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Healthcare waste disposal management is one of the biggest day-to-day challenges faced by healthcare providers
and urban municipalities. Poor management of healthcare waste can cause serious problems for healthcare
workers, patients, and the general public. Healthcare providers and urban planners usually struggle with the
action of locating an appropriate waste disposal center in a municipal area. Healthcare waste disposal location
planning is a difficult task due to complexities inherent in the evaluation of alternative locations according to
multiple and often competing criteria. We propose a new best-worst method with interval rough numbers (IRN)

for healthcare waste disposal location decisions. A new IRN Dombi-Bonferroni (IRNDBM) means the operator is
also introduced to process the rough data because of the unavailability of precise information. A case study at a
private hospital in Madrid is presented to demonstrate the applicability and exhibit the efficacy of the proposed
multi-criteria evaluation method.

1. Introduction

Medical waste management is inherently a complex problem with
multiple and often conflicting criteria. Medical waste is potentially in-
fectious unused/unwanted materials generated at health care facilities
such as hospitals, physician’s offices, blood banks, and medical la-
boratories and research facilities (Windfeld & Brooks, 2015). Awodele,
Adewoye, and Oparah (2016) show that the following items from
healthcare systems (hospitals, laboratories, and general or dental
clinics) are the fundamental sources of waste: things that are soaked in
blood, human or animal tissues, infectious diseases, the waste in pa-
tient’s rooms with communicable diseases, and the discarded vaccines
(Alam, Alam, Ayub, & Siddiqui, 2019). Different types of medical
wastes are demonstrated as Biomedical, Clinical or dental, Bio-ha-
zardous, Infectious Medicals, and Healthcare waste. Potentially, med-
ical wastes are considerable sources of risk of infection or injury to
healthcare staff, workers, patients, and public health if they are not
collected, disposed, and controlled systematically. The U.S. hospital

association reported an estimated 5.9 million tons of biohazardous and
other medical waste every year. Almost 85% of all medical waste is
classified as non-hazardous while 15% is hazardous and may be in-
fectious, radioactive, or toxic (Windfeld & Brooks, 2015).

A healthcare management system is the body responsible for
treating on-site or off-site operations employing various practices.
Hazardous waste can cause microorganisms, radiation burns, poi-
soning, and serious pollution (Rabbani, Heidari, Farrokhi-Asl, &
Rahimi, 2018; Yu & Solvang, 2016). Unfortunately, an improperly and
ill-developed waste treatment system can damage our environment,
contaminate drinking water, and finally causing a disaster. To prevent
such kinds of events and reduce the risk of imposing medical wastes, as
well as establish a fruitful condition for the entire society, one strategy
is to find an optimal location for collecting, controlling, and imposing
various wastes. This is a very critical issue that has yet to be effectively
addressed in the literature. A limited number of studies proposed
methods related to the sustainable assessment of the waste disposal
center establishment (Kazimieras Zavadskas, Bausys, & Lazauskas,
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2015; Margallo, Taddei, Herndndez-Pell6n, Aldaco, & Irabien, 2015).

Location selection traditionally is defined as a problem of com-
paring alternative locations (airports, logistics and distribution centers,
and commercial centers) by referring to a set of objectives (economic,
environmental factors, accessibility, regional regulations, and other
factors) through a predetermined plan. Multi-criteria decision making
(MCDM) consists of a set of techniques for determining the priority of
alternatives using strategic tools that deliver optimal consequences and
satisfy decision-makers. MCDM methods can evaluate different alter-
natives not only by taking into account the data for various criteria, but
also the nature of the data (i.e., crisp, fuzzy, interval, and rough, among
others). Goulart Coelho, Lange, and Coelho (2017) report that the
majority of the MCDM models proposed for waste management used
the analytic hierarchy process (AHP) to solve the problem. Our moti-
vations in this study are, therefore, to (i) develop a quantitative
methodology that can simultaneously assess different indicators and
dimensions in a healthcare waste management system, (ii) use of a
weight assessment model based on the combination of data-centric
approaches and stakeholder opinions, and (iii) confirm the stability and
robustness of the results through a comprehensive and elaborate sen-
sitivity analysis.

The best-worst method (BWM) is preferred to other MCDM methods
such as AHP and decision-making trial and evaluation laboratory
(DEMATEL) for weight elicitation because it is easier, requires less
pairwise comparisons, and produces more consistent results. However,
since it is unlikely that decision-makers will have complete knowledge
of all the aspects of the problem of location selection for waste disposal,
uncertainties must be taken into consideration in the modeling and
decision-making process. Advanced algorithms may further help deci-
sion-makers analyze the uncertainties inherent in real-world problems
and finding the most suitable solution.

Unlike fuzzy theory, grey theory, and other interval-valued ap-
proaches; the rough set theory (Pawlak, 1982), is a very powerful tool
for the treatment of imprecision and uncertainty without the impact of
subjectivism. In the rough approach, the borders are determined based
on border approximation areas and the uncertainty that governs them.
While in traditional fuzzy theory, the degree of uncertainty is defined
based on assumptions, in the rough approach, uncertainty is de-
termined based on approximation, which is the basic concept of rough
numbers (RNs) (Song, Ming, Wu, & Zhu, 2014). In the application of
RNs, instead of different additional/external parameters, only the
structure of the given data is used. This leads to the objective indicators
contained in the data. The basic logic of RNs is that the actual data
should speak for themselves. RN eliminates the shortcomings of the
traditional fuzzy approach relating to the interval borders since, for
every rating of the expert, unique interval borders are formed. This
means that the interval borders do not depend on subjective assess-
ment, but rather are defined based on uncertainty and imprecision in
the data. In this paper, we propose a hybrid MCDM model with these
features:

e The interval RNs (IRNs) MCDM approach proposed here relies ex-
clusively on internal knowledge (i.e., operational data) and requires
no superficial or unrealistic assumptions.

o The interval borders are formed based on uncertainty and impreci-
sion in the data, not subjective assessments.

e The proposed model is structured, flexible, and takes into con-
sideration the interaction and the interdependencies among the
decision criteria.

o The proposed model considers the interconnection among the at-
tributes and eradicates the impact of information uncertainties.

The three-phase model is different from the conventional methods
of waste disposal location selection. In Phase 1, we use a modified Best-
Worst Method with IRNs for criteria weight estimation. In Phase 2, we
use the IRN Dombi-Bonferroni (D’Bonferroni) approach to formulating
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the problem, and in Phase 3, we use a multi-dimensional sensitivity
analysis to evaluate the robustness of our model. The remainder of the
paper is organized as follows. In Section 2, we present the relevant
literature on waste management and location planning. In Section 3, we
present the background theories and mathematical relations. Section 4
presents the proposed model. In Section 5, we present a case study to
demonstrate the applicability of the proposed model. In Section 6, we
exhibit the efficacy of our model through sensitivity analysis, perfor-
mance comparison, and discussion of the outcomes. Finally, Section 7
presents our conclusions, implications, and future research directions.

2. Literature review

In this section, we review the relevant literature on the rough-based
decision-making structure and location selection studies and waste
disposal system. We conclude this section by highlighting our research
novelty and contribution.

2.1. Rough-based decision-making structure

Uncertainty is associated with vagueness, fuzziness, and roughness
in MCDM. Grey theory, fuzzy sets, and rough sets have been widely
used in MCDM for uncertainty analysis. In fuzzy set theory, an element
has a degree of membership to a set, which is expressed as a number
between zero (no membership) and one (full membership). Fuzzy
numbers can be described by verbal phrases. In grey theory, uncertainty
is represented with black, white, or gray ranges (numbers). The shade
of a number represents the extent of uncertainty where black numbers
indicate no knowledge, white numbers indicate complete knowledge,
and gray numbers are between these two extremes. Similar to fuzzy
sets, gray numbers can be described by verbal phrases. Rough set theory
(RST) is a new method for uncertainty representation proposed by
Pawlak (1982). The borders in RST are determined based on border
approximation areas and their associated uncertainties. In contrast,
fuzzy sets are characterized by subjectivity when defining the borders
of the sets (Roy, Chatterjee, Bandhopadhyay, & Kar, 2016). While the
degree of uncertainty is defined based on the traditional fuzzy and
probability theory assumptions, RST determines uncertainty on the
basis of approximation, which is the central concept in RNs. The rough
approach uses exclusively internal knowledge (i.e., operational data),
and there is no need to rely on assumptions. In other words, in the
application of RNs, the structure of the given data is used instead of
different additional/external parameters. RNs eliminate the drawbacks
of the traditional fuzzy approaches with regards to the interval borders
because specific unique interval borders are formed for specific expert
ratings. This means the interval borders do not depend on any sub-
jective assessments. Instead, they are defined according to the un-
certainties and imprecision in the data. The integration of RNs into
traditional MCDM models exploits the subjectivity and unclear assess-
ment of the experts and avoids assumptions, unlike the fuzzy theory. In
this study, we use rough sets because they do not need any additional or
prior information about data (Pawlak, 1982).

Relevant to RS decision making, several studies have been devel-
oped by past researchers. Song et al. (2014) used the Rough Technique
for Order of Preference by Similarity to Ideal Solution (RTOPSIS) ap-
proach for failure mode and effects analysis in uncertain environments.
Roy et al. (2016), Roy, Chatterjee, Bandyopadhyay, and Kar (2017))
adopted an integration of Rough AHP (RAHP) and Multi-Attributive
Border Approximation Area Comparison (MABAC) methods for the
assessment of medical Tourism sites, while Stevi¢, Pamucar, Vasiljevi¢,
Stoji¢, & Korica (2017), Stevi¢, Pamucar, Kazimieras Zavadskas,
Cirovi¢, & Prentkovskis (2017) applied the rough BWM model for the
determination of criteria weights for selecting the most suitable wagon
in a logistics company. Pamucar, Gigovi¢, Baji¢, and Janosevi¢ (2017),
Pamucar, Mihajlovi¢, Obradovié¢, & Atanaskovi¢ (2017) propounded a
hybrid multi-criteria model based on IRNs and demonstrated the
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application for a bidder selection processin the state adminis-
tration public procurement system. Gigovi¢, Pamucar, Baji¢, and
Drobnjak (2017) proposed a combined interval of rough AHP and GIS
for flood hazard mapping. Song et al. (2014) show the integration of
RNs with MCDM methods is promising and produces reliable and
consistent results. Thus far, the rough BWM has been used to solve
several real-world problems (Cao & Song, 2016; Pamucar, Gigovic,
et al. (2017); Stevi¢, Pamucar, Vasiljevi¢ et al., 2017, Stevi¢, Pamucar,
Kazimieras et al., 2017; Vasiljevi¢, Fazlollahtabar, Stevi¢, & Veskovié,
2018). Wang, Kuang, Wang, and Zhang (2016) developed an extended
ELECTRE III approach for rough stochastic MCDM problems. The rough
BWM model in Pamucar, Gigovic, et al. (2017) is used for determining
weight coefficients of the criteria for the selection of wind farm loca-
tions. Stevi¢, Pamucar, Kazimieras Zavadskas, et al. (2017) used this
integration to determine the importance of the criteria in selecting a
wagon for a logistics company. Pamucar, Petrovié¢, & Cirovi¢ (2018),
Pamucar, Stevi¢, & Kazimieras Zavadskas (2018) applied interval rough
fuzzy BWM to select the most suitable firefighting helicopters. Pamucar,
Petrovié, et al. (2018), Pamucar, Stevi¢, et al. (2018) integrated interval
RAHP and interval rough MABAC methods for evaluating university
websites. Stoji¢, Stevié¢, AntucheviCiené, Pamucar, and Vasiljevi¢
(2018) proposed a supplier selection model for a polyvinyl chloride
carpentry firm using RAHP and the rough weighted aggregated sum
product assessment method.

Vasiljevi¢ et al. (2018) extended the AHP model in a rough en-
vironment to determine criteria weights in an MCDM model for supplier
selection in the automotive industry. Xuerui, Suihuai, and Jianjie
(2018) proposed a novel hybrid MCDM integrating the rough analytic
network process (ANP) and RTOPSIS for the optimal selection of cloud
manufacturing services. Pamucar, Chatterjee, and Kazimieras
Zavadskas (2019) investigated the ability to apply a roughly based
multi-attribute decision-making approach for choosing third-party lo-
gistics providers. The main decision-making tools used were BWM,
MABAC, and the weighted aggregated sum product assessment
methods. The authors also highlighted some major advantages of using
a rough-set in logistics operations. Roy, Adhikary, Kar, and Pamucar
(2018) proposed a rough strength DEMATEL method for analyzing the
individual priorities of key success factors in hospitals. Chen, Ming,
Zhang, Yin, and Sun (2019) developed a hybrid model by encompassing
fuzzy set theory, RST, DEMATEL, and ANP methods for evaluating the
sustainable value requirement in an excavator product-service system.

