be guaranteed.

+e process of the DOA and polarization estimation is
summarized as follows:

Step 1: compute the estimates of As by eigende-
composition of Rs

Step 2: eliminate polarization information fromAs with
vector cross-product estimator
Step 3: obtain coarse DOA initial estimates in nor-
malized Poynting vector
Step 4: search in partly overcomplete dictionary with
OGOMP algorithm for accurate DOA estimates
Step 5: construct cross-correlation covariance matrix,
perform vectorization operation, and obtain polariza-
tion estimates by least-square criterion

+e main complexity of the proposed algorithm is
discussed as follows.

Constructing the covariance matrix requires
O J(6P)2 + 8JP2􏽮 􏽯. +e computational burden of DOA
initialization involves the eigendecomposition which takes
O (6P)3 + 2K3􏽮 􏽯. OGOMP algorithm is composed of the
search over the one-dimensional dictionary for K iterations,
which mainly requires O K2Q|Du|􏼈 􏼉. In summary, the
proposed algorithm approximately needs the complexity of
only O J(6P)2 + 8JP2 + (6P)3 + 2K3 + K2Q|Du|􏽮 􏽯. How-
ever, the traditional search-based algorithms cannot avoid
three-dimensional search for three unknown parameters
and the search range is relatively large compared with the
proposed algorithm, which is exhaustive and infeasible.

5. Simulation Results

We perform some simulations in order to confirm the su-
perior performance of the proposed SNA and the OGOMP-
based algorithm. +is section is divided into 4 parts. Part A
verifies the large DOFs of SNA by scatter plot. Part B
demonstrates the effectiveness of SF versus SNR and
snapshots. We also compare the proposed algorithm with
OMP, ESPRIT, and PM algorithms to outstand the prom-
inent performance of the proposed algorithm in part
C. Moreover, considering the different coupling leakage in
different arrays, part D simulates the performance for
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Figure 7: Scatter plot of c and η estimation results.
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Figure 6: Scatter plot of θ and η estimation results.
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Figure 8: DOA estimation performance versus SF (SNR).
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different array structures with mutual coupling effect.
During the above simulations, root mean square error
(RMSE) is employed to evaluate the performance, which is
defined as

RMSEa �
1
K

􏽘

K

k�1

����

1
I

􏽘

I

i�1

􏽶
􏽴

􏽢θk,i − θk􏼐 􏼑
2

􏼔 􏼕 ,

RMSEc �
1
K

􏽘

K

k�1

���������������

1
I

􏽘

I

i�1
􏽢ck,i − ck􏼐 􏼑

2
􏼔 􏼕,

􏽶
􏽴

RMSEη �
1
K

􏽘

K

k�1

����

1
I

􏽘

I

i�1

􏽶
􏽴

􏽢ηk,i − ηk􏼐 􏼑
2

􏼔 􏼕,

(38)

where 􏽢θk,i, 􏽢ck,i, and 􏽢ηk,i are the estimated values of θk, ck, and
ηk during the i − th simulation, and I is the number of
independent simulations. In this paper, we assume that
signal number K has been estimated and there are 3 signals
impinging on the array in simulation parts B, C, and D with
DOA and polarization parameters (θ1, c1, η1) � (20∘,
27∘, 25∘), (θ2, c2, η2) � (30∘, 37∘, 35∘), and (θ3, c3, η3) �

(40∘, 57∘, 55∘).

5.1. Independent DOA and Polarization Estimation. As is
analyzed in Section 3, the proposed algorithm can estimate
signals equal to or more than physical sensor elements
benefitting from the SNA array structure and the vectorization
operation. Figures 6 and 7 exhibit the scatter plot of the es-
timate pairs with 100 independent experiments. +e physical
sensor elements are 5 with array structure SNA ⌊2, 1, 3, 3, 2⌋,
whereas there are 6 signals with DOA and polarization pa-
rameters (θ1, c1, η1) � (20∘, 27∘, 25∘), (θ2, c2, η2) � (30∘, 37∘,
35∘), (θ3, c3, η3) � (40∘, 47∘, 45∘), (θ4, c4, η4) � (50∘, 57∘,

55∘), (θ5, c5, η5) � (60∘, 67∘, 65∘), and (θ6, c6, η6) � (60∘, 77∘,
75∘), where J � 1000 and SNR � 20 dB. As is depicted in the
figures, all 6 signals are estimated accurately without any
missing or error signal, which verifies advantages of large
DOFs. Besides, the DOA and the two polarization parameters
are autopaired, indicating that no extra pairing operation is
needed.

