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Fairness plays a vital role in crowd computing by attracting its workers.)e power of crowd computing stems from a large number
of workers potentially available to provide high quality of service and reduce costs. An important challenge in the crowdsourcing
market today is the task allocation of crowdsourcing workflows. Requester-centric task allocation algorithms aim to maximize the
completion quality of the entire workflow and minimize its total cost, which are discriminatory for workers. )e crowdsourcing
workflow needs to balance two objectives, namely, fairness and cost. In this study, we propose an alternative greedy approach with
four heuristic strategies to address such an issue. In particular, the proposed approach aims to monitor the current status of
workflow execution and use heuristic strategies to adjust the parameters of task allocation. We design a two-phase allocation
model to accurately match the tasks with workers. )e F-Aware allocates each task to the worker that maximizes the fairness and
minimizes the cost. We conduct extensive experiments to quantitatively evaluate the proposed algorithms in terms of running
time, fairness, and cost by using a customer objective function on the WorkflowSim, a well-known cloud simulation tool.
Experimental results based on real-world workflows show that the F-Aware, which is 1% better than the best competitor al-
gorithm, outperforms other optimal solutions in finding the tradeoff between fairness and cost.

1. Introduction

In China, crowdsourcing has been quickly making progress
in various fields in the past years. Zhubajie (http://www.zbj.
com) has established itself as a crowdsourcing leader with
more than 22 million active workers. )is company covers a
range of online and offline services, including tutoring and
logo and product design. Didi Chuxing (DiDi) is another
representative example. DiDi is China’s leading mobile
transportation platform that provides a full range of ap-
plication-based transportation services (including taxi; ex-
press, premier, and deluxe bus; designated driving;
enterprise solutions; bike and e-bike sharing, automobile
solutions, and food delivery) for numerous people. Tens of
millions of drivers find flexible work opportunities on the
DiDi platform. )e platform provides more than 10 billion
passenger trips a year. Crowdsourcing has become a fast,

convenient, and cost-effective mode of research and pro-
duction to obtain flexible and cheap resources. Various
organizations flexibly outsource work, such as collaborative
sensing [1, 2] and human-powered online security [3, 4], to a
global pool of workers on a temporary basis. )erefore,
addressing fairness in crowdsourcing systems is relevant as a
modern issue in ethics.

In crowdsourcing systems, tasks are posted to a
crowdsourcing platform, and these tasks are solved by a large
group of workers registered at the platform. )e Amazon
Mechanical Turk (MTurk) [5] is a successful crowdsourcing
system that enables individuals or companies to harness
collective intelligence from a global workforce to accomplish
various tasks, such as human intelligence tasks (HITs).
Employers (known as requesters) recruit employees (known
as workers) to execute HITs and reward the employees for
their labor.
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Fairness is important for requesters because workers are
likely to engage with HITs, which are published by fair
requesters. Fairness is also a key point for crowdsourcing
platforms because a negative correlation exists between
workers’ satisfaction and turnover. Fairness has a positive
effect on the job satisfaction of workers. Such effect of
workers’ expectations on platforms’ fairness on the likeli-
hood of their participation is more than that of the con-
siderations of self-interest [6, 7]. For example, workers
expect to be allocated a fair number of tasks which is
proportional to their matching availabilities for the task.
Fairness is an essential concept for sustaining a powerful
crowd with substantial participation of workers. )erefore,
fairness should be considered when allocating tasks to
workers.

Solving complex tasks by using crowdsourcing platforms
has emerged in recent years. A collaborative crowdsourcing
model is an alternative approach to solve complex tasks on
crowdsourcing platforms. In this model, a complex task is
generally decomposed into a series of interrelated subtasks.
)ese subtasks are organized in terms of workflow. However,
in this scenario, task design and allocation remain challenging.
We propose a general method that enables the requesters and
workers to work collaboratively for improving the quality of
task design. A relevant paper has passed the review of a journal.
)is study focuses on the fairness-aware task allocation in a
collaborative crowdsourcing model.

Traditionally, the optimization of task allocation prob-
lem is focused on cost instead of fairness. More challenges
are faced when ones research the current problem of
crowdsourcing workflows compared to that of simple HITs.
)e first problem is that the current crowdsourcing plat-
forms, such as Zhubajie and MTurk, cannot directly execute
a workflow because it describes a logical structure across
tasks. Moreover, the maximal fairness of the whole workflow
instead of one simple task needs to be considered. )us, the
research on addressing fairness-aware task allocation in
scenarios is limited.

