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We utilize the modified Riemann–Liouville derivative sense to develop careful arrangements of time-fractional simplified
modified Camassa–Holm (MCH) equations and generalized (3 + 1)-dimensional time-fractional Camas-
sa–Holm–Kadomtsev–Petviashvili (gCH-KP) through the potential double (G′/G, 1/G)-expansion method (DEM). *e men-
tioned equations describe the role of dispersion in the formation of patterns in liquid drops ensued in plasma physics, optical
fibers, fluid flow, fission and fusion phenomena, acoustics, control theory, viscoelasticity, and so on. A generalized fractional
complex transformation is appropriately used to change this equation to an ordinary differential equation; thus, many precise
logical arrangements are acquired with all the freer parameters. At the point when these free parameters are taken as specific
values, the traveling wave solutions are transformed into solitary wave solutions expressed by the hyperbolic, the trigonometric,
and the rational functions.*e physical significance of the obtained solutions for the definite values of the associated parameters is
analyzed graphically with 2D, 3D, and contour format. Scores of solitary wave solutions are obtained such as kink type, periodic
wave, singular kink, dark solitons, bright-dark solitons, and some other solitary wave solutions. It is clear to scrutinize that the
suggested scheme is a reliable, competent, and straightforwardmathematical tool to discover closed form traveling wave solutions.

1. Introduction

In recent years, fractional calculus (FC) assumed a basic part
of a capable, catalyst, and rudimentary hypothetical struc-
ture for more sufficient displaying of multifaceted powerful
cycles. FC and nonlinear fractional differential equations
(NLFDEs) have recently been used to solve problems in
plasma physics, protein chemistry, cell biology, mechanical
engineering, signal processing and systems recognition,
electrical transmission, control theory, economics, and
fractional dynamics. FDE has a wide range of applications in
fields such as magnetism, sound waves propagation in rigid
porous materials, cardiac tissue electrode interface, principle
of viscoelasticity, fluid dynamics, lateral and longitudinal
regulation of autonomous vehicles, ultrasonic wave

propagation in human cancerous bone, wave propagation in
viscoelastic horn, heat transfer, RLC electric circuit, mod-
eling of earthquake, and some other areas [1–5]. *e highly
prepared polylayer portion of the human body is a partic-
ularly capable model system for using fractional calculus. As
a result, researchers are increasingly interested in seeking
exact solutions to NLFDEs, which play a significant role in
nonlinear science. Wave shape has an effect on sediment
transport and beach morphodynamics, while wave skewness
has an impact on radar altimetry signals and asymmetry has
an impact on ship responses to wave impacts. Traveling wave
solutions is a special class of analytical solutions for non-
linear evolution equations (NLEEs). Solitary waves are
transmitted traveling waves with constant speeds and shapes
that achieve asymptotically zero at distant locations. In order
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to know the inner mechanism of the mentioned complex
tangible phenomena, investigation of exact solutions of
NLFDEs are very much important. In this way, numerous
authors have been interested in studying the FC and finding
precise and productive techniques for comprehending
nonlinear fractional partial differential equations (NFPDEs).
In the previous few decades, numerous strategies have been
produced for illuminating NFPDEs, for example, nearby
variational iteration method [6], the F-expansion method
[7], homotopy perturbation method [8], Kudryashov
method [9], improved (G′⁄G)-expansion method [10], and
the DEM [11–13].

As of late, a clear and succinct method called the DEM,
which is presented in [14], and is exhibited as a mighty
method for looking at analytical solutions of NLDEs. *e
DEM is a reliable technique, which provides different types
of solitary wave solutions (SWS), namely, the hyperbolic, the
trigonometric, and the rational functions. *e proposed
MCH equation has been researched for its precise diagnostic
arrangements through the (G′⁄G)-expansion method [15],
exp-function method [16], modified simple equation
method [17], and so on. Also, the proposed (gCH-KP)
equation has been investigated for its exact analytic solutions
through Agrawal’s method [18] and the bifurcation method
[19]. To the best of our knowledge, the recommended

condition has not been concentrated through the DEM [12].
So, the point of this investigation is to build up some fresh
and further broad precise solutions for the previously
mentioned condition utilizing the DEM.

*e rest of of the article is planned as follows. In Section
2, we have presented the definition and primers. In Section 3,
the DEM has been depicted. In Section 4, we have built up
the specific answer for the proposed equation by the pre-
viously mentioned method. In Section 5, we have uncovered
the graphical portrayal and conversation, and in Section 6,
comparison of results has been drawn. In Section 7, the
conclusion is given.

2. Definition and Primers

Jumarie offered a mRL.With such a fractional derivative and
some accommodating ways, we can change over fractional
differential equations (FDEs) into integer-order differential
equations applying variable transformation [20]. In this
section, we first provide a couple of features and definitions
of the mRL subsidiary which is used further in this study.
Acknowledge that f: R⟶ R, x⟶ f(x) implies a con-
tinuous, however, not really differentiable function. Juma-
rie’s mRL having order a is defined by the articulation

D
α
xf(x) �

1
Γ(− α)

􏽚
x

0
(x − ξ)

− α− 1
[f(ξ) − f(0)]dξ, α< 0,

1
Γ(1 − α)

d
dx

􏽚
x

0
(x − ξ)

− α
[f(ξ) − f(0)]dξ, 0< α< 1,

f
(n)

(x)􏼐 􏼑
(a− n)