Furthermore, Song and Sakao (2018) proposed a rough DEMATEL
model to manipulate the interactions of vague user preferences in
multi-criteria weight determination. Kazimieras Zavadskas, Stevic,
Tanackov, and Prentkovskis (2018) proposed the rough step-wise
weight assessment ratio analysis method (R-SWARA) and its application
in logistics. Stankovi¢, Gladovi¢, and Popovi¢ (2019) compared the
significance of particular criteria for traffic accessibility using the fuzzy
AHP and the rough AHP methods. In addition to understanding and
appreciating uncertainty and imprecision, MCDM models need to fulfill
these additional requirements when solving real-world problems: (1)
simplicity and reliability of models for determining criteria weights; (2)
possibility of validation of the criteria weights; (3) appreciation of the
relationships between criteria, and (4) eliminating the awkward given
by the initial decision matrix. Table 1 shows a comparative overview of
the rough MCMD models that have been developed in the last five years
and the fulfillment of the above conditions.

As shown in Table 1, the traditional MCDM models extended by RNs
do not consider the relationship between attributes. In addition, to the
best of our knowledge, no MCDM model has been developed to date,
which is capable of eliminating awkward data. On the other hand, the
rough BWM-Dombi-Bonferroni model proposed in this study meets all
four conditions in Table 1. Therefore, the development of the proposed
model is a logical step towards fulfilling the rough MCDM gap in the
literature.

Table 1

Overview of rough MCDM models and their characteristics.

Checking consistency of

data

A small number of pairwise

comparisons

Elimination of awkward

data

Consideration the relationship between

attributes

Rough MCDM model

Reference

No

No

No

No

Rough TOPSIS

Song et al. (2014), Xuerui et al. (2018)

Roy et al. (2016, 2017)

Wang et al. (2016)

Yes

No
Yes

No

No

Rough AHP-MABAC
Rough ELECTRE III
Rough BWM-SAW

No

No

No

Yes

Yes

No

No

Stevi¢, Pamucar, Vasiljevié et al. (2017), Stevi¢, Pamucar, Kazimieras

et al. (2017), Stoji¢ et al. (2018)

Pamucar, Gigovic, et al. (2017)

Computers & Industrial Engineering 143 (2020) 106394

Yes

No
Yes

No

No

Rough BWM

Yes

No

Rough DEMATEL-ANPMAIRCA  Yes

Rough AHP and GIS
Rough DEMATEL

Pamucar, Gigovi¢, et al. (2017), Pamucar, Mihajlovi¢, et al. (2017)

Gigovié et al. (2017)

Yes

No

No

No

No

No

No

Yes

, Mihajlovi¢, et al. (2017),

car.

, Gigovié, et al. (2017), Pamu

Roy et al. (2018)
Cao and Song (2016)

amucar.

P.

Yes

No

No

Yes

Rough ANP
Rough AHP

Yes

No

No

Yes

Stevi¢, Pamucar, Vasiljevié, et al. (2017), Vasiljevi¢ et al. (2018),

Stankovié et al. (2019)
Pamucar, Petrovid, et al. (2018), Pamucar, Stevic, et al. (2018),

No Yes

No

Yes

Rough BWM-MABAC

Pamucar et al. (2019)

Chen et al. (2019)

Yes

No
Yes

No

Yes

Rough DEMATEL-ANP

Rough SWARA

No

No

No

Kazimieras Zavadskas et al. (2018)

Proposed model

Yes Yes

Yes

Yes

Rough BWM-Dombi-Bonferroni
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2.2. Location selection studies & waste disposal system

A wide range of studies focused on site selection, location evalua-
tion, and selection, facility location selection using various tools and
methods focus on mathematical tools, optimization models, and deci-
sion-making approaches. Those methods were proposed in particular
for selecting a manufacturing site, an electric vehicle charging station, a
logistics center, an airport transportation facility, a shelter site for the
prevention of disasters, and a waste and landfill location, among others.
For instance, Song, Zhou, and Song (2019) have demonstrated the ap-
plication of rough-based computation with a qualitative flexible mul-
tiple criteria method tool in natural disaster treatment and the selection
of the best place for shelter. The case study took place in the Province of
Wenchuan County in China. Using a formulation of sustainable di-
mensions, Ju, Ju, Gonzalez, Giannakis, and Wang (2019) defined an
analytical platform to resolve the complex problem of selecting char-
ging stations for electric vehicles. They utilized the interaction of pic-
ture fuzzy numbers and the picture fuzzy weighted interaction geo-
metric operator plus fuzzy AHP to obtain the weights of sustainable
factors. Then, a grey relational projection method was applied to rank
the list of stations in Beijing, China. Sennaroglu and Celebi (2018) in-
corporated five multi-attribute decision-making techniques to solve the
problem of finding a safe and suitable place for a military airport in
Turkey and compared the results. The role of AHP is to weight the site
selection factors, while Preference Ranking Organization METHod for
Enrichment of Evaluations (PROMETHEE), Vlse Kriterijumska Optimi-
zacija Kompromisno Resenje (VIKOR), MABAC, and Complex Propor-
tional Assessment (COPRAS) derived the list of optimal locations. In
Isfahan, a province in Iran, Zoghi, Ehsani, Sadat, Amiri, and Karimi
(2017) built a structure to evaluate and position the solar energy gen-
eration sites by using AHP weighted linear combination under fuzzy
sets. In order to find the best location for logistics operations, a model
based on fuzzy Delphi and TOPSIS was proposed to select the most
suitable solution (Pham, Ma, & Yeo, 2017).

The idea of finding the most suitable place to establish a center for
waste collection and disposal can be modeled using a logical MCDM
system. The essential issue is how to deal with uncertainty, a topic that
scientific communities and business schools often struggle with using
fuzzy or probabilistic sets. On the other hand, the study of facility lo-
cation has involved the study of solid municipal wastes, medical wastes,
and factory wastes. Ekmekcioglu, Kaya, and Kahraman (2010) for-
mulated a fuzzy-based system for evaluating municipal waste disposal
methods in Istanbul using a fuzzy AHP to rate decision factors and fuzzy
TOPSIS to determine the score of each method. They used criteria like
cost, reliability, feasibility, pollution and emission levels and a set of
alternatives such as landfilling, composting conventional incineration,
and refuse-derived fuel combustion. In Turkey, an investigation was
oriented toward landfill site assessment using the Geographical In-
formation System (GIS) and AHP, and criteria such as surface water,
groundwater depth, lithology, lineaments, and distance to roads were
incorporated in the body of the study (Sener, Sener, & Karagiizel,
2011). To aid in selecting an optimal location for disposing of the
municipal wet waste landfill with less risk of uncertainty, Mokhtarian,
Sadi-Nezhad, and Makui (2014) elaborated a fuzzy decision-making
system by using an interval set with the VIKOR method. Kahraman
et al. (2017) introduced an intuitionistic fuzzy Evaluation based on
distance from the average solution method for finding an appropriate
site for solid waste disposal. In a real project, to determine the optimal
location for infectious waste disposal in Thailand, the fuzzy analytical
hierarchy and a goal programming approaches were used. The authors
used the three factors infrastructure, geological conditions, social and
environmental concerns during their decision process (Wichapa &
Khokhajaikiat, 2017). An investigation team used a multi-attribute
hierarchy process to rank 40 hospitals in Ahvaz, Iran to determine how
much waste each hospital must receive from a total of 13 tons/day of
hospital waste (Karamouz, Zahraie, Kerachian, Jaafarzadeh, &
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Mahjouri, 2007). As a result of this project, it was ascertained that it
was more advantageous to improve management techniques than to
build new facilities. With the integration of the three dimensions en-
vironmental, social and economic and considering eleven measures
(land-use pattern, distance from the settlement, depth of groundwater
table, wind orientation, etc.), Khan and Samadder (2015) illustrated a
model containing a GIS and AHP for the assessment of the potential
landfill sites for municipal wastes in India.

Using life cycle analysis for the objective of hospital waste disposal
optimal location in Pakistan, Ali, Wang, and Chaudhry (2016) found
out that waste segregation can be an issue of substitution rather than
incineration in other places. Aydi, Abichou, Nasr, Louati, and Zairi
(2016) proposed an intelligent GIS to evaluate the suitability of several
sites for olive mill wastewater collection and disposal in a region in
Tunisia. The authors have relied on the AHP and Weighted linear
combination under fuzzy with regards to the factors such as Ground-
water depth, Soil permeability, etc. Several pieces of research took into
account the benefit of GIS in the application of finding an accurate
position for landfill site selection. For example, Bahrani, Ebadi, Ehsani,
Yousefi, and Maknoon (2016) modeled a decision-making structure
based on multiple attributes using fuzzy theory, AHP, weighted linear
combination, and GIS to select among the candidate landfill sites in
Shabestar, Iran. This action helps to isolate solid wastes and keep them
away from any danger for the environment and the community.
Beskese, Demir, Ozcan, and Okten (2015) used FAHP and FTOPSIS to
choose among landfill centers for the city of Istanbul in a similar study.
The criteria used in the study were soil conditions, land availability,
economic issues, and climate.

Chauhan and Singh (2016) used a hybrid multi-criteria decision-
making model comprised of interpretive structural modeling, FAHP,
and FTOPSIS to select a suitable location for a healthcare waste disposal
facility. The hybrid model was used to identify the interrelationship
among sustainable factors, AHP to weigh each factor, and TOPSIS to
rank locations based on the overall score. Based on the factors of land
use, soil type, distance from roads, rainfall, research reports the selec-
tion among landfill positions in the Gaza strip, Palestine using an
analytical hierarchy process and GIS (El Baba, Kayastha, & De Smedt,
2015). Eskandari, Homaee, and Falamaki (2016) proposed a similar
approach using AHP and GIS to measure the optimality of the landfill
location for solid waste in a mountain basis of a southern province in
Iran by implementing sustainable elements. Gergin, Tuncbilek, and
Esnaf (2019) suggested the use of the Artificial Bee Colony (ABC)
clustering algorithm to locate the best waste disposal site for a Hospital
in the great district of Istanbul. In another study in Kenya, a decision
support system involving GIS and several MCDA tools was proposed to
find the best area for healthcare system waste disposal. GIS filters the
eight items as they satisfy the initial requirements. After that, AHP,
VIKOR, and PROMETHEE techniques were used to analyze the alter-
natives based on a set of triple-bottom-line (TBL) variables (inter-
connecting financial, environmental, and social performance scores),
and compare the results of the three different methods techniques
(Hariz, Donmez, & Sennaroglu, 2017). An approach was reported to
rely on the fuzzy TOPSIS-PROMETHEE method to select among the ten
solid waste disposal locations considering eighteen evaluation criteria.
This was a case study managed by the Istanbul Environmental Man-
agement Industry and Trade, Turkey (Arikan, Simsit-Kalender, &
Vayvay, 2017).

Similar to several previous studies, Torabi-Kaveh, Babazadeh,
Mohammadi, and Zaresefat (2016) studied the performance of GIS and
AHP with fuzzy values to choose the best landfill site. Rahmat et al.
(2017) developed a study to find the location for exposure of solid
waste in the city of Behbahan in Iran and applied GIS to analyze maps
and geographical information. The role of the simple additive
weighting tool is to gather information and obtain the weights of de-
cision criteria such as distance to groundwater. Then all the locations
were rated and analyzed using AHP to find the best one of the group.
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Considering a sustainable evaluation of waste incineration plants,
Kazimieras Zavadskas et al. (2015) used an interval-valued Neu-
trosophic extension of the WASPAS method. They articulated four es-
sential dimensions in their process called engineering, social, economic,
and environmental aspects. A recent project related to the healthcare
waste disposal system concluded that factors as transportation and risk,
government regulations, expert accessibility, and environmental
awareness and economic issues could directly influence the attitude of
leaders and policymakers for optimal decision making. This is part of
the investigation was presented in India, and the authors conducted
grey measures by AHP (Thakur & Ramesh, 2017). Municipal waste
treatment and providing strategies for its reduction is an emergent topic
in rural and urban design. Therefore, rather than a multi-criteria ap-
proach, a multi-objective mixed-integer program has been adopted for
waste collection centers, including operational costs, greenhouse gas
emissions, and environmental impacts (Yu & Solvang, 2017).

2.3. Research novelty and contribution

The majority of researchers validated and concluded their evalua-
tion process using contemporary and classical MCDM tools such as
AHP, PROMETHEE, and TOPSIS with or without fuzzy approaches.
Since we know that waste elimination and disposal is a very vital task in
every community, there is a big gap to be filled by many relevant and
updated models. None of the studies we encountered (2014-2018)
could define an aggregator such as the Dombi and rough set demon-
stration in waste management of healthcare systems. We used the BWM
with the rough set approach for the first time to check its validation in
finding criteria weights.