We propose an alternative fairness-aware task allocation
approach to complete the workflows with minimal cost and
maximal fairness before the deadline to bridge the gap. In
particular, the proposed approach aims to monitor the
current status of all tasks that are not allocated to workers
during the workflow execution and dynamically update the
parameter values of allocation algorithms.

)is study investigates a practical and important
problem, that is, dynamic fairness-aware task allocation, to
maximize fairness and minimize cost in crowdsourcing
workflows. )e summary of the principal contributions of
this work is provided as follows:

)e fairness-aware task allocation problem in crowd-
sourcing workflows is formulated as a constraint op-
timization problem based on the customized fairness. A
generic two-phase task allocation model inspired by [8]
is designed to cover various crowdsourcing workflow
scenarios based on the new fair criterion.
Four heuristic strategies are proposed to solve the
current problem. A well-designed fairness-aware

solution called the F-Aware is introduced to minimize
the overall cost and target maximum fairness.
Performance is assessed using the workflow simulation
tool named the WorkflowSim with different workflow
benchmarks. Results show that the F-Aware outper-
forms other optimal solutions in finding the tradeoff
between fairness and cost. )e F-Aware performs 1%
better than the best competitor algorithm,
Max_Fairness.

)e motivation of the research is to find the trade-off
between two objectives, that is, minimal cost and maximal
fairness, while allocating crowd tasks to workers. Further-
more, all tasks must be completed before the deadline. )e
ideas presented are beneficial to solve the problem of task
allocation in the crowd context based on the workflow. )e
methods presented can promote the prosperity of the crowd
platform. In addition, the results presented can be applied to
other task allocation problems, in which the distributor
wants to enforce the fairness among participants.

)e remaining parts of this paper are organized as
follows. )e related work is explored in Section 2. )e task
allocation problem in the crowdsourcing workflow scenario
is formulated in Section 3. )e two-phase task allocation
model is explained in detail in Section 4. )e F-Aware al-
gorithm is explained in detail in Section 5. )e experimental
evaluation is presented in Section 5. )e conclusion is
provided in Section 6.

2. Related Work

)e combination of humans and computers to accomplish
tasks that neither can do alone has attracted considerable
attention from academic and industrial circles [9]. )is idea
dates back to the 1960s with the publication of “Man-
–Computer Symbiosis” by Likelier [10]. Tim Berners-Lee has
proposed the concept of a social machine in 2009 and
regarded the cooperation between machines and humans as
the next direction of web application development [11]. )e
term “crowdsourcing” was coined by Jeff Howe in 2006 [12].
)e MTurk is a pioneering crowdsourcing system and has
been successfully used to solve multiple simple tasks. Solving
complex tasks by leveraging the crowdsourcing systems
remains challenging [13]. An alternative approach is to bring
the workflow into the solution of crowdsourcing complex
tasks. In particular, a complex task is decomposed into a
series of interdependent subtasks which is relatively easy to
solve. Workflows are used to express the logical structures
across subtasks.