, n≤ α≤ n + 1, n> 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

Two or three features of the mRL were concise and four
acclaimed conditions of them are as follows:

D
α
t t

c
�
Γ(1 + c)

Γ(1 + c − α)
t
(c− α)

, c> 0, (2)

D
α
t (af(t) + bg(t)) � aD

α
t f(t) + bD

α
t g(t), (3)

wherever a and b stand for constants and

D
α
xf[u(x)] � f

α
u(u)D

α
xu(x), (4)

D
α
xf[u(x)] � D

α
uf(u) u′(x)( 􏼁

α
, (5)

which are the immediate results of

d
α
x(t) � Γ(1 + α)dx(t). (6)

*is holds for nondifferentiable function. Among
equations (3)–(5), u(x) is nondifferentiable in equations (3)
and (4) but differentiable in equation (5). *e function u(x)

is nondifferentiable, and f(u) is differentiable in equation

(4) and no differentiable in equation (5). So, the explanation
equations (3)–(5) should be used mindfully.

3. The Double-Expansion Method

In this part, the center aspect of the DEM to assess the
specific traveling wave solution of the NFPDEs has been
represented. Let us guess the standard differential equation
of order two:

G″(ξ) + λG(ξ) � μ. (7)

Also, the accompanying relations

ϕ �
G′
G

,

ψ �
1
G

.

(8)

Subsequently, it gives
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ϕ′ � − ϕ2 + μψ − λ,

ψ′ � − ϕψ,
(9)

*e solution for equation (7) relies upon λ as λ< 0, λ> 0,
and λ � 0.

For λ< 0, the complete solution of equation (7) will be

G(ξ) � C1sinh(
���
− λ

√
ξ) + C2cosh(

���
− λ

√
ξ) +

μ
λ

. (10)

Take into account that we obtain

ψ2
�

− λ
λ2σ + μ2

ϕ2 − 2μψ + λ􏼐 􏼑, (11)

where σ � C2
1 − C2

2.
On the off chance that λ> 0, the solution for equation (7)

is as follows:

G(ξ) � C1 sin(
�
λ

√
ξ) + C2 cos(

�
λ

√
ξ) +

μ
λ
. (12)

Considering that we acquire

ψ2
�

λ
λ2σ − μ2

ϕ2 − 2μψ + λ􏼐 􏼑, (13)

where σ � C2
1 + C2

2, when λ � 0, the overall solution for
condition (7) is as follows:

G(ξ) �
μ
2
ξ2 + C1ξ + C2. (14)

Taking into account that we acquire

ψ2
�

1
C
2
1 − 2μC2

ϕ2 − 2μψ􏼐 􏼑, (15)

where C1 and C2 stand for constants and those are
arbitrary, in this section, we talk about the principle part of
proposed methods to take exact traveling wave solutions to
the NLFDE is as the form

p u, D
α
t u, D

β
xu, D

α
t D

α
t u, D

α
t D

β
xu, D

β
xD

β
x, . . . ,􏼐 􏼑 � 0, 0< α≤ 1, 0< β≤ 1, (16)

where u speaks to an unidentified function of spatial sub-
ordinate x and transient subsidiary t and speaks to a
polynomial of u(x, t) and its derivatives wherein the most
maximal order of derivatives and nonlinear terms of the
maximal order are related.

Step 1 : take into account the traveling wave
transformation:

ξ � Lx + V
t
α

Γ(1 + α)
, (17)

where c and k are nonzero abstract constant.
Applying this wave transformation in (16), it is
reworked as

Q u, u′, u″, u″′, . . . ,( 􏼁 � 0, (18)

where the prime speaks to the ordinary deriv-
ative of u regarding ξ.

Step 2 : take the arrangement of equation (9) which
have been uncovered as polynomial in ϕ and ψ
of the endorse type:

u(ξ) � 􏽘

N

i�0
aiϕ

i
+ 􏽘

N

i�1
biϕ

i− 1ψ, (19)

where ai and bi stand for constants which will be
calculated later.

Step 3 : in equation (18), “N” will be calculated using
homogeneous balance principal which deter-
mines equation (19).

Step 4 : put (19) in (18) along with (9) and (11), and it
decreases to a polynomial in ϕ , where the degree
is one. Contrasting the polynomial of similar
terms with zero, a game plan of logarithmic
conditions that are examined by using com-
putational programming produces the estima-
tions of ai, bi, μ, C1, C2, and λ where λ< 0, which
give hyperbolic function arrangements.

Step 5 : in a similar fashion, we explore the estimations
of ai, bi, μ, C1, C2, and λ, where λ> 0 and λ � 0
which are giving trigonometric and rational
function results correspondingly.

4. Formulation of Exact Solution

4.1. 8e Exact Solutions to the Space-Time Fractional MCH
Equation. *is equation was presented by Camassa and
Holm [21] in 1993 which describes shallow water waves
with peakon solutions. *e peakon solution is a special
solitary wave solution which is peaked in the limiting case,
and the first derivatives are discontinuous in the peaks [22]
and pseudospherical surfaces, and therefore, its integrability
properties can be studied by geometrical means [23].