Generally, aggregation operators are important tools for integrating
information in MCDM problems. The most widely used operators in
uncertainty theory are the min and the max operator. With this, we
would like to emphasize their main advantages: (i) They are easy to
calculate, and (ii) They can be extended into a lattice structure.
However, in the case of min-max operators, the main disadvantages are:
(i) The result is determined only by one variable, and the other has no
influence, and (ii) Their second derivative is not continuous (Dombi,
2009). These disadvantages of traditional min-max operators in a fuzzy
environment are successfully eliminated by a generalized Dombi op-
erator class. In addition, Dombi T-norms (TN) and T-conorms (TCN)
have general parameters of general TN and TCN, and this can make the
decision-making process more flexible. Because of this capability of
Dombi TN and TCN, a logical step is to use Dombi TN and TCN for the
development of the hybrid MCDM model.

However, one of the Dombi TN and TCN limitations is the manip-
ulation with the numbers in the interval [0,1]. Thus far, Dombi TN and
TCN have only been used to transform uncertain numbers meeting this
requirement. In real decision-making systems, the attributes are often
represented by values that are not within the interval [0,1], such as, for
example, when it is necessary to measure the distance (in kilometers)
between two cities. The transformation of such attributes into MCDM
models by using traditional Dombi TN and TCN is not possible. To
eliminate this limitation, in this paper, Dombi TN and TCN are modified
with the purpose of the aggregation of IRNs regardless of their values.
Up to now, there is no research on how to use the D’Bonferroni operator
to aggregate the IRNs. Therefore, a logical goal and motivation for this
study are to show how the hybrid D’Bonferroni aggregator can be used
for the transformation by IRN. In addition, because IRNs can describe
imprecise information easier, there is an increasing demand to combine
the BM operator and the Dombi operations to deal with IRNs when
dealing with MCDM problems. Taking into account the above in-
formation and the previously mentioned advantages, the authors of the
present paper propose a rough-based framework of BWM and
D’Bonferroni aggregators, which provides deeper insights into decision-
makers’ perceptions in the waste management perspective. Thus, the
contribution and novelty of this study are fourfold:
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(a) A new rough based BWM and D’Bonferroni aggregators’ model that
provides a structured and systematic approach to expert judgment
evaluation in a subjective environment,

(b) An improved MCDM methodology with a powerful model for se-
lecting the most suitable location for waste disposal facilities,

(c) A platform with a robust MCDM model for solving problems with
subjective and non-quantitative data, and

(d) A flexible and yet structured decision-making framework for sol-
ving waste disposal problems in healthcare and other public or
private organizations.

Making decisions in real systems requires a rational understanding
of the relationship between attributes and the elimination of the impact
of awkward data. For this purpose, Bonferroni (1950) introduced the
Bonferroni Mean (BM) operator to allow for the presentation of inter-
connections between elements and their fusion into a unique score
function. Bonferroni and Dombi aggregators can successfully achieve
this goal. However, BM cannot be processed by Dombi operations. To
consider the advantages of Dombi and BM operators together, we
proposed some hybrid D’Bonferroni operators by combining the Dombi
operator and the BM operator. The D’Bonferroni operator can take
advantage of the Dombi and BM operators.

Hence, this paper has four major research implications: (1) The first
objective is to undergo a comprehensive literature review on waste
management methodologies in healthcare; (2) The second objective is
to select and evaluate the optimal location for a waste disposal facility
in an uncertain environment using a hybrid methodology; (3) Third is
to propose a new rough based framework of BWM and D’Bonferroni
aggregators model for processing imprecise (rough) information in
MCDM problems and (4) The fourth goal of this paper is to show the
real application in locating a waste disposal center.

3. Research methods, preliminaries and arithmetic operations

In this section, the fundamental elements of the IRN, Dombi TNs/
TCNs and BM operators are briefly represented in the field.

3.1. IRNs and operations on IRNs

In group decision-making problems, the priorities are defined on the
aggregated decisions of multi-experts and the process of the subjective
evaluation of the decisions of experts. RNs consisting of upper, lower,
and boundary intervals, respectively, determine intervals of their eva-
luations without requiring additional information by relying only on
original data (Zhai, Khoo, & Zhong, 2008). Hence, obtained expert
decision-makers’ perceptions objectively present and improve their
decision making process. According to Zhai, Khoo, and Zhong (2009),
the definition of a rough number is shown below.

Suppose U is the universe that contains all the objects, Y is an ar-
bitrary object of U, R is a set of t classes (G;;Go; ... ;Gp), which include
all the objects in U, R (G4;Go; ... ;Gp). If these classes are ordered as
G, < Gy < < G, then YYe€U, G €R, 1<q<it,

1<q<tVY€eU, Gqe€R,thelower approximation (Apr(Gq)), upper

approximation (Apr (G,)) and boundary region (Bnd (G,)) of class G, are,
according Zhai et al. (2009), defined as:

AEV(Gq) =Uiggxg [{YE U/R(Y) < Gq}
Abr(Gq) =Uiggxg Y e U/R(Y) = Gq} (D

Bnd(Gy) =

{Y € U/R(Y) # G} = {Y € U/R(Y) > G}
1

t

Y € U/R(Y) < G} ©

Then G, can be shown as a rough number (RN(G,)), which is

VA
N

)
q
V)
1<gq

VA
N
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determined by its corresponding lower limit (Lim (Gq))(Lim(Gq)] and

upper limit (Zim(G,))(Lim(Gg)), where:

Lim (G = 4 i R()IY € Apr(Gy

4=1
Lim (Gp) = - i R(Y)IY € Apr(Gy)

g=1 ©))
RN (G,) = [Lim (G,), \;Lim (G,)] “)

where M;, and My are the numbers of objects that contained in Apr(G,)

and Apr (G,), respectively. The difference between them is expres_sed as
a rough boundary interval (IRBnd(G,)):

IRBnd(G,) = Lim (Gy) — Lim (G,) (5)

where M; and My represent the sum of objects contained in the lower
and upper object approximation of J;, respectively.

Since RNs belong to the group of interval numbers, arithmetic op-
erations applied to interval numbers are also appropriate for RNs. If A
and B presents two RNs RN (4) = [a, @] and RN (B) = [b, b], k denotes
constant, k > 0, then the arithmetic operations with RN (A), RN (B) and
k are as follows:

e Addition of RNs“+”

RN(A) + RN (B) = [a, a] + [b, b] = [a + b, a + b] (6)
e Subtraction of RNs“-“
RN(A) — RN(B) = [a, a] — [b, b] = [a — b, @ — b] 7)

e Multiplication of RNs“ x”

RN(A) x RN (B) = [a, a] X [b, b] = [a x b, a x b] (8

e Dividing of RNs“/”

RN (A)/RN (B) = [a, al/[b, b] = [a/b, a/b] 9

o Scalar multiplication of RNs, wherek > 0
kx RN(A) =kx[a,a] =[kx a, kxa] (10)
3.2. Dombi operations of GN

Definition 1.. Let p and q be any two real numbers. Then, the Dombi
TN and TCN between p and g are defined as follows (Dombi, 1982):

e (50T an
s {( pp)p + (ﬁfq)p}w a2

where p > 0 and(p, q) € [0, 1]. According to the Dombi TN and TCN,
we define the Dombi operations of IRNs.

Definition 2.. Suppose RN (§) = [£,, £l and RN (§,) =
IRN, p. 7> Oand let FRN () = f(5).F@] = | g o

Op(p, @) =

Op(p, @) =

£, £ are two

521151] be a
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grey function, then some operational lows of RNs-based on the Dombi
TN and TCN can be defined as follows:

(1) Addition “+”

RN (&) + RN (®E,)

) CRIT
1-f&) 1- f(§z) 13)

(2) Multiplication “x”

RN (§) X RN (&)

2 2
L &, Zie1§
/ 3 /
L (e, () (1 f<§1>)P+(1—f_(§2>)p Ve
G &) & i&

a4

(3) Scalar multiplication, wherey > 0

§ §
YRNG) = | &, - e b T
21 1
1+{7’(1,§1)} 1+{7(1-§1) } a1s)
(4) Power, wherey > 0
§) 3

v = =

(RN (£)) T { (1751)19}1,;,
1+ = + -

{y( B )} "\ (16)

Based on the IRN operators (1)-(5), we propose the Dombi Geo-

metric Bonferroni Mean (DGBM) and Dombi Normalized Geometric
Bonferroni Mean (DNGBM) operators, respectively.

3.3. IRN Dombi geometric Bonferroni mean operator

Definition 3 ((Zhu, Xu, & Xia, 2012):). Let p,q = 0 and (a,as,...,a,) be
a set of non-negative numbers. If

GBP(ay, ay, ...,an) =

s GP[H ] es

1]1

. 1
Then GBPis called a‘geometric Bonferroni mean operator. a7

Definition 4 ((Sun & Liu, 2013):). Let (ay,as,...,
negative numbers and p, ¢ = 0. If

a,) be a set of non-

wiwj
H (pa; + qa;)t-wi

NGBP*q(al, a, ...
p + q i,j=1 (18)

an) =
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Then NGBP? is called a normalized weighted geometric Bonferroni
mean operator.

Theorem 1.. Assuming thatRN (§'j) = [ gj, f]], is a collection of IRNs in R,

then the Dombi Geometric Bonferroni Mean operator is defined as follows:

1

i)

DGBMP#*{RN (§), RN (&), ...RN (§)} = |~ f} RN (£P)
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In the following, we shall explore some desirable properties of the
DGBM operator.

Theorem 2 ((Idempotency):). Assuming that RN (&) =[§, El
(G =1,2,..,n) is a collection of IRNs in R, if RN (§;) = RN (§), then:

1
ptq

ij=1
DR z&
— i=1 i=1
- 1/p° 1/p
1 n 1 n
RS P : RR P .
n| pepP g m (1-5ERY n (l,f(g,.))ﬁ ¢ n(1-5&Y
2 p( G ] +n—ljgl[ g 7@ )t Bl e
i#] J#i i#j J#i (19)
FE) =5 . DGBMP4# (RN (&), RN (£,), ..RN (€,)}
where f (RN (§)) = , represents a grey function.

&
f(gl) - Z{‘:l gi'
See Appendix A for the proof of Theorem 1.
Example 1.. Let RN (§) = [2, 3], RN (&) = [3, 4], RN (&) = [3, 4] and
RN () = [2, 3] be four IRNsandp = q = p = 1, then we can show the
following calculations:

(D) f(£)=2/10=02; f(£)=3/10=03; f(£)=3/10=03;
f(E)=2/10=02; f(&) =3/14=0214; f(&)=4/14=0286;
f(€) =4/14 = 0.286 and f(,) = 3/14 = 0.214.

[ 1=f) L 1-fE) -5
@) 7&) =40; &) =233 TG T Ty =40;
1-f6) C1-f &) L 1-F(&) 1-f(4)
U= 22 = 2, —~ = 2.5 and —** = 3.67.
&) T & ) N
DGBMMT1{[2, 31; 3, 41; 3, 41; 2, 31)=
243+43+4
UK
1442 4
#1011 1 P11 R 1 !
4T a1 2B 2344 233 4—14+233+4 233 4—14+233+4
(i )+ (a5 )+ (5 )
+(1+;.;)l
_ 47421 a+233+233
- 3+4+4+3
71
1 44-1
M 1 1 N 1 1 !
367 4—125+25+367 25 4—1367+25+367
(e )+ (5 )
+(L+;.%)I+(L ;.;)l
L 25 4-13.67+25+3.67 3.67 4-13.67+25+25
=[2.40, 3.43]

= DGBMP#*{RN (§), RN (§), ..RN (£)}.
See Appendix B for the proof of Theorem 2.

Theorem 3 ((Boundedness):). Assuming that RN(§)=[§, El;
(G=1,2,..n) is a c_ollection of IRNs in _R, and
lettingRN (§7) = [min £, min§] and RN (§*) = [max £, max §], then:

RN (§7) < DGBMP##(RN (§)), RN (§), ...RN (§,)) < RN (§).

See Appendix B for the proof of Theorem 3.According to the inequadlities

shown above, it can be concluded that RN(7) <
DGBMP4# (RN (&), RN (&), ...RN (£,)) < RN (£*) holds.

Theorem 4 ((Commutativity):). Let the grey set
(RN(£)), RN (&), ..RN(£)))  be any  permutation  of(RN (&),

RN (&,), ..RN (§,)) then:

DGBMP%#(RN (§)), RN (§,), ..RN (§,))
= DGBMP#* (RN (§), RN (§), ..RN (§)).

Proof:. This property is obvious.[]
3.4. IRN Dombi normalized weighted geometric Bonferroni-mean operator

Based on the IRN operators (1)-(5), we propose the IRN Normalized
Weighted Dombi-Bonferroni Mean (DNGBM) operator.