Promoting fair treatment is of utmost importance for
effective and capable crowdsourcing systems. If workers
believe that the environment that they are working within
is fair, we can expect an improvement in the quality of
workers’ answers, which is beneficial for requesters, and
an increase in retaining and recruiting additional workers,
which is beneficial for crowdsourcing platforms [14].
However, existing efforts give much attention to other
objectives instead of fairness especially in crowdsourcing
workflows.
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For the design of crowdsourcing workflows, Kittur et al.
have proposed a solution to decompose a complex task on
the basis of the MapReduce mechanisms [15]. In their
proposed method, task designers must specify the execution
sequence of subtasks. Little et al. have explored an iterative
workflow paradigm for solving complex tasks, including
image description, copyediting, handwriting recognition,
and sorting [16, 17], and improved the quality of results by
using an iterative algorithm in which the number of itera-
tions is determined by the budget. However, requesters are
required to divide each task by using a hard code before the
task is posted on a third-party crowdsourcing system, such
as MTurk. Dai et al. have improved the iterative workflow
model from the aspect of workflow control [18].)eir model
can autonomously control workflows without human in-
tervention and yield good results. Lin et al. have proposed
the idea of multiple workflows based on a probabilistic
graphical model and dynamically implemented switches
across these workflows [19]. )eir experiments demon-
strated good results for named-entity recognition. Bernstein
et al. introduced a novel idea of multiple-phase workflow
and designed a find–fix–verify crowd programming pattern,
which split tasks into a series of generation and review stages
for complex crowdsourcing writing [20]. Kulkarni et al.
developed the PDS (price-divide-solve) algorithm to guide
workers by converting large and complex tasks into
microtasks that are appropriate for crowd markets. Zheng
et al. proposed a general workflow technology by using a
state machine based on recursive decomposition ap-
proaches, wherein varying types of crowdsourcing appli-
cations could be developed using this platform, to meet the
requirement of solving diverse tasks [21]. Xiong et al. ex-
tended Zheng’s work by proposing a workflow framework
called the SmartCrowd for complex crowdsourcing tasks
[22]. Wu et al. presented the Service4Crowd, which was a
highly flexible and extensible process management platform
for crowdsourcing on the basis of service-oriented archi-
tectures [23]. )ey indicated that the platform could provide
a one-stop solution for requesters. Inspired by the above
developments, the authors of this study proposed an al-
ternative method that engages workers in task design to
enable requesters to achieve a high-quality design of com-
plex tasks.

)e design and the allocation of tasks have achieved
remarkable progress but remain as open issues in crowd-
sourcing workflow scenarios. Task allocation aims to
maximize task quality and minimize cost by allocating tasks
to appropriate workers [24]. A task allocation method is
crucial in allocating tasks to the most appropriate workers.
Vaughan et al. explored the problem of allocating hetero-
geneous tasks to workers with different and unknown skill
sets in crowdsourcing markets [25]. Khazankin et al. pro-
posed solutions by extending standards, such as web service-
level agreement, to ensure the quality between the crowd
consumers and the crowdsourcing platform and provided a
skill-based crowd scheduling algorithm on the basis of
negotiated agreements [26]. Karger et al. considered a
general model of crowdsourcing tasks to minimize the total
price [27]. Boutsis et al. explored the most efficient allocation

of tasks to workers to achieve their successful completion
under real-time constraints [28, 29]. Unlike solving simple
tasks, the quality of solving complex tasks needs to ensure
the quality of the entire workflow. Several studies have been
conducted to determine when and how to publish the tasks
on the crowdsourcing platform to complete the workflows
with minimum cost and without missing the deadlines.
Khazankin et al. formulated the problem as a time-con-
strained optimization problem [30]. Tang et al. adopted
heuristic strategies to improve Khazankin et al.’s work [31].

Fairness in crowdsourcing has been considered in
providing fair wages and detecting malicious workers.
Franke et al. first highlighted the importance of fairness in
the context of crowdsourcing and demonstrated that the
workers’ expectations on fairness have a strong effect on
their decision to participate in solving tasks [7]. Faullant
et al. supported this argument by further exploring how the
different types of fairness, that is, distributive (a fair amount
and distribution of the offered reward) and procedural
fairness (fair procedures to determine the winners), affect
the workers’ intentions to participate in future crowd-
sourcing tasks and their loyalty toward the platform [14].
Recently, researchers have provided incentive strategies to
improve workers’ perceived fairness [32, 33]. McInnis et al.
have viewed wage discrimination as the wrongful rejection
of work, unfair compensation amount, or delayed payment
[34]. Studies that address malicious workers through task
assignment and workers’ reputation focused on the quality,
reliability, and total cost of workers’ contributions [35].
)ese schemes are requester-centric and do not guarantee
fair task allocation to workers. )e problems in some par-
ticular crowdsourcing fields have been discussed, but the
solutions of fair task allocation of crowdsourcing workflows
are very limited [36].

)e abovementioned studies show that the research on
task allocation has attracted increasing attention by con-
sidering the characteristics of workers. All the presented
results of the existing literature have provided references and
guidelines for the current research on the fair task allocation
of crowdsourcing workflows.

3. Problem Formulation

)is study considers a crowdsourcing workflow system.
Employers (i.e., requesters) recruit employees (i.e., workers
or machines) to complete specific tasks and provide them
with varying values of wages (i.e., reward). In this section,
the fairness-aware task allocation architecture is designed for
crowdsourcing workflows, and some preliminary definitions
are presented.