First, take the space-time fractional MCH equation [15]
in the form

D
α
t + 2δux − uxxt + cu

2
ux � 0, (20)

where u(x, t) is the velocity of the fluid, δ is the coefficient
related to the critical shallow water wave speed, and c is a
nonzero constant. Employing transformation (17), equation
(20) reduced an ODE as follows:
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Vu′ + 2Lδu′ − L
2
Vu″′ + cLu

2
u′ � 0, (21)

where V, L, and c are nonzero constants and δ is the co-
efficient related to the critical shallow water wave speed.

Integrating (21) once and taking the constant of the
integration as zero, it becomes

u(v + 2Lδ) − L
2
Vu″ + cL

u
3

3
� 0. (22)

Balancing the maximal order derivative term u″ with the
most order nonlinear term u3, the adjusting number is
resolved to be N � 1. At that point, expect the specific ar-
rangement of equation (22) as

u(ξ) � a0 + a1ϕ + b1ψ, (23)

wherever a0, a1, and b1 are constants to be resolved.

Case 1 : for λ< 0, setting equation (23) in (22) and by
using (9) and (11), we get the following solution:

a0 � 0,

a1 � b1

��������

−
λ

λ2σ + μ2

􏽳

,

b1 � b1,

L � b1

�����������������
2cλ

6μ2δ + cb
2
1λ

2
+ 6δλ2σ

􏽳

,

V � −
2cb1λ

3 λ2σ + μ2􏼐 􏼑

�����������������

6μ2δ + cb
2
1λ

2
+ 6δλ2σ

2cλ

􏽳

.

(24)

Substituting these values in (23), we find to the
solution for the MCH equation (20) as the
structure:

u11(x, t) � b1

��������

−
λ

λ2σ + μ2

􏽳

×
C1

���
− λ

√
cosh(

���
− λ

√
ξ) + C2

���
− λ

√
sinh(

���
− λ

√
ξ)

C1sinh(
���
− λ

√
ξ) + C2cosh(

���
− λ

√
ξ) +(μ/λ)

+
b1

C1sinh(
���
− λ

√
ξ) + C2cosh(

���
− λ

√
ξ) +(μ/λ)

,

(25)

wherever

ξ � b1

�����������������
2cλ

6μ2δ + cb
2
1λ

2
+ 6δλ2σ

􏽳

x

−
2cb1λ

3 λ2σ + μ2􏼐 􏼑

�����������������

6μ2δ + cb
2
1λ

2
+ 6δλ2σ

2cλ

􏽳

t
α

Γ(1 + α)
,

σ � C
2
1 − C

2
2.

(26)

Since C1 and C2 are arbitrary constants, it may
be self-assertively picked. In the event that we
pick C1 � μ � 0 and C2 ≠ 0 in equation (25), we
get the solitary wave solution:

u12(x, t) � b1

�����

−
λ

λ2σ

􏽳

×
���
− λ

√
tanh(

���
− λ

√
ξ) + b1sech(

���
− λ

√
ξ).

(27)

Again, if we choose C1 ≠ 0 and C2 � μ � 0 in
equation (25), we will find the solitary wave
solution:

u13(x, t) � b1

�����

−
λ
λ2σ

􏽳

×
���
− λ

√
coth(

���
− λ

√
ξ) + b1 cos ech(

���
− λ

√
ξ),

(28)

wherever

ξ � b1

�����������������
2cλ

6μ2δ + cb
2
1λ

2
+ 6δλ2σ

􏽳

x

−
2cb1λ

3 λ2σ + μ2􏼐 􏼑

�����������������

6μ2δ + cb
2
1λ

2
+ 6δλ2σ

2cλ

􏽳

t
α

Γ(1 + α)
,

(29)

Case 2 : for λ> 0, setting equation (23) in (22) by using
(9) and (13), we get the resulting result:

a0 � 0,

a1 � b1

�����������

−
λ

− λ2σ + μ2􏼐 􏼑

􏽳

,

b1 � b1,

L � b1

�����������������
2cλ

6μ2δ + cb
2
1λ

2
− 6δλ2σ

􏽳

,

V � −
2cb1λ

3 − λ2σ + μ2􏼐 􏼑

�����������������

6μ2δ + cb
2
1λ

2
− 6δλ2σ

2cλ

􏽳

.

(30)

Substituting these values in (23), we find the
solution for the MCH equation (20) as the
structure:

u14(x, t) � b1

�����������

−
λ

− λ2σ + μ2􏼐 􏼑

􏽳

×
C1

�
λ

√
cos(

���
− λ

√
ξ) − C2

�
λ

√
sin(

���
− λ

√
ξ)

C1 sin(
�
λ

√
ξ) + C2 cos(

�
λ

√
ξ) +(μ/λ)

+
b1

C1sinh(
�
λ

√
ξ) + C2cosh(

�
λ

√
ξ) +(μ/λ)

,

(31)

4 Mathematical Problems in Engineering



wherever

ξ � b1

�����������������
2cλ

6μ2δ + cb
2
1λ

2
− 6δλ2σ

􏽳

x

−
2cb1λ

3 − λ2σ + μ2􏼐 􏼑

�����������������

6μ2δ + cb
2
1λ

2
− 6δλ2σ

2cλ

􏽳

t
α

Γ(1 + α)
,

σ � C
2
1 + C

2
2.

(32)

It can be chosen arbitrarily, since C1 and C2 are
arbitrary constants. We get the solitary wave
solution by choosing C1 � μ � 0 and C2 ≠ 0 in
equation (31):

u15(x, t) � b1

�������

−
λ

− λ2σ􏼐 􏼑

􏽳

×
�
λ

√
tan(

�
λ

√
ξ) + b1sec(

�
λ

√
ξ).