Theorem 5.. Assuming that RN (§) = ﬁj’ El G=1,2,..n) is a

collection of GNs in R, then the DNGBM operator is defined as follows:
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n wjwj
1 Wiy
DNGBMP4#(RN (§), RN (&), ..RN (¢,)) = . TT (PRN(€) + qRN (§))r-w
ij=1
0 Ty - Y4
—_ i=1 i=1
- Zéi_ 1/p’Z§i_ 1/p
i=1 i=1
1 1w 1 1—wj
1+ P + Qwiw;j " 0+ @wiwj
% 1 - %-p
=1 ( &) ]" [ IEp ]F o p{ &) )pﬂz[ ) ]
|l | e i#] 1-f(&) 1-1¢)
i | Pl1=r -7 J (20)

where w; € [0, 1] represents the weight coefficient of RN (§), i = 1, 2, ...,n,

&

n f(§,) =y
2w =1and f(RN()) = ] l?" represents a grey function.
j=1 =
j FE = 5e.

See Appendix C for the proof of Theorem 5.
Example 2.. Let RN (§) = [2, 3], RN (§,) = [3, 4], RN (£,) = [3, 4] and
RN(¢)=12,3] be four IRNs, p = q = p = 1 and

w; = (0.18, 0.32, 0.33, 0.17), then we show the following calculations:

(1) f(E)=2/10=02; f(§)=3/10=03  f(£)=3/10=03;
fE)=2/10=02; [()=3/14=0214; f(&)=4/14=0286;

f(&) =4/14 = 0.286 and f (£, = 3/14 = 0.214.

7D F(&) FEy) FED

2) T = 0.25; T = 0.43; TN = 0.43; ) = 0.25;
&) & &) fé)

L = ~_ = (. ~— = 0.4 and — = 0.27.
1-f¢D) T 1-f&) T1-f&) 1-f()
DNGBMET*{[2, 3]; [3, 4]; [3, 4]; [2, 3]}=

10
2+3+3+4
- 171
14+{-1t !
1+1 018032 1 0.180.33 1 0.180.17 1
1-018 025! +0431 ~ 1-018 0251 + 0431~ 1-0.18 0.251 + 0,25
0.320.18 1 0.32:0.33 1
1-032 043+ 0250 1-0.32 .43l +0.43!
0.17-033 1
+...+ —_—
1-0.17 0.25! + 043!
@ = |
14
3+4+4+3
- 171
14 !
1+1 018032 1 0.180.33 1 0.180.17 1
1-018 0271+ 0401~ 1-018 027 + 0401~ 1-0.18 0271 + 0.271

0320.18 1 032033 1

1-032 0401 +0.271  1-0.32 040! +0.40!

0.17:0.33 1
| 1-0.17 0271 + 0.40! |
=[2.61, 3.61]

In the following, we shall explore some desirable properties of the
DNGBM operator.

Theorem 6.. Let it be w; = (1/n, 1/n, ...,.1/n), (j = 1, 2, ...,n).Then:
DNGBMPE4* (RN (§,), RN (£,), ....RN (£,))
= DBMP%?(RN (§)), RN (§,), -..RN (§,)),

where DBMP%f represents the IRN Dombi-Bonferroni mean
operator.
See Appendix D for the proof of Theorem 6.

In the following, we shall explore some desirable properties of
IRNGDBM operator. The IRNDNWGBM operator also contains the fol-
lowing properties:

(1) Idempotency: Assuming that RN () = [é’i, fi]; (G=1,2,..n) is a
collection of IRNs in R, ifRN (§,) = RN (§), then:
DNGBMP%#(RN (§,), RN (£,), ...RN (§,))
= DNGBMP%* (RN (§), RN (§), ..RN (§))

(2) Boundedness: Assuming that RN (§) = [51., E_i]; (G=1,2,..,n) is a
collection of IRNs in R, and letting RN (§7) = [min §, min £] and
RN (") = [max _§i, max §_i], then:

RN (§7) < DNGBMP%P(RN (§)), RN (§)), ...RN (§,)) < RN (§*)

(3) Commutativity: Let the grey set (RN (§)), RN (§,), ....RN (§,)) be any
permutation of(RN (&), RN (&,), ..RN (§,)).

The proof of these properties is the same as that for the DNGBM
operator, and because of that, it is omitted here. In the following, some
special cases of the GDBM operator will be discussed.

(1) If g = 0, then:
(a) Eq. (19) reduces to the IRN Dombi generalized average operator:
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Phase I: IRN FUCOM Phase IlI: IRN D’Bonferroni model Phase llI: Sensitivity analysis
——————————————————————— 1 OO OO OOOOOOOOOOO OO0 ] it |
o I
| |
Criteria identification and ranking 1 | Identification of alternatives |
[} : | Changes of criteria weights
| |
J ! \) | I
| |
Expert comparison of criteria 1 : Expert evaluation of alternatives |
: [} : Influence of dynamic matrices on ranks
15 b A !
! i ices - I
Defining the IRN BO and OW vectors ! Aggregation of matrices - IRNDGBM | J,
| ] operator |
|

Comparisons with other MCDM models
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Influence of parameters p, q and p on the
ranking results
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Final alternative ranking

Forming IRN BWM nonlinear model Aggregated initial decision matrix (N)
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Aggregation of The IRNDGBM weight

|

|

|

|

|

: Evaluation of alternatives - IRNDNWGBM
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|

|

|

|

|

|

|
|
|
|
|
|
|
aggregator |
|
|
|
|
|
|

N2

Optimal criteria weights

N2

Initial alternative ranking

i . =) L —

Fig. 1. IRN BWM D'Bonferroni multi-criteria model.

1 n
g P DALOP (RN (&), RN (£,), ...RN =13 RN(E
DPO(RN (£), RN (&), .RN (&) = (5 D RN(;.P)) - (RN ), RN (&), RN (€)= 3 X RN (&)
i=1
[ ] n b " 2§
— Z_gl_ nl—l PI/P’ZgL_ nl—l —
i=1 14 12( J&) ] 1+ 12( f@_)
n 2 \1-r & n 2 \i-r&@
z§ z4&
= =l 7p° =1 7p (b) Eq. (20) reduces to the IRN Dombi weighted geometric operator:
e L GWHOP(RN (), RN (&), RN (£,)) = IT (RN (§))"
p1 % 1 P1 g 1 i=1
noy (1-1&Y = [i(f)]" " 0
PTre & ;15[ ;151
S . ) . - n (-5 P 1 (1@
ee Appendix E for the proof of IRN Dombi generalized average 1+ {w z( f(g)l ] 1+ 1w Z( f@’ )
operator. =\ S o\ TG
(b) Eq. (20) reduces to the IRN Dombi generalized weighted geometric (3 Ifp — 0and g = 0, then
operator: (a) Eq. (19) reduces to the IRN Dombi weighted geometric average
R operator:
DG#(RN (&), RN (&), .RN (,)) = TT (RN (§))" ] i/n
- = ; lim DGWE# (RN (€,), RN (&,). -.RN &,)) = (H RN (f,-))
e i=1
; e - e _ 5 0
= Z 5 - = 7p? Z gi - = 1/p - 1 (-1 Ve’ 1515 &) e
= R AR
D E S S TS S —
pWi n (1—f(§i))’° pWi %[l-fr(gi))
im\ G =\ f& (b) Eq. (20) reduces to the IRN Dombi weighted average operator:

See Appendix E for the proof of IRN Dombi generalized weighted

: lim DWA2Z®? (RN (£), RN (&), ...RN (£)) = > w;RN (£)
geometric operator. p—0 h

i=1
n n o
DR n % &

i=1 i=1
_El.— p1/p’z§i_  \p\liP
1 L du 3 [LED i=1 1+ w-E( &) ]
=16 12 -r@

(2) Ifp = 1 and q = 0, then:
(a) Eq. (19) reduces to the IRN Dombi arithmetic average operator:

I
ISE

1

I M=
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4, MCDM model

The rough BWM-D’Bonferroni multi-criteria model is implemented
in two phases, as shown in Fig. 1. In the first phase, weight coefficients
are calculated using IRN BWM. The weight coefficients obtained in the
first phase of the model are further used in the D’Bonferroni model for
the evaluation of alternatives. A detailed presentation of the steps of the
IRNBWM-D’Bonferroni model is shown in the next section.

4.1. Phase I: IRN best-worst method

A modification of the BWM was carried out using IRN to more
comprehensively take into account the imprecision that appears in the
group decision-making process. By using RNs, the need for additional
information to determine the uncertainty of the intervals of the num-
bers is eliminated. The approach presented in this chapter introduces a
rough number, which secures a more objective evaluation of the criteria
in cases where there is imprecision in the expert decisions. The pro-
posed modification of BWM using a rough number (RBWM) makes it
possible to consider doubts that arise during the expert evaluation of
the criteria. The next section presents the algorithm for the RBWM that
includes the following steps:

Step 1. Determining the set of evaluation criteria. This starts with
the assumption that the process of decision making involves t experts.
In this step, experts consider the set of evaluation criteria and select the
final set of criteria, C = {cy, ¢,, ...c,}, where n represents the total
number of criteria.

Step 2. Determining the most significant (most influential) and
worst (least significant) criteria. The experts decide on the best and the
worst criteria from the set of criteria, C = {c;, ¢,, ...c,}, (Rezaei, 2015).

Step 3. Determining the preferences of the most significant criteria
(B) from the set Cover the remaining criteria from the defined set.
Under the assumption that there are m experts and n criteria under
consideration, each expert should determine the degree of influence of
the best criterion B on the criteria j (j = 1, 2, ...,n). This is how we
obtain a comparison between the best criterion and the other criteria.
The preference of criterion B compared to the j-th criterion defined by
the e expert is denoted bya,f,j (j=1,2,..,n;1<e<t). The value of
each pair agtakes value from the predefined scale in the interval
a,_?,j € [1, 9]. As a result, a Best-to-Others (BO) vector is obtained:

Af = (afy, afy s Gfy); LSS 21

where al‘;j represents the influence (preference) of the best criterion B
over criterion j, whereby ag; = 1.

Step 4. Determining the preferences of the criteria from the set
Cover the worst criterion (W) from the defined set. Each expert should
determine the degree of influence of criterion j (j =1, 2, ..,n) con-
cerning criterion W. The preference of criterion j in relation to criterion
W defined by the e-th expert is denoted byafW (j=1,2,..,n51<e<t).
The value of each pair ajy, takes value from the predefined scale in the
interval ajw € [1,9]. As a result, an others-to-worst (OW) vector is
obtained:

Ay =@y, aSy o Qo) 1<e <t (22)

where ajy, represents the influence (preference) of criterion j in relation
to criterion W, whereby ayy = 1.

Step 5. Determining the rough BO and OW matrices for the average
answers of the experts. Based on the BO and OW matrices of the experts’
answersAg = [aglixnand Ay, = [afy lixn, we form matrices of the ag-

gregated sequences of expertsA;® and Ayf
1. .2
’ aBn! aBn’ "'!agln]lxn

ke m 2 k. 1.,.2. .. m
AE° = [agy, AFrs - QB Agos A ees Ay oo

ke __ 1 2 m . 1 .2 . ..m 1 ..,2 m
Ay = [ayws, Qs e Qs Qo Q3 o3 Qg ees Qs Qs -oes Ayl xn
23)
— 1 2 — 1 2
where  ag; = {ag;, ag,..ag,}  and @y = {ay, Gy, ...,y irepresents

10
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sequences through which the relative significance of criteria B and W
are described in relation to criterion j. Using Egs. (1)—(5) each sequence
ag; and ajyis transformed into the rough sequences RN (a) = [af;, agl
and RN (ajy) = [ajw, @jw], where af; and ajyrepresents the lower limit
and a; andajy, represents the upper limit of the rough sequences RN (ag;)
and RN (ajy). By applying IRNDGBM, Eq. (19), we obtain the average
rough sequence of the BO and OW matrices. We thus obtain the aver-
aged rough BO and OW matrices of average responses Ag and Ay

Ap = [ap1, g2, -lpn J1xn
Ay =[G, Gaws oslnw hixn (24)

Step 6. Calculation of the optimal rough values of the weight
coefficients of the criteria [RN (w;), RN (w,), ...,RN (w,)]from the set C.
For all values of the interval rough weight coefficients of the criteria,
RN (w)) = [w, wlthe condition is met that 0 < w; < w; < lfor each
evaluation criterionc; € C. By solving model (25) we obtain the optimal
values of the weight coefficients for the evaluation criteria
[RN (w;), RN (w,), ...,.RN (w,)]and &*:

minmjax{ % — RN (ag)|, % - RN(M)jW)‘}
S. t.
Z:«l:le' sl
Z?:] 21
w;<w, Vj=12,..,n
w, W20, Vj=1,2, ..n (25)

where RN (w)) = [w;, w;] is the rough weight coefficient of a criterion.
Since we obtain the values of RN (agy), i.e., G5y based on the ag-
gregated decisions of the decision-maker, and these change the rough
number interval, it is not possible to predefine the values of &. The
values of ¢ depend on uncertainties in the decisions, since uncertainties
change the rough number interval. If the decision-makers agree on their
preference for the best criterion over the worst, then agy represent the
crisp value of agy from the defined scale and then the maximum values
of ¢ apply for different values of agy € {1, 2, ...,.9}, as shown in Table 2.
We obtain the consistency ratio (CR) based on CI in Table 2:

_ &
CI

CR (26)

4.2. Phase II: IRN Dombi-Bonferroni model

Step 1. Forming an initial decision-making matrix. Five experts
who participated in this research evaluated the alternatives. Five ex-
perts participated in this research, who evaluated the alternatives. For
every expert E, (1 <e<t)is obtained a correspondent matrix
X® = [ Imxafor (1 < e < 1). By the application of DGBM operator (19),
it is performed the aggregation of experts’ matrices, and it is formed the
initial decision-making matrix X = [Xj; lnxx-

Step 2. Normalization of the initial decision-making matrix.
Generally, in MCDM models, there are two types of criteria, benefit
criteria and cost criteria. Therefore, it is necessary to normalize the
initial decision making matrices, in that way, forming the normalized
matrixN = [#jj]uxn. The elements of the normalized matrix are obtained
by applying the expression (27).