3.1.CrowdsourcingWorkflowSystem. A complex task, which
comes from a requester, is designed as a workflow that
consists of interdependent subtasks. )e focus is to dis-
tribute these subtasks to workers or machines and consider
cost and fairness. In other words, an allocation strategy is
designed and proposed. Figure 1 illustrates the basic
structure of the system, in which the fairness is considered a
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major factor in picking workers or machines. In this sce-
nario, a complex task submitted by a requester is first
converted to a workflow. )en, the crowdsourcing platform
identifies the nominees for each subtask to be allocated.
Candidates who come from nominees who volunteer to
accept the subtask are confirmed. Finally, the platform al-
locates the subtask to the candidate in accordance with the
allocation strategy. )e goal of this study is to optimize the
distribution strategy.

)e basic definitions are as follows.

Definition 1. Requesters are people who submit complex
tasks to the crowdsourcing platform. )e set of requesters is
represented as R � ri|i � 1, 2, . . . , n , where ri denotes the
i-th requester.

Definition 2. Workers are people who complete tasks and
earn money. )e set of workers is represented as
W � wi|i � 1, 2, . . . , n , where wi denotes the i-th worker.
Each worker is associated with a set of attributes
〈n1, n2, p,S, v〉. wi · n1 is the number of tasks allocated to
worker wi. wi · n2 is the number of accepted tasks. wi · p is
the probability of accepting a task. wi · S is a skill
vector(s1, s2, . . . , sm), where sj is a Boolean value that
identifies whether the worker wi has the j-th skill, and wi · v

is the lowest reward for completing a task.

Definition 3. Machines are a group of computing nodes that
consist of a series of computing services. )e set of machines
is represented asM � mi|i � 1, 2, . . . , n , where mi denotes
the i-th machine. Each machine is associated with a set of
attributes 〈n1, n2, p,S, v〉. mi · n1 is the number of tasks
allocated to machine mi. mi · n2 is the number of accepted
tasks. mi · p is the probability of accepting a task. mi · S is a
configuration vector (s1, s2, . . . , sm), where sj is a Boolean
value that identifies whether the machine mi has the j-th
configuration, and mi · v is the lowest reward for completing
a task.

Definition 4. Tasks can be defined as a set
T � ti|i � 1, 2, . . . , n , where ti denotes the i-th task. Each
task is associated with a set of attributes
〈p0, p1, q0, q1, q2, q3, v,S〉. ti · p0 is the type of task ti used to
classify a task as either machine or human (0 or 1,

respectively). ti · p1 is the business type of task ti, such as ui-
design, programming. ti · q0 is the start time of task ti. ti · q1 is
the receiving time of task ti. ti · q2 is the time required to
finish task ti. ti · q3 is the end time of task ti. ti · q0 and ti · q1
are dynamically changing in terms of workflow progress. ti ·

v tells the worker the amount of reward he will receive after
successfully completing a task on time. Initially, variable v

will not be assigned a value until available workers or
machines are found. ti · S1 is the condition vector which
must be satisfied to complete the task ti.

Definition 5. Fairness can be defined as an indicator that
shows two similar workers or machines with similar
probability of obtaining the same task. Two different workers
or machines are similar if they have similar availabilities. In
other words, the parameters p,S, and v of a worker or a
machine are similar in context.

3.2.WorkflowModel. )e workflow can be represented by a
directed graph that indicates the dependency of data and the
order of execution across tasks. )erefore, the workflow can
be defined as a quaternion: G � T,E{ }, where
T � ti|i � 1, 2, . . . , n  denotes the collection of task nodes.
|T| � n corresponds to the number of vertices in graph G.
Each node in the graph represents a human or machine task,
which is the smallest allocation unit. )e directional edge
e(i, j) ∈ E in the graph denotes the order of execution
between tasks ti and tj. tj cannot be executed until ti is
completed. )erefore, task ti is called the predecessor of task
tj, and task tj is the successor of task ti. In this study, pred(ti)

denotes the predecessor set of task ti, and ssucc(tj) denotes
the successor set of task tj. Start time is denoted as
ti · q0 � maxtk∈pred(ti )

(tk ·q1) + ti · q1. End time is denoted as
ti · q3 � ti · q0 + ti · q2.