(33)

Again, if we choose C1 ≠ 0 and C2 � μ � 0 in
equation (31), we will get the solitary wave
solution:

u16(x, t) �

�������

−
λ

− λ2σ􏼐 􏼑

􏽳

×
�
λ

√
tan(

�
λ

√
ξ) + b1sec(

�
λ

√
ξ),

(34)

wherever

ξ � b1

�����������������
2cλ

6μ2δ + cb
2
1λ

2
− 6δλ2σ

􏽳

x

−
2cb1λ

3 − λ2σ + μ2􏼐 􏼑

�����������������

6μ2δ + cb
2
1λ

2
− 6δλ2σ

2cλ

􏽳

t
α

Γ(1 + α)
.

(35)

Case 3 : in a similar arrangement, when λ � 0, setting
equation (23) in (22) by using (9) and (15), we
acquire

a0 �
λC2 +

���������

λ2C2
2 + C

2
1λ

􏽱

C
2
1

b1,

a1 � 0,

b1 � b1,

L �
2cb1

48C2 λC2 +

���������

λ2C2
2 + C

2
1λ

􏽱

􏼒 􏼓 − 24C
2
1λ − 96C

2
1λδ

,

V �
2cb1

576C
2
1C2 λC2 +

���������

λ2C2
2 + C

2
1λ

􏽱

􏼒 􏼓 − 24C
2
1λ − 96C

2
1λδ

2cb
2
1λC2

λC2 +

���������

λ2C2
2 + C

2
1λ

􏽱

C
2
1

24δC
2
1 + b

2
1cλ⎛⎜⎜⎝ ⎞⎟⎟⎠.

(36)

Substituting these values in (23), we achieve to
the rational function solution for the MCH
equation (20) as the structure:

u17(x, t) �
λC2 +

���������

λ2C2
2 + C

2
1λ

􏽱

C
2
1

b1 +
b1

(μ/2)ξ2 + C1ξ + C2
,

(37)
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wherever

ξ �
2cb1

48C2 λC2 +

���������

λ2C2
1 + C

2
1λ

􏽱

􏼒 􏼓 − 24C
2
1λ − 96C

2
1λδ

x

−
2cb1

576C
2
1C2 λC2 +

���������

λ2C2
2 + C

2
1λ

􏽱

􏼒 􏼓 − 24C
2
1λ − 96C

2
1λδ

2cb
2
1λC2

λC2 +

���������

λ2C2
2 + C

2
1λ

􏽱

C
2
1

+ 24δC
2
1 + b

2
1cλ⎛⎜⎜⎝ ⎞⎟⎟⎠

t
α

Γ(1 + α)
.

(38)

It is observable to see that the traveling wave
arrangements u11–u17 of our proposed MCH
equation are broadly new and general. *ese
picked up arrangements have not been checked
in the previous investigation. *ese arrange-
ments are advantageous to assign the above
expressed wonders.

4.2. Generalized (3 + 1)-Dimensional gCH-KP Equation.

D
α
t u + aux + buux + cD

α
t uxx( 􏼁x + c1uyy + c2uzz � 0,

(39)

describes the role of dispersion in the formation of patterns
in liquid drops, where a, b, c, c1, and c2 are nonzero constants
and Dα

t is the Riemann–Liouville fractional derivative of
u(t, x, y, z), 0 < α< 1 [20].

Introduce the following fractional transformation:

ξ � kx + ly + mz −
nt

α

Γ(1 + α)
. (40)

Applying equation (40) in (39), we have

k − nu′ + aku′ + bkuu′ − cnk
2
u
‴

􏼒 􏼓
′ + c1l

2
u″ + c2m

2
u″ � 0.

(41)

Integrating equation (41) two times and taking inte-
grating constant as zero, we obtain

cnk
3

+ nku − ak
2
u −

bk
2

2
u
2

− c1l
2
u − c2m

2
u � 0. (42)

Balancing linear and nonlinear higher-order term, we get
N� 2, which implies using (19) that

u(ξ) � a0 + a1ϕ + a2ϕ
2

+ b1ψ + b2ϕψ, (43)

where a0, a1, a2, b1, and b2 are constants to be resolved.

Case 1 : for λ< 0, setting equation (43) in (42), close to
(9) and (11), generates an arrangement of
mathematical equations by utilizing computer-
based math such as maple, and we get the
subsequent result.

Set 1:

a0 �
4kλnc

b
,

a1 � 0,

a2 �
6knc

b
,

b1 � −
6kncμ

b
,

b2 �
knc

b

������������

− 36 μ2 + λ2σ􏼐 􏼑

λ

􏽳

, k � k,

l �

���������������������

− ak
2

+ nk − c2m
2

+ k
3λnc

c1

􏽳

, m � m and n � n.

(44)

Set 2:

a0 �
6kλnc

b
,

a1 � 0,

a2 �
6knc

b
,

b1 � −
6kncμ

b
,

b2 �
knc

b

������������

− 36 μ2 + λ2σ􏼐 􏼑

λ

􏽳

,

k � k,

l �

���������������������

− ak
2

+ nk − c2m
2

+ k
3λnc

c1

􏽳

, m � m and n � n.