5.2. Parameter Estimation Performance Comparison versus
SF. In this part, we perform the SF simulation for
SNA ⌊3, 1, 3, 4, δ⌋ with the proposed algorithm. Figures 8–10
demonstrate the RMSE performance for DOA and polari-
zation parameters along with SNR, where J � 200, and
Figures 11–13 depict the RMSE performance based on
different snapshots, where SNR � 0 dB. As is revealed in the
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Figure 9: c estimation performance versus SF (SNR).
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Figure 10: η estimation performance versus SF (SNR).
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figures, RMSE decreases not only with the improvement of
SNR and snapshots but also accompanied by the enlarge-
ment of SF. From the overall perspective, the RMSE of DOA
is much lower than the two polarization parameters.

5.3. Parameter Estimation Performance Comparison for
Algorithms. Figures 14–16 compare the proposed algorithm
with OMP, Propagator Method (PM) [28], and Estimating
Signal Parameter via Rotational Invariance Techniques
(ESPRIT), where snapshots J � 200 and SNR � [− 10, 11]dB.
In addition, Cramér-Rao Bound (CRB) [29] is presented as
the standard.

+e array structure is SNA ⌊3, 1, 3, 4, 2⌋. +e dictionary
intervals are all 0.1∘ for OGOMP, OMP, and PM algorithms.

As revealed in the figures, the proposed algorithm outper-
forms the other three algorithms. Specifically, OMP algo-
rithm ignores any possible incident angle outside the
dictionary, which degrades the performance. PM requires no
eigendecomposition but employs the search function with
poor orthogonality. ESPRIT performs the worst because
there are not enough sensors so that signal subspace matrix
has insufficient information for DOA estimates. Simulta-
neously, the polarization estimates are also affected.

5.4. Parameter EstimationPerformanceComparison forArray
Structures. Since mutual coupling effect is varying for dif-
ferent array structures, we consider the coupling leakage in
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Figure 13: η estimation performance versus SF (snapshots).
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the simulation of array structure performance.+e proposed
algorithm is tested where J � 200 and SNR � [− 10, 11]dB.
+e 4 array structures all have 6 sensors: SNA ⌊3, 1, 3, 4, 1⌋,
SNA ⌊3, 1, 3, 4, 2⌋, ULA(d � λ/2), and SCA ⌊4, 3, 3, 4, 2⌋.

As Figures 17–19 reveal, SNA ⌊3, 1, 3, 4, 2⌋ acts best due
to its large DOFs and array aperture. Although
SCA ⌊4, 3, 3, 4, 2⌋ is a sparse array, the missing elements in
virtual array are the main cause of performance
deterioration.

6. Conclusion

In this paper, a new array structure of sparse nested array is
constructed, and a low-complexity off-grid orthogonal
matching pursuit (OGOMP) algorithm is designed based on
the proposed array structure to obtain DOA and polariza-
tion estimates. By introducing the sparse factor in EVSA, the
proposed array structure has low mutual coupling, flexible
array aperture, and high achievable degrees of freedom.

Benefitting from the DOA initialization and polarization
parameter elimination, the overcomplete dictionary is
compact to tremendously reduce computational complexity.
Meanwhile, the proposed OGOMP algorithm searches for
the unambiguous high-precise DOA estimates and solves the
problem of poor performance for off-grid signals in OMP
algorithm. Finally, polarization estimates are measured by
cross-correlation covariance matrix and estimated direc-
tional matrix based on least-square criterion.
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