3.3.Measurement of Fairness. In the context, fairness, which
is shown in Definition 5, is the probability that two similar
workers or machines accomplish the same task. )us, two
factors, that is, n1 and n2, are considered for measurement.
Each worker or machine is associated with a local allocation
ratio, that is, wi · p0 or mi · p0, respectively. )e meaning of
the two symbols, wi and mi, is interpreted in Definitions 2

WorkersRequesters Crowdsourcing platform

Modeling

Task
Workflow

Worker

Selection

Nominees
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Figure 1: Architecture of fair task allocation model.
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and 3. A worker’s and machine’s local allocation ratios can
be calculated using the two following equations, respectively.

wi · p0 �
wi · n1

wi · n2
, (1)

mi · p0 �
mi · n1

mi · n2
. (2)

)e fairness of the allocation strategy can be defined as
the proximity of local allocation ratios of similar workers or
machines. Accordingly, the fairness of each participant can
be calculated while crowdsourcing a workflow using the two
following equations:

Fairness wi(  � 1 −

����������������������
1

N − 1
 wi · p0 − wi · p0( 



, (3)

Fairness mi(  � 1 −

����������������������
1

N − 1
 mi · p0 − mi · p0( 



, (4)

where N is the number of similar workers or machines.

3.4. Formalization. In collaborative crowdsourcing scenar-
ios, the procedure of fairness-aware task allocation can be
formally described as follows. Given a workflow G, a set of
workersW, and a set of machinesM, the allocation of tasks
in the workflow to workers or machines maximizes the
overall fairness of the allocation strategy and minimizes the
total cost under the constraint of completing the total
workflow before the deadline.

Overall fairness: let Fairness(G) be the overall fairness,
which can be expressed as

Fairness(G) �


n
i�1 Fairness ni(  + 

n
j�1 Fairness mi( 

n + m
.

(5)

Total cost: Let Cost(G) be the total cost, which can be
expressed as

Cost(G) � 
m+n

k�1
tk · v. (6)

On the basis of equations (5) and (6), we formulate the
fundamental research problem of the fair allocation of the
workflow among workers and machines as an objective
function.

Maximize

Δ(G) � Fairness(G) − Cost(G), (7)

subject to

tm+n · q3 ≤Θ. (8)

4. Allocation Model

In this section, a two-phase allocation model is described in
detail. In this case, a requester, whose responsibility can be
found in Definition 1, submits a complex task with some

constraint conditions. )en, these tasks with conditions are
converted as a workflow.)e parameters ti · p0, ti · p1, ti · q1,
and ti · S, which are interpreted in Definition 4, are esti-
mated by the log of completed tasks. Other parameters
change with the completion progress of the workflow. )e
platform has knowledge on workers’ and machines’ pa-
rameters because the parameters are registered in the
platform in advance.

First, the appropriate set of workers and machines needs
to be found in accordance with the task’s constraint con-
ditions to allocate a task. )ese workers and machines are
called nominees. )ese workers are nominated to the task ti

if their conditions, the task accept ratio, and the available
vector satisfy the task’s constraints. )e same is true for a
nominated machine. In other words, the platform searches
participants among the given set of workers and machines
under the constraint conditions. )en, these similar nom-
inees are grouped together. A value determined by the
distribution of different groups’ reward is assigned to the
parameter ti · v. )e candidates are found by progressive
multicasting the task to k similar nominees in batches until
at least one candidate is found. )e parameter k is deter-
mined by the number of the members of two similar groups.

Second, one worker or one machine is picked from the
candidates. )e main goal of this step is to ensure that the
workflow can be completed before its deadline while min-
imizing the total cost and maximizing the overall fairness.
)us, the longest path of the workflow is calculated first to
satisfy the deadline. P denotes all the paths included in the
workflow G from the start node to the end node. Pℓ �

(in, t1, t2, . . . , tn, out) denotes the longest path in the set P.
Two virtual nodes, in and out, are added to the path Pℓ for
convenience and represent the start and the end node, re-
spectively. )e discovery process of the longest path Pℓ is
described using the pseudocode in Algorithm 1. In the
context, Algorithm 1 is used to check tm+n · q3 ≤Θ.