(45)

For Set 1, substituting these values in (43), we
get the solution for the gCH–KP equation (39)
as the structure
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u21(x, t) �
4kλnc

b
+
6knc

b
×

C1
���
− λ

√
cosh(

���
− λ

√
ξ) + C2

���
− λ

√
sinh(

���
− λ

√
ξ)

C1sinh(
���
− λ

√
ξ) + C2cosh(

���
− λ

√
ξ) +(μ/λ)

􏼠 􏼡

2

−
6kncμ

b
×

1
C1sinh(

���
− λ

√
ξ) + C2cosh(

���
− λ

√
ξ) +(μ/λ)

+
knc

b
×

�������������

− 36 μ2 + λ2σ􏼐 􏼑

λ

􏽳

⎛⎜⎜⎝ ⎞⎟⎟⎠

×
C1

���
− λ

√
cosh(

���
− λ

√
ξ) + C2

���
− λ

√
sinh(

���
− λ

√
ξ)

C1sinh(
���
− λ

√
ξ) + C2cosh(

���
− λ

√
ξ) +(μ/λ)􏼐 􏼑

2,

(46)

where
ξ � kx +

���������������������������
((− ak2 + nk − c2m

2 + k3λnc)/c1)
􏽰

y +

mz − (ntα/(Γ(1 + α))) and σ � C2
1 − C2

2.

Since C1 and C2 are arbitrary constants, it may
be self-assertively picked. We get the following
solitary wave solution by choosing C1 � μ � 0
and C2 ≠ 0 in equation (46):

u22(x, t) �
4kλnc

b
+
6knc

b
(

���
− λ

√
)
2tanh2(

���
− λ

√
ξ) +

knc

b

��������

− 36 λ2σ􏼐 􏼑

λ

􏽳

⎛⎜⎜⎝ ⎞⎟⎟⎠
���
− λ

√
tanh(

���
− λ

√
ξ)sech(

���
− λ

√
ξ). (47)

Again, we get the following solitary wave so-
lution by choosing C1 ≠ 0 and C2 � μ � 0 in
equation (46):

u23(x, t) �
4kλnc

b
+
6knc

b
(

���
− λ

√
)
2coth2(

���
− λ

√
ξ) +

knc

b

×

���������

− 36 λ2σ􏼐 􏼑

λ

􏽳

⎛⎜⎜⎝ ⎞⎟⎟⎠
���
− λ

√
coth(

���
− λ

√
ξ)cos ech(

���
− λ

√
ξ),

(48)

where
ξ � kx +

���������������������������
((− ak2 + nk − c2m

2 + k3λnc)/c1)
􏽰

y +

mz − (ntα/(Γ(1 + α))) and σ � C2
1 − C2

2.

Similarly, for Set 2, substituting these values in
(43), we get the solution for the gCH–KP
equation (39) as the structure:

u24(x, t) �
6kλnc

b
+
6knc

b
×

C1
���
− λ

√
cosh(

���
− λ

√
ξ) + C2

���
− λ

√
sinh(

���
− λ

√
ξ)

C1sinh(
���
− λ

√
ξ) + C2cosh(

���
− λ

√
ξ) +(μ/λ)

􏼠 􏼡

2

−
6kncμ

b
×

1
C1sinh(

���
− λ

√
ξ) + C2cosh(

���
− λ

√
ξ) +(μ/λ)

+
knc

b

×

������������

− 36 μ2 + λ2σ􏼐 􏼑

λ

􏽳

⎛⎜⎜⎝ ⎞⎟⎟⎠ ×
C1

���
− λ

√
cosh(

���
− λ

√
ξ) + C2

���
− λ

√
sinh(

���
− λ

√
ξ)􏼐 􏼑

C1sinh(
���
− λ

√
ξ) + C2cosh(

���
− λ

√
ξ) +(μ/λ)􏼐 􏼑

2 ,

(49)

where ξ � kx +
������������������������
((− ak2 + nk − c2m

2 + k3λnc)
􏽰

/c1)y + mz − (ntα/(Γ(1 + α))) and σ � C2
1 − C2

2.
Since C1 and C2 are arbitrary constants, it may
be self-assertively picked. We get the following
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solitary wave solution by choosing C1 � μ � 0,

and C2 ≠ 0 in equation (49):

u25(x, t) �
6kλnc

b
+
6knc

b
(

���
− λ

√
)
2tanh2(

���
− λ

√
ξ) +

knc

b

��������

− 36 λ2σ􏼐 􏼑

λ

􏽳

⎛⎜⎜⎝ ⎞⎟⎟⎠
���
− λ

√
tanh(

���
− λ

√
ξ)sech(

���
− λ

√
ξ). (50)

Again, we get the following solitary wave so-
lution by choosing C1 ≠ 0 and C2 � μ � 0 in
equation (49):

u26(x, t) �
6kλnc

b
+
6knc

b
(

���
− λ

√
)
2coth2(

���
− λ

√
ξ) +

knc

b
×

��������

− 36 λ2σ􏼐 􏼑

λ

􏽳

⎛⎜⎜⎝ ⎞⎟⎟⎠
���
− λ

√
coth(

���
− λ

√
ξ)cos ech(

���
− λ

√
ξ), (51)

where
ξ � kx +

���������������������������
((− ak2 + nk − c2m

2 + k3λnc)/c1)
􏽰

y +

mz − (ntα/(Γ(1 + α))) and σ � C2
1 − C2

2.
Case 2 : with the same system, when λ> 0, putting

equation (43) in (42) close by (9) and (13)

generates an arrangement of mathematical
equations by utilizing computer-based math
such as maple, we get the result as follows.