Table 2
Values of the consistency index (Rezaei, 2015).
apw 1 2 3 4 5 6 7 8 9
CI (max{) 0.00 0.44 1.00 1.63 2.30 3.00 3.73 4.47 5.23
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RN (xp)/ 2;_, RN (xy) if jeB

RN (ny) = 1-RN(xp)/ Y RN(xy if jeC

(27)

Step 3. Determining the score functionS(7;). By applying the
DNGBM aggregator (20) the values of the score function
S(n;) = DNGBME9P{RN (n,); RN (n,); ...RN (n,,)} are obtained, pre-
senting final values of preferences by alternatives. The DNGBM ag-
gregator implies the application of the values of criteria meets the
conditionE:f: w; = 1. In phase I of the application, the IRN values of the
weights which meet the condition };_w; < 1 and }7_w; > 1 are ob-
tained. To meet the previously defined condition, we apply the Egs.
(28)—(30) to remove the roughness of the IRN values:

wj—min{w;}

n_ J
Wi = —max
RN (W) = [w}, w] =
@) = [w], w]] I
- J
j = Amax

(28)

'min

wherew; and w; represent the lower limit and upper limit of theRN (w)),

respectively; Apit = max{w;} — min{w;}, w}’ and W} are the normalized
J i

forms of w; andw;.
After normalization, we obtain a total normalized crisp value

n n Ry
wiH{1 — wj} + Wiy

o ey (29)

Finally, the crisp form w; for RN (w;) is obtained by applying Eq.
(30).
wy = minfw} + § [max{w) — minge,}] 30)

After removing roughness, by applying additive normalization, va-
lues are normalized so that Z;; w; = 1.

Step 4. Ranking alternatives. Ranking alternatives {4;, 4, ...,An}
and the selection of the best alternative from the considered set.
Alternatives are ranked based on the values of the score function S (n;),
wherein the highest possible value of the alternative S(n;) is more fa-
vorable.

4.3. Phase III: Sensitivity analysis

Sensitivity analysis is a fundamental concept for effective im-
plementation of MCDM methods to evaluate the stability of the best
alternative under changes in input parameters either due to lack of
controllability or error in precise information estimation. Sensitivity
analysis is a technique used to determine how different values of an
independent variable will affect a particular dependent variable under a
given set of assumptions. This technique is used within specific
boundaries that will depend on one or more input variables. Sensitivity
analysis is a way to predict the outcome of a decision if a situation turns
varying or dynamic. More detail on sensitivity analysis tools has been
discussed in Section 7.

5. Case study and decision-making problem

Healthcare Management (HM) in big cities is a trendy and major
subject. Madrid is an international and very cosmopolitan capital in
Europe with a diversity of cultures, traditions, and languages. The city
is transforming to the main business hub and an attractive place for
students, families, and immigrants. The medical system in Spain, like
many countries, is divided into public and private systems. During re-
cent years, the growth of private hospitals in Metropolitan cities is in-
creasing. This is due to a very effective healthcare system, including fast
and attentive personnel, innovative technologies, and because of that,
the public system is not able to serve all of their clients. Therefore, the
number of private healthcare and insurance companies is increasing.
Hospitals like any other organizations (businesses, hotels, universities,
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etc.) generate pollution and a considerable volume of wastes. Part of
those wastes in general are similar to other organizations; however,
there are parts of contamination and infections that cannot be recycled
or collected easily. They need to be separated and controlled for further
actions. Therefore, identifying a place or location for hospital waste
disposal is a very crucial task for the private sector.

The proposed model is applied to Madrid General Hospital
(MGH)'to determine a suitable location for their medical waste disposal
system under sustainable objectives. We have sought a real case to
demonstrate the applicability of the method proposed in this study.
MGH is a modern and private hospital in the center of Madrid and is
interested in implementing this study to dispose of hazardous and in-
fectious wastes. At the beginning of its activities, MGH had a contract
with some service providers. These providers gather healthcare wastes
from many hospitals and securely dispose of them. However, because of
the expansion of the hospital and the continuing increase in the number
of patients, the owners of the hospital decided to build disposal and
mechanized center with modern facilities to replace the service provi-
ders and their associated costs. This decision was consistent with the
long-term horizon of the hospital as well as the relevant legal con-
sequences. The experts in the relevant industries in Madrid were con-
sulted. The first expert is a senior professional in Environmental man-
agement systems with more than 12 years of experience and currently
works in the healthcare sector. The second expert that agreed to join the
team of DMs is 52 years old, has 20 years’ experience in medical pro-
curement systems, and is part of the management board of a private
clinic, as well as a specialist and technician in HM. The aim is to pro-
pose a Rough based decision-making model to locate a waste disposal
center and assure hospital managers of a secure disposal system. In a
system of decision making, the decision-makers must handle several
tasks. One of the duties that DMs are responsible for that is to figure out
the relevant variables and criteria to aid us in location comparison and
evaluation.

As we argued previously, several indicators and criteria are defined
based on stakeholders and experts in this area. We have classified them
into TBL variables to be understandable and build an effective, sus-
tainable perspective.

The economic (technical) factors (D1) are presented as:

C1: Land Price (per square meter) in the specific zone,
C2: Cost (transportation & maintenance),
C3: Possibility of future expansion; environmental factors,

The environmental factors (D2) are presented as:

C4: Risk of the potential of intrusion and emission (degree of con-
tamination),

C5: The proximity to the urban and city infrastructure (society),
C6: Distance to a complex of waste sorting,

C7: Geographic and geologic conditions,

C8: The existing environmental friendliness facilities (air, water,
energy, and electricity supply).

The social factors (D3) are presented as:

C9: Availability of workforce,

C10: Local and territorial rules or regulations,

C11: Level of satisfaction among residents in relation to the site
selection.

Among the mentioned criteria, price, cost, risk of emission, and

distance to waste sorting complex are classified as non-beneficial fac-
tors. As a result, we assumed 3 decision factors and then 11 decision

! The name is changed to protect the anonymity and the hospital.
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criteria (we call them indicators as well). We have reviewed studies
(Arikan et al., 2017; Chauhan & Singh, 2016; Ekmekcioglu et al., 2010;
Gergin et al., 2019; Kahraman et al., 2017; Kazimieras Zavadskas et al.,
2015; Khadivi & Fatemi Ghomi, 2012; Marchettini, Ridolfi, & Rustici,
2007; Sala-ngam, Suzuki, Toyotani, Wakabayashi, & Watanabe, 2015)
to gather effective information and details to adopt into the dimen-
sional and geographical development of Madrid. The second task of the
decision team is to locate the potential position for the objective of
establishing a waste disposal center. The team consulted the regional
government, municipal and relevant parties to leave a debate. The team
consulted with the regional and municipal governments, as well as with
other relevant parties. Finally, five districts in Madrid were considered:
Fuenlabrada in the south, Alcobendas in the north, as well as Coslada,
Carabanchel, and Villa de Vallecas. These five locations are chosen as

Table 4
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The average BO and OW vectors.

Dimensions

Best-to-Others

Expert evaluation

Others-to-Worst

Expert evaluation

D1 [1.56,4.42] D1 [4.24,4.74]
D2 [1.33,2.40] D2 [3.43,4.44]
D3 [4.44,5.45] D3 [1.00,1.00]

Criteria: C1, C2, and C3

Best-to-Others

Expert evaluation

Others-to-Worst

Expert evaluation

C1 [1.00,1.00] C1 [3.23,3.73]
Cc2 [2.40,3.43] Cc2 [1.60,5.09]
Cc3 [5.24,5.74] Cc3 [1.50,3.75]

decision alternatives (Aj, Aa,.., As). We developed a questionnaire and
sent it to the experts through email to evaluate the five distinct loca-
tions under the sustainable variables. They are used to express their
opinions about each factor and the relative importance of the criteria
and, in the second level, assessment of each alternative over the
available criteria.

However, the evaluation of decision factors to obtain the im-
portance weights is performed in two stages. At first, the TBL variables
for sustainable consideration are evaluated by DMs in pairs, and after
the 11 indicators must be discussed.

Having defined the evaluation clusters/criteria within the frame-
work of the clusters and each group of the criteria, the experts also
determined the best (B) and the worst (W) clusters/criteria. On this
basis, the experts determined the BO and the OW vectors, in which the
preferences of the B and the W over the clusters/criteria were con-
sidered for the remaining clusters/criteria from the defined set. The
evaluation of the clusters/criteria was carried out by using the scale
[1-7], where 1 (a very low influence), 2 (a low influence),..., 6 (a high
influence), and 7 (a very high influence). The BO and the OW vectors
are presented in Table 3.

Using Egs. (1)—(5) the crisp expert evaluation shown in the BO and

Table 3
The Best-to-Others (BO) and the Others-to-Worst (OW) vectors obtained by the
experts’ evaluations.

Dimensions (Model 1)

Best-to-Others Expert evaluation Others-to-Worst Expert evaluation

D1 16 D1 45
D2 3;1 D2 5;3
D3 6;4 D3 1;1

Criteria: C1, C2, and C3 (Model 2)

Best-to-Others Expert evaluation Others-to-Worst Expert evaluation

c1 1;1 c1 43
c2 42 c2 71
c3 56 c3 1;5

Criteria:C4, C5, C6, C7 and C8 (Model 3)

Best-to-Others Expert evaluation Others-to-Worst Expert evaluation

Criteria: C4, C5, C6, C7, and C8

Best-to-Others Expert evaluation Others-to-Worst Expert evaluation

Cc4 [2.55,4.12] C4 [2.22,2.73]
C5 [2.22,2.73] C5 [1.00,1.00]
c6 [4.44,5.45] Cc6 [2.40,3.43]
c7 [1.56,4.42] Cc7 [5.45,6.46]
c8 [1.50,3.75] c8 [3.43,4.44]

Criteria: C9, C10, and C11

Best-to-Others Expert evaluation Others-to-Worst Expert evaluation

Cco [3.00,3.00] Cco [1.33,2.40]
C10 [1.33,2.40] C10 [1.20,1.71]
Cl1 [1.56,4.42] Cl1 [5.24,5.74]

OW vectors were transformed into RNs. After the transformation of the
crisp values into a rough number, using IRNDGBM, Eq. (19), the rough
BO and OW expert matrices were transformed into aggregated RBO and
ROW vectors (see Table 4).

The optimal values of the weight coefficients of the dimensions/
criteria were calculated in Table 4 based on the RBO and the ROW
vectors for each group of the clusters/criteria. Table 4 displays the four
RBO or ROW vectors based the four LP model formulations that were
developed, using Eq. (25), for calculating the optimal values of the
weight coefficients of the clusters/criteria. The developed LP models
were then solved during LINDO, and the results (optimal values of the
weight coefficients) are shown in Table 5. For the considered case
study, CR values were found to be(CR, = 0.108;
CR, = 0.134; CR; = 0.095 and CR4=0.078), respectively, for the four
models:

C4 5;2 C4 2;3
C5 3;2 C5 1;1
Cc6 6;4 Cc6 4;2
Cc7 6;1 Cc7 755
Cc8 1,5 Cc8 3;5

Criteria: C9, C10, and C11(Model 4)

Best-to-Others

Expert evaluation

Others-to-Worst

Expert evaluation

(@] 3;3 Cc9 13
C10 1;3 C10 251
Cl11 6;1 C11 5;6

Table 5

The optimal values (weights) of the criteria.
Dimensions/Criteria Local Weights Global Weights Rank
D1 [0.2608,0.2613] - 2
C1 [0.6197,0.6197] [0.1616,0.1619] 3
Cc2 [0.2745,0.4760] [0.0716,0.1244] 4
C3 [0.1058,0.1716] [0.0276,0.0448] 9
D2 [0.6183,0.6242] - 1
C4 [0.1010,0.1120] [0.0624,0.0699] 6
C5 [0.1287,0.1674] [0.0795,0.1045] 5
(€9 [0.0673,0.0714] [0.0416,0.0446] 8
Cc7 [0.3039,0.3635] [0.1879,0.2269] 1
Cc8 [0.2795,0.2856] [0.1728,0.1783] 2
D3 [0.0965,0.1145] - 3
(@] [0.1749,0.2907] [0.0169,0.0333] 11
C10 [0.2427,0.2427] [0.0234,0.0278] 10
Cl11 [0.5824,0.5824] [0.0562,0.0667] 7
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Fig. 2 presents the global and the local values of the rough weight
coefficients of the criteria. The global weights of the criteria were ob-
tained by multiplying the weight coefficients of the dimensions by the
weight coefficients of the sub-criteria. The global weight criteria con-
tinue to be used for the evaluation of the alternatives in the multi-cri-
teria model. Based on the results presented in Table 5, D2 (environ-
mental factors) is the most significant factor, followed by D1 (economic
factors) and D3 (social factors). It is inferred that among decision-
making criteria, C7 (geographic and geologic conditions) is the most
important criterion, while C9 (workforce availability) is the least im-
portant criterion.