One available constraint solver can always be found to
solve the current problem. However, the computational
complexity is inevitable when using these solvers. )us,
heuristic strategies are used to deal with this issue instead of
the constraint solvers in this study. )e simplest allocation
strategy is random selection, which is also used as one
baseline in the following experimental evaluation. Picking
the most proper candidate is beneficial to maximize the
overall fairness on the basis of the goal maximizing the local
fairness. However, the strategy may result in additional
budgets. Similarly, the low-cost strategies may result in the
unfairness to workers.

A fairness-aware allocation algorithm called F-Aware is
designed to cope with such an issue, which is described in
Algorithm 2. )e algorithm greedily allocates each task to
the most desirable participant. )e details are as follows. For
each task in the workflowG � T,E{ }, the parameters p0, p1,
and S are manually initialized in accordance with the
characteristics of the task. q1 and q2 are estimated in ac-
cordance with the log of completed tasks. )e F-Aware first
calls Algorithm 1 to obtain the longest path Pℓ and checks
whether the workflow can be completed before the deadline.
Second, the algorithm finds the successive nodes of the start
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node in, searches nominees for each node, and confirms the
corresponding candidates. )ird, the algorithm sorts the
candidates in decreasing order of Δ(w) or Δ(m). Finally, the
current task is allocated to the top candidate.)e parameters
of the remaining tasks need to be updated after the task is
finished. )e process continues until all nodes are visited.

5. Performance Evaluation

In this section, we first analyze the complexity of the allo-
cation algorithm by Big O notation. )en, we evaluate so-
lutions through experiments on the basis of real-world
workflows. An object function O combing all optimization
goals is given as equation (9) to compare various solutions
easily and effectively.

O � Fairness(G) × e
−ρ×Cost(G)

. (9)

)e object function has the same tendency with
Fairness(G) because the goal is maximizing Fairness(G).
However, the exponential part decreases with the total cost
Cost(G). )e parameter ρ determines the importance of the
total cost Cost(G), where 0≤ ρ≤ 1. Only the fairness ob-
jective is considered when it is assigned to 0. )e total cost is
paid increasing attention with an increase in this parameter.

Two sets of experiments are conducted. In the first set,
the same dataset with different sizes is used to compare the
F-Aware with three other competitor algorithms from
runtime, fairness, cost, as well as the combination of fairness
and cost. )e random selection is considered one baseline.
)e strategy, which is most beneficial to the maximum of the
fairness objective, is considered as the second competitor.
)e intuition behind the strategy is finding a reasonable cost.
)e last strategy is most beneficial to theminimum total cost.
)e intuition behind the strategy is that an economic and
fair allocation solution can be found. )e second set of
experiments is performed to evaluate their performance on
the basis of the different datasets with the same scale.

5.1. Algorithm Complexity. Recall that the allocation algo-
rithm, that is, Algorithm 2, consists of a loop that includes
Algorithm 1 and a nested loop. If |T| � m, then the com-
plexity of the outer loop is O(m) in the worse case. For
Algorithm 1, the complexity isO(m) in the worse case.)us,
the complexity of Algorithm 2 is O(m2).

5.2. Experimental Setup. Setting up experimental environ-
ments for the crowdsourcing workflow is expensive and
difficult with limited resources. )us, the simulation tool,
WorkflowSim, is utilized to achieve our goals. )e Work-
flowSim is an extension based on the simulation tool,
CloudSim [37]. )is tool is used to simulate workflow
management and scheduling in a dynamic cloud environ-
ment. )e WorkflowSim has better accuracy and wider
support than existing solutions in terms of supporting DAG
and simulating scientific workflows in distributed envi-
ronments [38, 39].

)e proposed algorithms are implemented on the basis
of the WorkflowSim. )e class CondorVM is extended to
simulate a worker, in which the name of the corre-
sponding class is Worker. A machine is also implemented
on the basis of the class CondorVM, in which the codes are
the Machine class. )e class Job is extended to simulate a
crowd task, and the corresponding class is the class
CrowdTask. )e class CrowdWorkflowParser, which is
used to read real workflow datasets from external files to
generate suitable crowd tasks, is rewritten. )e package
org.workflowsim.crowdsourcing.scheduling includes the
above algorithms. )e basic crowdsourcing framework is
implemented on these classes, that is, CrowdWorkflowPlanner,
CrowdWorkflowClusteringEngine, CrowdBasicCluster-
ing, CrowdReclusteringEngine, CrowdWorkflowEngine,
CrowdWorkflowScheduler, and CrowdFailureGenerator,
in the context of crowdsourcing workflows. Readers can
find the code at the following URL: https://github.com/
hhluci/WorkflowSim-1.0.