Set 1:

a0 �
4kλnc

b
,

a1 � 0,

a2 �
6knc

b
,

b1 � −
6kncμ

b
,

b2 �
knc

b

�����������

36 λ2σ − μ2􏼐 􏼑

λ

􏽳

, k � k,

l �

���������������������

− ak
2

+ nk − c2m
2

+ k
3λnc

c1

􏽳

, m � m and n � n.

(52)

Set 2:

a0 �
6kλnc

b
,

a1 � 0,

a2 �
6knc

b
,

b1 � −
6kncμ

b
,

b2 �
knc

b

�����������

36 λ2σ − μ2􏼐 􏼑

λ

􏽳

, k � k,

l �

���������������������

− ak
2

+ nk − c2m
2

+ k
3λnc

c1

􏽳

, m � m and n � n.

(53)

8 Mathematical Problems in Engineering



For Set 1, substituting these values in (43), we
get the solution for the gCH–KP equation (39)
as the structure:

u27 �
4kλnc

b
+
6knc

b
×

C1
�
λ

√
cos(

�
λ

√
ξ) − C2

�
λ

√
sin(

�
λ

√
ξ)

C1sinh(
���
− λ

√
ξ) + C2cosh(

���
− λ

√
ξ) +(μ/λ)

􏼠 􏼡

2

−
6kncμ

b

×
1

C1 sin(
�
λ

√
ξ) + C2 cos(

�
λ

√
ξ) +(μ/λ)

+
knc

b
×

�����������

36 λ2σ − μ2􏼐 􏼑

λ

􏽳

⎛⎜⎜⎝ ⎞⎟⎟⎠

×
C1

�
λ

√
cos(

�
λ

√
ξ) − C2

�
λ

√
sin(

�
λ

√
ξ)

C1 sin(
�
λ

√
ξ) + C2 cos(

�
λ

√
ξ) +(μ/λ)􏼐 􏼑

2,

(54)

where
ξ � kx +

���������������������������
((− ak2 + nk − c2m

2 + k3λnc)/c1)
􏽰

y +

mz − (ntα/(Γ(1 + α))) and σ � C2
1 + C2

2.

Since C1 andC2 are arbitrary constants, it might
be self-assertively picked. *e following solitary
wave solution can be found by choosing C1 �

μ � 0 and C2 ≠ 0 in equation (54):

u28(x, t) �
4kλnc

b
+
6kλnc

b
tan2(

�
λ

√
ξ) −

knc

b

�������

36 λ2σ􏼐 􏼑

λ

􏽳

⎛⎜⎜⎝ ⎞⎟⎟⎠
�
λ

√
tan(

�
λ

√
ξ)sec(

�
λ

√
ξ). (55)

Again, by choosing C1 ≠ 0 and C2 � μ � 0 in
equation (54), the following solitary wave so-
lution can be obtained:

u29(x, t) �
4kλnc

b
+
6kλnc

b
cot2(

�
λ

√
ξ) +

knc

b

�������

36 λ2σ􏼐 􏼑

λ

􏽳

⎛⎜⎜⎝ ⎞⎟⎟⎠
�
λ

√
cot(

�
λ

√
ξ)cos ec(

�
λ

√
ξ), (56)

where ξ � kx +
������������������������
((− ak2 + nk − c2m

2 + k3λnc)
􏽰

/c1)y + mz − (ntα/(Γ(1 + α))) and σ � C2
1 + C2

2.
Case 3 : at last, when λ � 0, putting equation (43) in

(42) along with equations (9) and (15), we will

reach a set of mathematical equations having
the solutions.

Set 1:

Mathematical Problems in Engineering 9



a0 � −
1

bk
2 ak

2
− nk + c2m

2
− 11cnλk

3
+

����������������������������

− c1
��
73

√
cnk

3λ + c2m
2

− nk + ak
2

􏼐 􏼑

􏽱

􏼒 􏼓,

a1 � 0,

a2 �
12knc

b
,

b1 � −
12knc

b
λC2 +

���������

λ2C2
2 − λC

2
1

􏽱

􏼒 􏼓,

b2 � 0,

k � k,

l �

��������������������������
c1

��
73

√
cnk

3λ − c2m
2∓nk − ak

2
􏼐 􏼑

􏽱

c1
, m � m and n � n.

(57)

Set 2:

a0 � a0,

a1 � a1,

a2 �
b1C2 bb1C2 + cnkC

2
1􏼐 􏼑

kC
4
1cn

,

b1 � b1,

b2 � 0.

(58)

For set 1, substituting these values into (43), we
get the solution for the gCH–KP equation (39)
as the structure:

u210 � −
1

bk
2×

ak
2

− nk + c2m
2

− 11cnλk
3

+

����������������������������

− c1
��
73

√
cnk

3λ + c2m
2

− nk + ak
2

􏼐 􏼑

􏽱

􏼒 􏼓

+
12knc

b
×

μξ + C1

(μ/2)ξ2 + C1ξ + C2
􏼠 􏼡

2

−
12knc

b
× λC2 +

���������

λ2C2
2 − λC

2
1

􏽱

􏼒 􏼓 ×
1

(μ/2)ξ2 + C1ξ + C2
􏼠 􏼡,

(59)

where
ξ � kx + ((

��������������������������

c1(
��
73

√
cnk3λ − c2m

2∓nk − ak2)

􏽱

)

/c1)y + mz − (ntα/(Γ(1 + α))).
It is essential to see that, for the aftereffect of the
constants given in set 2 for both in (case 2, and
case 3), we achieve new and simpler solitary
wave solutions whose are additionally valuable
to examine the above-stated matter. For
plainness, the solutions have been excluded
from this section.