The final values of the weight coefficients are used to evaluate and
select the optimal alternative in the D’Bonferroni model. The evaluation
of the alternatives was carried out using the scale [1-7] with 1 (very
low influence), 2 (low influence),..., 6 (high influence), and 7 (very
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high influence). Table 6 indicates the judgments of two decision-makers
when they try to compare alternatives regarding eleven indicators.

The crisp expert evaluations shown in Table 6 were transformed
into the RNs given in Table 7. Each crisp element xij‘i (1<e<t)from
Table 6 is transformed into a rough
numberRN (x;5) = [Lim (x;), Lim (x{)] using Egs. (1)-(5), where
Lim (x;) and Lim(x{)are the lower and upper limit ofRN (x;), respec-
tively.

Using the DGBM and Eq. (19), the rough expert matrices were
transformed into the aggregated initial rough matrix, as given in
Table 8. This table presents the aggregated individual rough experts’
evaluations of the alternatives that are shown in Table 7.

After obtaining the initial decision matrix (Table 8), Eq. (27) is used
to obtain the elements RN(n;) from the normalized matrix (N)
(Table 9). In the following steps, using the elements from the normal-
ized matrix (Table 9), the score functions of the alternatives are cal-
culated.

For the calculation of the score functions of the alternatives, the
elements of the normalized matrix (Table 9) and crisp values of the
weight coefficient of the criteria are used
(0.162, 0.072, 0.028, 0.062, 0.08, 0.042, 0.188, 0.173, 0.017, 0.023, 0.056).
Using the DNGBM aggregator (20), final values of the score function are
obtainedS (n;). Based on the valueS (n;), the alternatives are ranked, and
the optimal alternative is selected from the set of considered alter-
natives. Score functions and ranking of the alternatives are shown in
Table 10.

The alternatives are ranked based on the value of the score function
S(n;), wherein it is more preferable for the alternative to have the
highest possible value of S(n;). Thus, based on the obtained values of
S (n;), the first rank is assigned to the alternative A2.

6. Sensitivity analysis, performance comparison, and discussion

Analysis of the stability of the obtained results is carried out in three
parts. In the first part, the sensitivity analysis of the IRN BWM
D’Bonferroni model is performed by changing the weight coefficients of
the criteria. The analysis of the influence of the change in the weight
coefficients of the criteria is made using 21 scenarios. In the second
part, the analysis of the influence of dynamic matrices of decision
making to the change of the rank of the alternatives is performed. The
third part shows the analysis of the dependence of the obtained results
on the change of p, p, and q parameters. A more detailed overview of
the sections of the discussion on the results is shown in the next part of
the paper.

6.1. Changing the weights of the criteria

After determining the weight coefficients of the criteria using IRN
BWM, the “most influential criterion” is identified for the sensitivity
analysis. The goal of the sensitivity analysis is to evaluate the influence
of the most influential criterion on the ranking performance of the
proposed model. Based on the recommendations of Kirkwood (1997)
and Kahraman (2002), the proportionality of the weights of the criteria
during the sensitivity analysis and the elasticity coefficient (Kahraman,
2002) are defined. The elasticity coefficient is used to express the re-
lative compensation of the values of other weight coefficients con-
cerning changes in the weight of the most important criterion.

In this research, the C7 criterion is identified as the most influential
since it has the highest value of the weight coefficient w; = 0.1879. In
the next step, the coefficient of weight elasticity («)of the most sig-
nificant criterion (Table 11) is determined, and the limits of change of
the weight coefficient of the most significant criterion are defined.

The limit values for criterion C7 are obtained as
—0.1879 = Ax =< 0.757. The scenarios for the sensitivity analysis are
defined based on the defined limit values of the change in the weight
coefficient for the most important criterion. The interval
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Fig. 2. Final values of the IRN weights.
Table 6 Table 8
The alternative rating with respect to the sustainable factors. Initial decision making matrix.
DM1 Criteria Al A2 A3 A4 A5
Alternative C1 C2 C3 C4 C5 C6 C7 C8 C9 ClO Cll c1 [5.24,5.74]  [3.23,3.73]  [2.00,2.00]  [1.2,1.71] [3.43,4.44]
c2 [3.23,3.73]  [3.00,3.00]  [1.43,3.08] [2.67,4.8] [3.00,3.00]
Al 6 3 5 5 5 4 5 1 4 1 6 C3 [3.43,4.44] [5.00,5.00] [1.60,5.09] [4.44,5.45] [2.22,2.73]
A2 4 3 5 5 1 7 3 8 2 5 3 c4 [5.00,5.00] [2.55,4.12] [3.23,3.73] [2.4,3.43] [1.43,3.08]
A3 2 4 1 3 5 5 2 5 7 5 2 c5 [3.43,4.44] [1.33,240] [4.24,4.74] [2.55,4.12] [2.22,2.73]
A4 2 2 6 2 5 7 3 1 1 4 5 c6 [1.43,3.08] [6.24,6.74]  [5.00,5.00]  [5.45,6.46]  [3.43,4.44]
A5 5 3 3 1 3 3 4 2 5 2 1 c7 [5.00,5.001  [3.00,3.00] [1.20,1.71] [2.22,2.73]  [2.40,3.43]
DM2 c8 [1.33,2.40]  [7.24,7.74]  [4.24,4.74]  [1.33,2.4] [2.00,2.00]
c9 [4.00,4.00]1 [2.22,273] [3.75,5.83] [1.43,3.08]  [5.00,5.00]
Alternative C1 C2 C3 C4 C5 C6 C7 C8 C9 ClO Cll cto (1.20,1.71]  [5.005.00]  [3.434.44]  [4.8,6.86] (2.00,2.00]
c11 [6.24,6.74]  [3.00,3.00]  [1.20,1.71]  [4.24,4.74]  [1.33,2.40]
Al 5 4 3 5 3 1 5 3 4 2 7
A2 3 3 5 2 3 6 3 7 3 5 3
A3 2 1 7 4 4 5 1 4 3 3 1 —0.1879 = Ax < 0.757 is divided into 21 sequences, which result in
A4 1 6 4 4 2 5 2 3 4 8 4 forming 21 scenarios. For every scenario, new weight coefficient values
A5 8 3 2 4 2 5 2 2 5 2 3 are formed. Consequently, 21 new groups of weight coefficients pre-
sented in Table 12 are obtained. The influence of the new values of the
weight coefficients from Table 12 to the change of the ranks of
Table 7
Experts’ rough matrices.
DM1
Alternative c1 c2 c3 c4 c5 c6 c7 ¢ c9 C10 C11
Al [5.5,6] [3,3.5] [4,5] [5,5] [4,5] [2.5,4] [5,5] [1,2] [4,4] [1,1.5] [6,6.5]
A2 [3.5,4] [3,3] [5,5] [3.5,5] [1,2] [6.5,7] [3,3] [7.5,8] [2,2.5] [5,5] [3,3]
A3 [2,2] [2.5,4] [1,4] [3,3.5] [4.5,5] [5,5] [1.5,2] [4.5,5] [5,71 [4,5] [1.5,2]
A4 [1.5,2] [2,4] [5,6] [2,3] [3.5,5] [6,7] [2.5,3] [1,2] [1,2.5] [4,6] [4.5,5]
A5 [4,5] [3,3] [2.5,3] [1,2.5] [2.5,3] [3,4] [3,4] [2,2] [5,5] [2,2] [1,2]
DM2
Alternative cl c2 c3 c4 c5 (€3 c7 c8 c9 C10 c11
Al [5,5.5] [3.5,4] [3,4] [5,5] [3,4] [1,2.5] [5,5] [2,3] [4,4] [1.5,2] [6.5,7]
A2 [3,3.5] [3,3] [5,5] [2,3.5] [2,3] [6,6.5] [3,3] [7,7.5] [2.5,3] [5,5] [3,3]
A3 [2,2] [1,2.5] [4,71 [3.5,4] [4,4.5] [5,5] [1,1.5] [4,4.5] [3,5] [3,4] [1,1.5]
A4 [1,1.5] [4,6] [4,5] [3,4] [2,3.5] [5,6] [2,2.5] [2,3] [2.5,4] [6,8] [4,4.5]
A5 [3,4] [3,3] [2,2.5] [2.5,4] [2,2.5] [4,5] [2,3] [2,2] [5,5] [2,2] [2,3]
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Table 9

Normalized matrix.
Criteria Al A2 A3 A4 A5
C1 [0.62,0.70] [0.75,0.82] [0.87,0.89] [0.89,0.93] [0.71,0.81]
Cc2 [0.72,0.82] [0.77,0.83] [0.77,0.92] [0.64,0.85] [0.77,0.83]
C3 [0.15,0.27] [0.22,0.30] [0.07,0.30] [0.20,0.33] [0.10,0.16]
C4 [0.66,0.74] [0.72,0.87] [0.74,0.83] [0.77,0.88] [0.79,0.93]
C5 [0.19,0.32] [0.07,0.17] [0.23,0.34] [0.14,0.30] [0.12,0.20]
C6 [0.86,0.94] [0.69,0.76] [0.77,0.81] [0.70,0.79] [0.79,0.87]
Cc7 [0.32,0.36] [0.19,0.22] [0.08,0.12] [0.14,0.20] [0.15,0.25]
c8 [0.07,0.15] [0.38,0.48] [0.22,0.29] [0.07,0.15] [0.10,0.12]
(¢°] [0.19,0.24] [0.11,0.17] [0.18,0.36] [0.07,0.19] [0.24,0.30]
C10 [0.90,0.94] [0.70,0.75] [0.73,0.83] [0.58,0.76] [0.88,0.90]
Cl11 [0.34,0.42] [0.16,0.19] [0.06,0.11] [0.23,0.30] [0.07,0.15]

Table 10

The rank of the alternatives.
Alternative S(n;) Rank
Al [0.345,0.449] 2
A2 [0.360,0.447]1 1
A3 [0.282,0.398] 3
A4 [0.265,0.3971 4
A5 [0.259,0.359] 5

alternatives is presented in Fig. 3.

As shown in Fig. 3, assigning different weights to the criteria across
the scenarios leads to the change in the ranks of individual alternatives,
which confirms that the model is sensitive to changes in the weight
coefficients. By comparing the first two alternatives in the rank (A2 and
A1) across the scenarios, we can conclude that both first-ranked alter-
natives (A2 and A1) retain their ranks using 18 of the 21 scenarios. Just
in the first three scenarios, the alternatives A2 and Al change their
rank. Alternatives A3 and A5 retain their ranks in 17 out of a total of 21
scenarios. Alternative A4 was in fourth place in all of the scenarios.
Correlation of ranks is determined using Spearman's correlation coef-
ficient. Spearman's coefficient (SCC) is used to determine the statistical
significance of the difference between the ranks obtained across the
scenarios (Noureddine & Ristic, 2019). By analyzing the obtained cor-
relation values, we note that there is a high correlation of ranks since, in
17 out of 21 scenarios, the SCC exceeds 0.910. In the remaining two
scenarios, the SCC values are 0.600. The mean value of the SCC across
all the scenarios is 0.920, which shows a high correlation of ranks,
respectively, and confirms the results shown in Table 9. From the above
results, we can conclude that the rank of the alternative A2 is valid, and
there is sufficient advantage of the mentioned alternative compared to
the second-ranked (Al) and other alternatives. The results are also
confirmed by the correlation of ranks across the scenarios.