Input: given workflow G � T,E{ }

Output: Pℓ � (in, t1, t2, . . . , tn, out)
(1) Let Pℓ � (in)

(2) Let current_node� in
(3) While current_node!� out Do
(4) Let S = ssucc(current node)
(5) Let longest_time� 0
(6) Let t be null
(7) For i� 1 to |S| Do
(8) If (ti · q1 + ti · q2) > longest_time �en
(9) longest_time� ti · q1 + ti · q2
(10) t � ti

(11) End If
(12) End For
(13) add t to Pℓ
(14) Let current_node� t

(15) End while
(16) return Pℓ

ALGORITHM 1: FindLongestPath().
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Five real workflow applications in the Pegasus project are
chosen to perform two sets of experiments.

CyberShake: this workflow is used by the Southern
California Earthquake Center to classify earthquake
alarms [40]
Epigenomics: this workflow uses DNA sequence lanes
to generate multiple lanes of DNA sequences [41]
Montage: this workflow is created by the NASA/IPAC
stitches to gather multiple input images for the creation
of custom mosaics of the sky [42]
Inspiral: this workflow is used to generate and analyze
gravitational waveforms from the data collected during
the coalescing of compact binary systems [43]
Sipht: this workflow is used in bioinformatics to search
for small nontranslated bacterial regulatory RNAs [44]

)e mentioned datasets are processed to meet the
current requirements after obtaining them from external
storage.

5.3. Experimental Results. In the first set of experiments, the
runtime, fairness, and cost are observed as a function of the
workflow size. )e experiments are performed on the
dataset, CyberShake workflows, with 30, 50, 100, and 1000
tasks. )e least reward v of a worker and a machine is
assigned using a normal distribution. )e mean is set to 0.3
cents, and the upper and lower limits are 0.1 and 0.6 cents,
respectively [45]. )e parameters in Definitions 2 and 3 are
initialized as follows: wi · p and mi · p are initialized using a

normal distribution. )e mean is set to 0.5, and the upper
and lower limits are 0.0 and 1.0, respectively.)e parameters
wi · S and mi · S are randomly initialized as a Boolean
vector with 10 elements.)ese workloads are scheduled on a
heterogeneous cloud infrastructure with 14 physical hosts,
10 virtual machines, and 10 virtual workers, which are
created using different types of virtual machines in terms of
MIPS, RAM, and BW. )e parameters in Definition 4 are
initialized as follows: )e parameter p0 is assigned by a
uniform distribution. q1 is initialized by a uniform distri-
bution, and the upper and lower limits are 0 and 24 h, re-
spectively. )e parameter q2 comes from the data file, and ρ
is set to 1.0. )e parameter k is determined by the member
number of the similar group.

Figure 2 presents the related results. In the figures, the x-
axis represents the number of tasks to allocate, whereas the
y-axis represents different metrics. Different series represent
different allocation algorithms. Figure 2(a) plots the running
time as a function of the number of tasks. As shown in
Figure 2, the difference between the algorithms is negligible
in terms of runtime on the small datasets. Figures 2(b) and
2(c) are discussed together because they are complementary
and plot the overall fairness and the total cost, respectively,
as a function of the number of tasks. As shown in
Figure 2(b), the F-Aware and the Max_Fairness are better
than the Random and the Min_Cost. )e advantages are
highlighted at the large dataset. )e F-Aware is lower than
the Max_Fairness. For 1000 tasks, the Max_Fairness reaches
0.98, whereas the F-Aware is 0.06 less than its competitor.
)e F-Aware immensely surpasses the Max_Fairness, as
shown in Figure 2(c). )e Max_Fairness costs 376 cents to

Input: given workflow: G � T,E{ }

Output: {totalCost, overallFairness, completedTime}
(1) for ti ∈ T, initialize p0, p1, S, q1 and q2
(2) While |T| > 0 Do
(3) Get Pℓ � (in, t1, t2, . . . , tn, out) by calling findLongestPath ()
(4) If tn · q3 ≤Θ �en
(5) Let current_node� in
(6) Let S= ssucc(current node)
(7) For i� 1 to |S| Do
(8) Get the list of nominees for ti