5. Brief Discussion and Graphical
Representation Discussion

*e specific arrangements accomplished from the current
method are novel and not quite the same as the existing
procedure which is built by different authors. We utilized
proposed DEM to get general arrangements. In this study, a
group of traveling wave arrangements as obscure boundaries
are acquired. Achieved traveling wave solutions show var-
ious types of solitary waves when particular values are given

10 Mathematical Problems in Engineering
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Figure 1: 3D (left section), 2D (middle section), and contour (right section) for u12(x, t) when C1 � 0, C2 � 1, μ � 0, λ � − 1, b1 � 1, σ � 1,
L � 1, V � 1, α � (1/2), 0≤ t≤ 10, and 0≤x≤ 10. (a) *ree-dimensional plotline. (b) Two-dimensional plotline. (c) Plot of contour.
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Figure 2: 3D (left section), 2D (middle section), and contour (right section) plots represent to the kink wave solution of u13(x, t) when
C1 � 1, C2 � 0, μ � 0, λ � − 1, b1 � 1, σ � 1, L � 1, V � 1, α � (1/2), 0≤ t≤ 10, and 0≤x≤ 10. (a) *ree-dimensional plotline. (b) Two-di-
mensional plotline. (c) Plot of contour.
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Figure 3: 3D (left section), 2D (middle section), and contour (right section) plots represent to the periodic wave solution of u15(x, t) when
C1 � 0, C2 � 1, μ � 0, λ � 1, b1 � 1, σ � 1, L � 1, V � 1, α � (1/2), 0≤ t≤ 10, and 0≤ x≤ 10. (a) *ree-dimensional plotline. (b) Two-di-
mensional plotline. (c) Plot of contour.
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Figure 4: 3D (left section), 2D (middle section), and contour (right section) plots represent solitary wave solution of u16(x, t) when
C1 � 1, C2 � 0, μ � 0, λ � 1, b1 � 1, σ � 1, L � 1, V � 1, α � (1/2), 0≤ t≤ 10, and 0≤ x≤ 10. (a) *ree-dimensional plotline. (b) Two-di-
mensional plotline. (c) Plot of contour.

x

t

u

0

1.0
0.5
0.0

5

10
5

0

10

−5
−10

−0.5
−1.0

(a)

−0.5

−5 5 10−10

0.5

1.0

−1.0

(b)

20 4 6 8 10

2

0

4

6

8

10

(c)

Figure 5: 3D (left section), 2D (middle section), and contour (right section) plots represent bright-dark wave solution of u17(x, t) when
C1 � 1, C2 � 0, μ � 0, λ � 0, a1 � 0, a2 � 0, b2 � 0, b1 � 1, L � 1, V � 1, α � (1/2), 0≤ t≤ 10, and 0≤x≤ 10. (a) *ree-dimensional plotline.
(b) Two-dimensional plotline. (c) Plot of contour.
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Figure 6: 3D (left section), 2D (middle section), and contour (right section) plots represent dark soliton solution of u22(x, t) when
C1 � 0, C2 � 1, μ � 0, c � 1, k � 1, n � 1, λ � − 1, b � 1, σ � 1, l � 1, m � 1, α � (1/2), y � z � 0, 0≤ t≤ 10, and 0≤x≤ 10. (a) *ree-dimen-
sional plotline. (b) Two-dimensional plotline. (c) Plot of contour.

12 Mathematical Problems in Engineering



0

10

20

30

x

u

t

0

5

5

10

10

(a)

2 4 6 8 10

4

6

8

10

(b)

20 4 6 8 10

2

0

4

6

8

10

(c)

Figure 7: 3D (left section), 2D (middle section), and contour (right section) plots represent bright soliton solution of u23(x, t) when
C1 � 1, C2 � 0, μ � 0, c � 1, k � 1, n � 1, λ � − 1, b � 1, σ � 1, l � 1, m � 1, α � (1/2), y � z � 0, 0≤ t≤ 10, and 0≤x≤ 10. (a) *ree-di-
mensional plotline. (b) Two-dimensional plotline. (c) Plot of contour.
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Figure 8: 3D (left section), 2D (middle section), and contour (right section) plots represent periodic wave solution of u25(x, t) when
C1 � 0, C2 � 1, μ � 0, c � 1, k � 1, n � 1, λ � 1, b � 1, σ � 1, l � 1, m � 1, α � (1/2), y � z � 0, 0≤ t≤ 10, and 0≤ x≤ 10. (a) *ree-dimen-
sional plotline. (b) Two-dimensional plotline. (c) Plot of contour.
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Figure 9: 3D (left section), 2D (middle section), and contour (right section) plots represent periodic solitary wave solution of u26(x, t) when
C1 � 1, C2 � 0, μ � 0, c � 1, k � 1, n � 1, λ � 1, b � 1, σ � 1, l � 1, m � 1, α � (1/2), y � z � 0, 0≤ t≤ 10 and 0≤ x≤ 10. (a) *ree-dimen-
sional plotline. (b) Two-dimensional plotline. (c) Plot of contour.
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to its unknown parameters such as Kink wave and singular
kink wave, single soliton, periodic wave, bright soliton, dark
soliton, and combined dark-bright solitary wave solutions in
Figures 1–10. From attained solutions, some solutions
cannot be created by other methods such as the exp
(− ψ(ξ))-expansion method [24] and modified simple
equation method [25]. *erefore, some solutions are novel
from earlier constructed solutions in the literature. We also
demonstrate all the figures in this study which have been
represented in three arrangements such as 3D plot, 2D plot,
and contour plot within the specified domain 0≤ t≤ 10 and
− 10≤x≤ 10 (see Figures 1–10). Mathematica, a computa-
tion package application, was used to construct all of the
figures. In order to observe the physical appearance of these
models, the structure of figures is depicted via giving suitable
values of parameters.