6.2. Influence of dynamic matrices on changing the rank of alternatives

Internal changes in the decision-making matrix, such as the in-
troduction of new ones or the elimination of the existing alternatives
from the set of considered alternatives, can cause changes in final
preferences. Accordingly, in this paper, the performance of the pro-
posed model is analyzed under the conditions of the dynamic initial
decision-making matrix. Three scenarios are formed. For every sce-
nario, a change in the number of alternatives is made, and the ranks
obtained are analyzed. The scenarios are formed by removing one
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inferior (the worst) alternative in every scenario from further con-
sideration. At the same time, within the scenarios, the remaining al-
ternatives are ranked according to the newly-obtained initial decision-
making matrix.

The initial solution using the IRN BWM D’Bonferroni model is
generated as A2 > Al > A3 > A4 > AS5. It is clear that the al-
ternative A5 is the worst option, and in the first scenario, the alternative
A5 is eliminated from the set, and a new decision-making matrix is
obtained with a total of five alternatives. A new solution for the deci-
sion-making matrix is generated, and the rank A2 > Al > A3 > A4
is obtained. The ranking in the first scenario shows that A2 is still the
best alternative, while A4 is the worst alternative. Further im-
plementation of the described procedure results in the following ranks
using the remaining three scenarios: S2: A2 > Al > A3 and S3:
A2 > Al.

Using the modification of the initial matrix, which is done by the
elimination of the worst alternative, we notice that there is no rank
reversal among the alternatives in the IRN BWM D’Bonferroni model.
The alternative A2 remained the best ranked across all of the scenarios,
which confirmed the robustness and accuracy of the obtained ranks of
the alternatives in a dynamic environment.

6.3. Influence of parameters p, p, and q on the ranking results

In the above steps, the values of the parameters p, g, and p were
initially assumed to be 1. However, the effects of changing the value of
p and q in the proposed IRN D’Bonferroni model can easily be observed.

Three scenarios are formed to consider the influence of the para-
meters p, q, and p on the obtained results. In the first scenario, the
values of the parameter p are changed in the range from 0.5 to 50, while
for the parameters p and ¢, the values are p = ¢ = 1. In the second
scenario (S2), the values of the parameter g are changed in the range
from 0.5 to 50, while for the parameters p and p, the values are
p = q = 1. In the third scenario (S3), the values of the parameter p are
changed in the range from 0.5 to 50, while for the parameters q and p,
the values are changed in the range from 0.5 to 5. Table 13 shows the
influence of the parameters p, g, and p on the ranks of the alternatives.

Generally, the bigger the values of the parameters p, p and g, the
more complex the calculation becomes, and more the interrelations
between the attributes are emphasized. DMs usually choose the para-
meters p, p, and q according to their preferences (Fazlollahtabar,
Smailbasic, & Stevic, 2019). In real decision making, we generally re-
commend that the values of the parameters be 1 from a practical point
of view, which is not only intuitionistic and simple but also able to
consider the inner connections between attributes. From Table 13, it
can be revealed that when the parameters p, p and g have different
values, the ranking orders of the considered alternatives remain almost
the same. Small changes occur when the parameter q is changed while
changing the parameters p, and p results in no change in the ranking. In
the scenario S2, for the values ¢ = 30, ¢ = 40 and g = 50, the ranks
A2 > Al > A3 > A4 > A5 is obtained. The changes in ranks that
occurred when the values of ¢ = 30, ¢ = 40, and ¢ = 50 are minimal
and did not affect the rank of alternatives A2 and Al that were iden-
tified as the best alternatives. Table 13 shows when Parameter p has
values within the 0 to 50 range, the ranking of the alternatives remains
unaffected. Therefore, the changing values in Parameter p have no
impact on the rankings. In all cases, A2 (Alcobendas) and A5 (Villa de
Vallecas) remain the best and the worst alternative locations, respec-
tively. Similarly, Table 13 shows Parameter p has no impact on the final

Table 11

Coefficient of elasticity for changing weights.
Criteria C1 Cc2 C3 C4 C5 C6 Cc7 Cc8 Cc9 C10 C11
as 0.214 0.123 0.039 0.085 0.117 0.055 1.000 0.234 0.024 0.031 0.077
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Table 12
New criteria weights.

Scenario C1 Cc2 C3 C4 C5 Cc6 Cc7 &) Cco C10 Cl11

S1 0.214 0.123 0.039 0.085 0.117 0.055 0.000 0.234 0.024 0.031 0.077
S2 0.203 0.117 0.037 0.081 0.111 0.053 0.050 0.222 0.023 0.030 0.073
S3 0.192 0.111 0.035 0.076 0.106 0.050 0.100 0.210 0.021 0.028 0.070
S4 0.182 0.105 0.033 0.072 0.100 0.047 0.150 0.199 0.020 0.027 0.066
S5 0.171 0.098 0.031 0.068 0.094 0.044 0.200 0.187 0.019 0.025 0.062
S6 0.160 0.092 0.029 0.064 0.088 0.042 0.250 0.175 0.018 0.023 0.058
S7 0.150 0.086 0.027 0.059 0.082 0.039 0.300 0.164 0.017 0.022 0.054
S8 0.139 0.080 0.026 0.055 0.076 0.036 0.350 0.152 0.016 0.020 0.050
S9 0.128 0.074 0.024 0.051 0.070 0.033 0.400 0.140 0.014 0.019 0.046
S10 0.118 0.068 0.022 0.047 0.065 0.031 0.450 0.129 0.013 0.017 0.043
S11 0.107 0.062 0.020 0.042 0.059 0.028 0.500 0.117 0.012 0.016 0.039
S12 0.096 0.055 0.018 0.038 0.053 0.025 0.550 0.105 0.011 0.014 0.035
S13 0.086 0.049 0.016 0.034 0.047 0.022 0.600 0.093 0.010 0.012 0.031
S14 0.075 0.043 0.014 0.030 0.041 0.019 0.650 0.082 0.008 0.011 0.027
S15 0.064 0.037 0.012 0.025 0.035 0.017 0.700 0.070 0.007 0.009 0.023
S16 0.053 0.031 0.010 0.021 0.029 0.014 0.750 0.058 0.006 0.008 0.019
S17 0.043 0.025 0.008 0.017 0.023 0.011 0.800 0.047 0.005 0.006 0.015
S18 0.032 0.018 0.006 0.013 0.018 0.008 0.850 0.035 0.004 0.005 0.012
S19 0.021 0.012 0.004 0.008 0.012 0.006 0.900 0.023 0.002 0.003 0.008
S20 0.011 0.006 0.002 0.004 0.006 0.003 0.950 0.012 0.001 0.002 0.004
S21 0.005 0.003 0.001 0.002 0.003 0.001 0.978 0.005 0.001 0.001 0.002

$1

S11

—o— A1 —o—A2 A3 —e— A4 —— A5

Fig. 3. Analysis of sensitivity of the ranks of the alternatives across 15 sce-
narios.

preferences. The parameter g has a small influence on the rank of
certain alternatives, but it does not affect the final preferences when
choosing the most influential alternatives, respectively, the alternatives
A2 and Al.

7. Conclusions

Waste management is a convoluted issue, especially in the big cities
and metropolitan areas, involving the fundamental interaction between
various dimensions and endangers the maintenance of nature and
natural life in the context of environmental pollution and protection
acts. Thus, the analysis and control enforce perpetual challenges for
policymakers. In the era that communities are worried about sustaining
their surrounding environments, the private sector can be proactive in
keeping a balance between the economic needs, social impact, and
caring for environmental consciousness. In healthcare systems, any
consequences from the output of medical services, hospitals, and clinics
directly affect and damage human life, the environment and bring
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further disadvantages over time. The uncertainties associated with the
healthcare waste disposal management, as addressed by this research
would enable the implementation of systematic mitigation strategies
and deployment of necessary resources for leveraging the efficiency of
healthcare systems. Furthermore, the general ability of the proposed
methodology and key insights developed will assist healthcare practi-
tioners in policymaking at strategic and tactical levels for minimizing
the harmful effects of improper waste disposal decisions. This paper
investigates the eligibility for establishing a waste collection and dis-
posal center for a private hospital. Defined by a case study, we have
determined five places for the establishment of a center for waste dis-
posal. Healthcare waste management has a discrete consequence in an
integrated solid waste management system. In the planning of a
healthcare waste management system, various parameters, including
social impact, environmental concerns, and economic conditions, need
utmost consideration. However, while devising disposal strategy for the
healthcare waste management system, the policymakers often over-
look some critical factors, causing environmental degeneration, lack of
sanitation, and an overabundance of health issues. The structured and
comprehensive MCDM model proposed in this study can effectively
eliminate such problems.

In addition, to overcome the uncertainty of not having complete
information and as well as the complexity in the evaluation process, we
have configured a rough-based multi-attribute decision-making struc-
ture. Given this level of detail, a hybrid interval rough value BWM
D’Bonferroni model is developed that has several benefits that conform
to the study. We should note that MCDM models are heavily dependent
on the criteria weights. The rankings in the model proposed in this
study are also dependent on the Parameters p and q associated with the
IRN D’Bonferroni model. Practicing managers and researchers must be
careful using MCDM problems due to these dependencies. Obtaining
reliable data for the proposed model requires some all-inclusive study;
any addition or deletion in the decision matrix may affect the overall
accuracy. For waste disposal site selection, it is expected that the in-
formation provided must be accurate and repeatedly revised, which
ultimately leads to fewer opportunities for error. Another limitation of
the method proposed in this study is the technical details of the model,
which are complicated and potentially overwhelming for some deci-
sion-makers and managers. The analytical tools and techniques for
complex models may require some technical assistance from the ex-
perts. In this study, we implemented the model with appropriate
technical and decision support assistance.
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Table 13
Ranking orders for varying values of the parameters p, p, and q.

Parameters Score functions Rank

S1: Changing parameter p

p=1p=05q=1 Qi(A1) = [0.335,0.442]; Q(A2) = [0.351,0.439];Q:(A3) = [0.274,0.389]; Q(A4) = [0.259,0.391]; A2 > Al > A3 > A4 > A5
Qi(A5) = [0.254,0.352]

p=1lp=2q=1 QA1) = [0.333,0.440]; Q(A2) = [0.352,0.439]; Q{A3) = [0.273,0.386]; Q(A4) = [0.257,0.388]; A2 > Al > A3 > A4 > A5
Qi(A5) = [0.254,0.351]

p=1p=3q=1 Qi(A1) = [0.319,0.428]; Qi(A2) = [0.340,0.427]; Q(A3) = [0.261,0.371]; Q(A4) = [0.248,0.377]; A2 > Al > A3 > A4 > A5
Qi(A5) = [0.246,0.341]

p=1lp=4q=1 Qi(A1) = [0.307,0.418]; Q(A2) = [0.330,0.418]; Q{A3) = [0.252,0.359]; Q(A4) = [0.240,0.367]; A2 > Al > A3 > A4 > A5
Qi(A5) = [0.240,0.332]

p=1lp=5q=1 Qi(A1) = [0.297,0.411]; Qi(A2) = [0.322,0.411]; Q;(A3) = [0.244,0.350]; Q(A4) = [0.233,0.360]; A2 > Al > A3 > A4 > A5
Q«(A5) = [0.234,0.325]

p=1p=10q =1 Qi(A1) = [0.269,0.39]; Q(A2) = [0.298,0.390]; Q;(A3) = [0.214,0.338]; Q(A4) = [0.220,0.322]; A2 > Al > A3 > A4 > A5
Qi(A5) = [0.217,0.305]

p=1p=20q=1 Qi(A1) = [0.247,0.374]; Q(A2) = [0.280,0.375]; Q{A3) = [0.198,0.321]; Q,(A4) = [0.201,0.301]; A2 > Al > A3 > A4 > A5
Qi(A5) = [0.204,0.289]

p=1p=230q=1 Qi(A1) = [0.238,0.368]; Qi(A2) = [0.272,0.369]; Q(A3) = [0.192,0.293]; Q(A4) = [0.191,0.315]; A2 > Al > A4 > A3 > A5
Qi(A5) = [0.198,0.282]

p=1p=40q=1 Qi(A1) = [0.233,0.364]; Q(A2) = [0.268,0.365]; Q{(A3) = [0.188,0.288]; Q(A4) = [0.187,0.311]; A2 > Al > A4 > A3 > A5
Qi(A5) = [0.195,0.278]

p=1p=250q=1 Qi(A1) = [0.230,0.362]; Qi(A2) = [0.265,0.363]; Q(A3) = [0.184,0.309]; Q(A4) = [0.192,0.276]; A2 > Al > A3 > A4 > A5
Q«(A5) = [0.185,0.285];