(9) Group nominees by similarity
(10) Set ti · v for each group
(11) Get candidates by multicasting k nominees by group
(12) Calculate the overallFairness
(13) Calculate the indicator Δ(w) or Δ(m) for all candidates
(14) Sort the list by Δ(w) or Δ(m)

(15) Select the top candidate for ti

(16) Remove ti from G

(17) totalCost +� ti · v

(18) completedTime� ti · q3
(19) End For
(20) Update parameters of remaining tasks after finishing S
(21) End If
(22) End While
(23) return {totalCost, overallFairness, completedTime}

ALGORITHM 2: TaskAllocation().
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complete a workflow with 1000 tasks, whereas the F-Aware
costs only 347 cents. One hundred tasks can be completed
for 29 cents because the average cost of a task is 0.3 cents.
)is finding exhibits the remarkable difference between the
two algorithms on the metric.

Figure 2(d) presents the performance of algorithms in
terms of the objective, equation (9) as a function of fairness
and cost. In the experiment, ρ is set to 1.0 to observe the
balanced outcome of fairness and cost. Notably, the object
function decreases with the increase in task count in the
figure. )e cost increases faster than the fairness with in-
creasing task count because the increase in the cost results in
the decrease of the object function. As shown in Figure 2, the
F-Aware performs better than the Max_Fairness in terms of
the objective.)emaximum gap between the two algorithms
is 1%. )e Random and the Min_Cost allocation algorithms
show low balance.

)e Max_Fairness is the best competitor of F-Aware if
fairness is considered. Only the Min_Cost can match the

F-Aware when only the cost is considered. )e F-Aware is
the best option when the two factors are considered.

In the second set of experiments, the same metrics are
used as the first set of experiments on the basis of different
datasets with the same scale. )e CyberShake_1000, the
Epigenomics_997, the Inspiral_1000, the Montage_1000,
and the Sipht_1000 are applied. Figure 3 presents the related
results. Figure 3(a) shows the runtime in different work-
flows. )e difference between the algorithms is small. )e
F-Aware performs slightly better than the Max_Fairness.
)e Min_Cost performs poorly in terms of runtime.
Figure 3(b) illustrates the fairness in different workflows.)e
F-Aware and theMax_Fairness are superior to theMin_Cost
and the Random on all datasets. )eMax_Fairness performs
approximately 6% better than the F-Aware on other datasets.
However, one requester may pay more by using the
Max_Fairness than by using the F-Aware, which is shown in
Figure 3(c). Figure 3(d) confirms that the F-Aware can find
the tradeoff between fairness and cost, thereby increasing
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Figure 2: Comparison of the same dataset. (a) Runtime. (b) Fairness. (c) Cost. (d) Object Function.

8 Mathematical Problems in Engineering



fairness while maintaining low cost. In summary, the
F-Aware is better than other algorithms in terms of fairness
and cost.

6. Conclusion

Requester-centric task allocation algorithms are discrimi-
natory for workers. Strategies are presented to bridge such a
gap in this study. )is study is valuable in addressing
crowdsourcing problems, but the strategies presented here
are directed to solve the crowdsourcing workflow. A

combined optimal function is designed to maximize the
overall fairness andminimize the total cost. In the two-phase
allocation model, a set of nominees are identified using the
availabilities of the participants for each task. )e task is
allocated to nominees by using a batch progressive strategy
for determining the candidates. )e batch size is determined
by the size of the similar group. )e problem can be reduced
to a multiobjective optimal problem when the candidates are
identified for one task. Four heuristic strategies are designed
to solve the problem to avoid the computational complexity
trouble. )ese strategies are tested on the basis of the
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Figure 3: Comparison of different datasets. (a) Runtime. (b) Fairness. (c) Cost. (d) Object Function.
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WorkflowSim by using scientific workflow benchmarks. )e
evaluation has shown that the F-Aware outperforms other
optimal solutions in finding the tradeoff between fairness
and cost. )e F-Aware performs better than the best
competitor algorithm, Max_Fairness.

)e experimental evaluation shows that the tradeoff
between fairness and cost can be found for a crowdsourcing
workflow. Heuristic strategies can effectively increase the
overall fairness and maintain a proper cost. )e long-term
effects of fairness-aware task allocation strategies in real
crowdsourcing workflow platforms should be evaluated in
future studies.
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