6. Results’ Comparison

It is amazing to observe that some of the achieved solutions
demonstrate good similarity with earlier established solu-
tions. A comparison of the solutions of Liu et al. [23] and
obtained solutions is presented in Table 1.

*e hyperbolic and rational function solutions alluded to
in the above table are comparative, and for setting the
definite values of the arbitrary constants, they are

indistinguishable. In a nutshell, it is substantial to realize that
the TWS u21(x, t), u23(x, t), u24(x, t), u26(x, t), u27(x, t),

u28(x, t), and SWS u29(x, t) of the fractional gCH-KP
equation all are recent and very much significant, which
were not originally in the previous works. *e time-frac-
tional gCH-KP equation is also solved by the bilinear and
RBF method [19]. It can be seen from here that the RBF
method gives a high-precision numerical solution of the
fractional differential equation. Applying our proposed
DEM on the mentioned equation, we acquire hyperbolic,
trigonometric, and rational function solution containing
parameters which are fresh and further general. *e ob-
tained solutions are capable to examine the role of dispersion
in the formation of patterns in liquid drops and shallow
water waves with peakon solutions ensued in plasma
physics, optical fibers, fluid flow, fission and fusion phe-
nomena, control theory, and some other areas.

7. Conclusion

In this study, we have successfully established the more and
further general stable solitary wave solitary wave solutions
with assorted physical structures which appeal wide atten-
tion to physicist, engineers, and mathematicians to the new
solutions of space-time fractional MCH and space-time
fractional gCH-KP equation in the light of
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Figure 10: 3D (left section), 2D (middle section), and contour (right section) plots represent singular kink type wave solution of u27(x, t)

when C1 � − 1, C2 � 0, μ � 0, c � 1, k � 1, n � 1, λ � 0, b � 1, σ � 1, l � 1, m � 1, a � 1, α � (1/2), y � z � 0, 0≤ t≤ 10, and 0≤x≤ 10.

(a) *ree-dimensional plotline. (b) Two-dimensional plotline. (c) Plot of contour.

Table 1: Comparison between Liu et al. [23] solutions and our solutions to the gCH-KP equation.

Liu et al. [23] Obtained solutions

If A � 3 and B � 2, then equation (16) becomes
u(t, x, y, z) � 1 − tanh2((1/

�
2

√
)|kx + ly + mz − (ntα/(Γ(1 + α)))|).

If C1 � μ � σ � 0, λ � − 1, c � 1, b � 1, andC2 � 1, then the
obtained solution u22(x, t) becomes

u22(x, t) � − 4k + 6kn tanh2(kx + ly + mz − (ntα/(Γ(1 + α))))

If A � 1 and B � − 2, then equation (23) becomes
u(t, x, y, z) � 1 − 3 tanh2((1/

�
2

√
)|kx + ly + mz − (ntα/(Γ(1 + α)))|)

If C1 � μ � σ � 0, λ � − 1, c � 1, b � 1, andC2 � 1, then the
obtained solution u25(x, t) becomes

u22(x, t) � − 6k + 6kn tanh2(kx + ly + mz − (ntα/(Γ(1 + α))))

If A � 6 and B � 0, then equation (25) becomes
u(t, x, y, z) � (1/(kx + ly + mz − (ntα/(Γ(1 + α))))2)

If b � 1, a � 0, C1 � − 1, c � 1, λ � 0, C2 � 0, and μ � 0, then the
obtained solution u27(x, t) becomes

u210(x, t) � (kn/(kx + ly + mz − (ntα/(Γ(1 + α))))2)
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Riemann–Liouville fractional derivative by implementing
the novel approach DEM. *e depiction of the solutions are
in the form of hyperbolic, trigonometric, and rational
functions including kink wave, antikink wave, dark, bright,
singular, combined, optical solitons, periodic wave, and
traveling wave, and some new types of solitary wave solu-
tions are discovered which expose the phenomena relating to
plasma physics, optical fibers, fluid flow, fission and fusion
phenomena, acoustics, control theory, viscoelasticity, geo-
physics, nonlinear mechanics, protein chemistry, and
chemical kinematics. *e physical significance of the ob-
tained solutions for the definite values of the associated
parameters is analyzed graphically with 2D, 3D, and contour
shape. *e solutions achieved in this study have been ob-
served with maple by placing them back into NLFDEs and
found precise. It is possible to conclude that the adopted
method is direct, reliable, effective, and conformable and
provides many new physical model solutions to NLPFEEs
that arise in mathematical physics, applied mathematics, and
engineering.
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