S2: Changing parameter q

p=1p=1q=05 Qi(A1) = [0.333,0.440]; Qi(A2) = [0.352,0.439]; Q,(A3) = [0.273,0.386]; Q(A4) = [0.257,0.388]; A2 > Al > A3 > A4 > A5
Q«(A5) = [0.254,0.351]

p=1lp=1q=2 Qi(A1) = [0.335,0.442]; Qi(A2) = [0.351,0.439]; Q(A3) = [0.274,0.389]; Q(A4) = [0.259,0.391]; A2 > Al > A3 > A4 > A5
Qi(A5) = [0.254,0.352]

p=1lp=1q=3 Qi(A1) = [0.321,0.431]; Q(A2) = [0.339,0.429]; Q{A3) = [0.264,0.376]; Q(A4) = [0.250,0.381]; A2 > Al > A3 > A4 > A5
QA5) = [0.246,0.342]

p=1p=1q=4 Qi(A1) = [0.309,0.422]; Qi(A2) = [0.329,0.420]; Q,(A3) = [0.255,0.365]; Q(A4) = [0.243,0.373]; A2 > Al > A3 > A4 > A5
Qi(A5) = [0.240,0.334]

p=1p=1qg=>5 QA1) = [0.300,0.415]; Q(A2) = [0.321,0.413]; Q(A3) = [0.247,0.357]; Q(A4) = [0.237,0.366]; A2 > Al > A3 > A4 > A5
Qi(A5) = [0.235,0.327]

p=1p=1q=10 QA1) = [0.273,0.395]; Q(A2) = [0.297,0.392]; Q{(A3) = [0.218,0.346]; Q,(A4) = [0.224,0.330]; A2 > Al > A3 > A4 > A5
Q«(A5) = [0.219,0.307]

p=1p=1q =20 Qi(A1) = [0.251,0.380]; Qi(A2) = [0.278,0.377]; Q:(A3) = [0.202,0.330]; Q,(A4) = [0.205,0.310]; A2 > Al > A3 > A4 > A5
Qi(A5) = [0.205,0.292]

p=1p=1q=30 QA1) = [0.242,0.374]; Q(A2) = [0.271,0.371]; Q{A3) = [0.197,0.302]; Q(A4) = [0.195,0.324]; A2 > Al > A4 > A3 > A5
Qi(A5) = [0.199,0.285]

p=1p=1q=40 Qi(Al1) = [0.237,0.371]; Qi(A2) = [0.266,0.368]; Q,(A3) = [0.192,0.297]; Q(A4) = [0.191,0.320]; A2 > Al > A4 > A3 > A5
Q«(A5) = [0.196,0.282]

p=1p=1q =50 Qi(A1) = [0.234,0.369]; Qi(A2) = [0.264,0.366]; Q,(A3) = [0.189,0.294]; Q,(A4) = [0.189,0.318]; A2 > Al > A3 > A4 > A5
Qi(A5) = [0.194,0.280]

S3: Changing parameters p,q, and p

p=0.5p = 05q =05 Qi(A1) = [0.354,0.465]; Qi(A2) = [0.379,0.468]; Q(A3) = [0.308,0.418]; Q,(A4) = [0.290,0.422]; A2 > Al > A3 > A4 > A5
Qi(A5) = [0.287,0.384]

p=2p=2q=2 Qi(A1) = [0.321,0.409]; Qi(A2) = [0.324,0.433]; Qi(A3) = [0.220,0.349]; Q(A4) = [0.214,0.349]; A2 > Al > A3 > A4 > A5
Qi(A5) = [0.206,0.310]

p=3p=3q=3 Qi(A1) = [0.282,0.362]; Qi(A2) = [0.297,0.414]; Q:(A4) = [0.184,0.307]; Q(A3) = [0.174,0.297]; A2 > Al > A3 > A4 > A5
Qi(A5) = [0.176,0.273]

p=4p=4q=4 Qi(A1) = [0.253,0.325]; Q(A2) = [0.274,0.396]; Q{A3) = [0.160,0.250]; Q;(A4) = [0.145,0.256]; A2 > Al > A3 > A4 > A5
Qi(A5) = [0.166,0.281]

p=5p=5q=5 Qi(A1) = [0.231,0.299]; Qi(A2) = [0.255,0.382]; Q;(A3) = [0.151,0.235]; Q(A4) = [0.128,0.226]; A2 > Al > A3 > A4 > A5
Q«(A5) = [0.153,0.264]

p=10p = 0.5,q = 0.5 Qi(A1) = [0.173,0.245]; Q(A2) = [0.209,0.336]; Q{(A3) = [0.130,0.197]; Q(A4) = [0.097,0.166]; A2 > Al > A3 > A4 > A5
Qi(A5) = [0.112,0.228]

p=20p=2q=2 Qi(A1) = [0.345,0.449]; Qi(A2) = [0.360,0.447]; Q(A3) = [0.282,0.398]; Q(A4) = [0.265,0.397]; A2 > Al > A3 > A4 > A5
Q«(A5) = [0.259,0.359]

p=30p=3q=3 Qi(A1) = [0.345,0.449]; Qi(A2) = [0.360,0.447]; Q(A3) = [0.282,0.398]; Q,(A4) = [0.265,0.397]; A2 > Al > A3 > A4 > A5
Qi(A5) = [0.259,0.359]

p=40p =49 =4 Qi(A1) = [0.345,0.449]; Q(A2) = [0.360,0.447]; Q{(A3) = [0.282,0.398]; Q(A4) = [0.265,0.397]; A2 > Al > A3 > A4 > A5
Qi(A5) = [0.259,0.359]

p=50p=>5q=>5 Qi(A1) = [0.345,0.449]; Qi(A2) = [0.360,0.447]; Q(A3) = [0.282,0.398]; Q(A4) = [0.265,0.397]; A2 > Al > A3 > A4 > A5
Qi(A5) = [0.259,0.359]

Further research directions can be outlined as (1) implementing the
recently developed MCDM methods (e.g., full consistency method
(FUCOM) or combined compromise solution (CoCoSo)) under RST for
criteria weighting and ranking; (2) designing decision support systems
to facilitate the judgment processes; and (3) applying the proposed
model in other healthcare management problems (e.g., sustainability
and life cycle assessment, free-standing emergency clinic location
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planning). Researchers can use the proposed model to solve other
MCDM problems such as airport, commercial center, warehouse or lo-
gistics hub, renewable energy plant, and port locations provided that
the model is calibrated depending on the available decision variables,
evaluation dimensions, and other relevant information.
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Theorem 1.. Assuming that RN (§)) = [ _§j, fj], (=1, 2,..n)is a collection of IRNs in R, then the DGBM operator is defined as follows:
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Appendix B

Theorem 2 ((Idempotency):). Assuming that RN (§) = [£, €]; G =1, 2, ..,n) is a collection of IRNs in R, if RN (§) = RN (§), then:
DGBMP%P{RN (§)), RN (§,), ..RN (§,)} = DGBMP4°{RN (), RN (§), ...RN (§)}.
Proof:. Since RN (§) = RN (), i.e. § = £, §=¢, then:
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DGBMP=LI=LP=L{RN (§), RN (&), ..RN (§,)} = {RN (£), RN (©), ..RN (£)}
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The proof of Theorem 2 is completed. []

Theorem 3 ((Boundedness):). Assuming that RN (§) = [£, €; G=1,2,..n) is a collection of IRNs in R, and lettingRN (£7) = [min £, min €] and
RN (%) = [max §, max £],then

RN (§7) < DGBMP-%#(RN (§)), RN (&), ...RN (§,)) < RN (§7).
Proof:. Let RN (§7) = min(RN (&), RN (§,), ...RN (§,)) = [min &, min§Jand RN (§*) = max(RN (§), RN (&,), ...RN (§,)) = [max £, max§]. (J

Then, it can be stated that &~ = min(é’i), & = min(fi), &+ = max( §i) and £* = max(f,-). Based on that, the following inequalities can be for-
= i = i = i i
mulated:
RN ()
min(§)

min(£) < § < max(§).

RN (§) < RN(§");
§; < max(§));

NN

According to the inequalities shown above, it can be concluded that RN (§~) < DGBMP4°(RN (§,), RN (§,), ...RN (§,)) < RN (§%) holds.
Appendix C

Theorem 5.. Assuming thatRN (§;) = [ 5}., %];(j =1, 2, ..,n) is a collection of GNs in R, then the DNGBM operator is defined as follows:

n wiwj
1
DNGBMP4#(RN (&), RN (&), RN (£) = -1 T] (bRN(§) + GRN (§))1-
ij=1
n no
n PR no_ PR
=X 51 - i=1 o SE - i=1 7
i=1 i=1
1 1—wj 1 1-wi
1+ (P + @)wiw; ' 1+ (P + Qwiw;
n 1 n 1
iJEI & VP sep Y ij=1 p( /& )pﬂ] & °
# | Plir) ey @) - ®
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& .

Tt & .
13 represents a grey function.

£ =
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i

f&= g

where w; € [0, 1] represents the weight coefficient ofRN (§), i = 1, 2, ...,n, >, w;=1and f(RN(§)) =
j=1

Proof.. We need to prove that Eq. (8) is valid. According to the operational laws of IRNs, we obtain:

£ _ 13
PRN () =[§, - = 17 &= - 1/
3 : P P 3 P P
G IR GO

and

£, . g

qRN(gj): _gj_ ]5 p1/p’§}_ ]f- N\ e
el ) e )
Furthermore, we obtain:
£+

PRN() +qRN () = | §,+ &, - v A
1+{p( =i ) +q(1_’§j

1-§ kS
and
RN RN (£))1-w = Lt G+
(PRN (&) + qRN (&)1~ = - -
1 wiwj 1 wiwj
1+ 1—w; Y .\ 1+ T-wi (g Y g Y
p|—=L| +q| =2 P[ ,i) [l
1-§ 1-¢; 1-§ 1-§j
Thereafter,
n no_
. Y ¢ N
S i=1 i=1
[T (RN ) + gRN (€))1-v = ' 7 l r
L=
i wiwj & 1 Wy < L
1+ ) 14+ {—— 7
1—wi w-z:l &\, [ IE) ° L=wi 52 p( &) )p o LG g
o \Plré) Ty i \PU=r@ =)
Therefore,
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DNGBME* (RN (§), RN (§), ..RN(£,)) = ——

p+q H (pRN

i,j=1

wiwj

(g,) + qRN(gj))l’wi

n no_
n Z ,gi no_ E gi
—_ i=1 i=1
- Zgi_ l l/p’zgi_ : 1/p
i=1 i=1
1 1-wj 1 1 1—w;
1+ P+ @wiw; + (P + Q)wiwj
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z P . Y
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Appendix D

Theorem 6.. Assume thatw; = (1/n, 1/n, ...,.1/n), (j = 1, 2, ...,n). Then:
DNGBMPE%* (RN (£,), RN (£,), ..,RN (§,)) = DBMP%*(RN (&), RN (&,), ...,RN ({,)), where: IGNDBMP-4-represents the IRN Dombi-Bonferroni mean

operator.

Proof.. Since w; = (1/n, 1/n,

...,1/n), according to Eq. (8) the following equation can be obtained:

DNGBME** (RN (§), RN (§,), ...RN (§,))=
n no_
n Z ﬁi no_ Z Ei
— i=1 i=1
- Z _gi_ : 17p? Z gi_ : T/p
i=1 i=1
n-1 n—1
1+{—1 n 1441 n
@ +qn? (@ +qn?
n n 1
z : P i g & Y
W=t (feE Yo FEp = p[ &) ) +q| 1
i | Pre) e @) -
n no_
2§ 26
— i=1 i=1
- 1/p? 1/p
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1+ P+q * P+q
n
n 1 ) 1
Xl ¥ ; F1 VP
=l (g Yo (1€ Y ij=1 p[ I& )”W )
# | Pliore) Y 1= i# 1-f&) 1-fE)

= DBMPA#(RN (£), RN (£,), ..RN (£)) [
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Appendix E
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(a) Assuming thatRN (§j) = 5]., g ; G=1,2,..,n) is a collection of IRNs in R and if p,p = 0, g = 0, then the IRN Geometric Bonferroni Mean

operator can be transformed to Dombi arithmetic mean (DM) operator as follows:

1
p

DPOP(RN (£), RN (), ..RN (£) = (% X RN (5,-"))
i=1

1/p° 1/p

1+

==

1 1
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1

1 n
- Z -
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1
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=1

i p(

&
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Proof:. If g = 0, the following results are obtained.

DGBMPO# (RN (&), RN (&), -RN(E)} = |1 3 RN(&,.P)[f[ RN(@?))"_
j=1

ij=1

1
1

n n
RS %
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- 1/p? 1/p
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1415 T 11570 1
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Therefore, we obtain
1
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(b) Assuming thatRN (§) = [—51 f_], (j=1,2,..n) is a collection of IRNs in R and if p,p = 0, ¢ =0 , then the IRN DNGBM operator can be

transformed to IRN Dombi generalized weighted geometric operator as follows:
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DGPOZ (RN (§), RN (&), .RN (€)= 1 IT (RN &)™
i=1

n no
n z 4 no_ z&
— i=1 i=1
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i=1 i=1
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Proof:. If g = 0, the following results are obtained.
DGPO#(RN (&), RN (&), .RN(§) = 1

ij=1
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