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Of interest is a wave equation with memory-type boundary oscillations, in which the forced oscillations of the rod is given by a
memory term at the boundary. We establish a new general decay rate to the system. And it possesses the character of damped
oscillations and tends to a finite value for a large time. By assuming the resolvent kernel that is more general than those in previous
papers, we establish a more general energy decay result. Hence the result improves earlier results in the literature.

1. Introduction

It is well-known that if we add a damping to a system, the
amplitude of the oscillations can be reduced very fast. )e
memory term can be as a damping (viscoelastic damping)
which is weaker than frictional damping. For viscoelastic
materials, Boltzmann theory gives us that the stress-strain
viscoelastic law depending on a relaxation measure, see
Prüss [1] and Eden et al. [2]. Based on the Boltzmann
principle, the viscoelastic stress-strain relations can be
generally given by a convolution term, which can be
regarded as a lower order perturbation and can also be
regarded as a kind of memory effect, for instance, g∗u. And
we call the function g(t) memory kernel. One can find a
detail derivation on some systems with memory in [3].

To motivate our work, we start with some known results
on wave equation with memory-type oscillations. )e

general wave equation with viscoelastic term in the internal
feedback

utt − Δu + 􏽚
t

0
g(t − s)Δu(s)ds � F(u). (1)

Messaoudi and Messaoudi [4, 5] studied F(u) � 0 and
F(u) � |u|ρu, by introducing the assumption
g′(t)≤ − ξ(t)g(t), and obtained the energy decays expo-
nentially (polynomially) as g decays exponentially (poly-
nomially), respectively.

Lasiecka et al. [6] considered the general assumption on
g: g′(t)≤ − H(g(t)) to establish general decay of energy.
Here H, which was introduced by Alabau-Boussouira and
Cannarsa [7], is strictly convex and increasing function.
Cavalcanti et al. [8, 9], Lasiecka andWang [10], Mustafa and
Messaoudi [11], and Xiao and Liang [12] also used this
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assumption to obtain some general decay rates of corre-
sponding models. In recent papers [13–15], the authors
investigated three classes of viscoelastic wave equation as in
[4, 5] and established optimal and explicit decay results of
energy by adopting the assumption on g:
g′(t)≤ − ξ(t)H(g(t)).

In this paper, we considered the following wave equation
with boundary oscillations of memory type:

utt − Δu � 0, inΩ × R
+
,

u � 0, on Γ0 × R
+
,

u + 􏽚
t

0
g(t − s)

zu

z]
(s)ds � 0, on Γ1 × R

+
,

u(x, 0) � u0(x),

ut(x, 0) � u1(x), x ∈ Ω,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

where Ω ⊂ Rn(n≥ 1) is a bounded domain with smooth
boundary Γ, Γ � Γ0 ∪ Γ1, and Γ0 and Γ1 are closed and
disjoint with measure (Γ0)> 0. ] is the unit outward normal
to Γ.

For wave equation with memory-type boundary oscil-
lations, it can be regarded as a wave equation with visco-
elastic damping at the boundary. Santos [16] considered a
one-dimensional wave equation with memory conditions at
the boundary, respectively. He proved that the energy of
solutions decays exponentially (polynomially) as k and k′
decay exponentially (polynomially). Here k is the resolvent
kernel of (− g′/g(0)). Santos et al. [17] extended the results
in [16] to an n-dimensional wave equation of Kirchhoff type
with memory-type boundary. )ey proved the global exis-
tence of solutions and obtained that the energy of solution
decays uniformly with the same rate of decay k under the
same conditions on k and k′, which improves the results in
[18] by Park et al. Santos and Junior [19] obtained a similar
result for plate equation with memory-type boundary. We
also mention the work of Cavalcanti et al. [20], where the
authors showed the global existence and the uniform decay
of solutions to a semilinear wave equation with memory-
type boundary condition and a nonlinear boundary source.
Messaoudi and Soufyane [21] considered a general as-
sumption on k′: k″ ≥ − ξ(t)k′(t) and established a general
decay result. Wu [22] used this assumption to study a wave
Kirchhoff-type wave equation with a boundary control of
memory type. For nonlinear wave equations with memory-
type boundary condition, we refer to Cavalcanti and
Guesmia [23], Feng [24], Feng et al. [25–27], Muñoz Rivera
and Andrade [28], and Zhang [29].

Concerning the system (2), Mustafa [30], by assuming
the function k: k″(t)≥H(− k′(t)), where k is the resolvent
kernel of (− g′/g(0)), established a general decay of solutions
of the form

E(t)≤ k3H
− 1
1 k1t + k2( 􏼁, ∀t≥ 0. (3)

Here

H1(t) � 􏽚
1

t

1
sH0′ ε0s( 􏼁

ds,

H0(t) � H(D(t)),

(4)

and D is a positive C1 function with D(0) � 0, and H0 is
strictly increasing and strictly convex C2 function on (0, r].
In particular, for H(t) � tp, i.e., k″ ≥ c(− k′)p, the author
proved the energy decay holds for 1≤p< (3/2). Whether
can the range be extended to a more larger range? In this
paper, we give a positive answer to study problem (2) and
extend the result to get a more general decay rate. In par-
ticular, we obtain that the energy result holds for H(t) � tp

with the full admissible range 1≤p< 2. More exactly, by
assuming the relaxation function k with minimal conditions
on L1(0,∞), i.e., k″(t)≥ η(t)H(− k′(t)), where H is linear
or strictly increasing and strictly convex functions of class
C2(R+), we establish an optimal explicit and general energy
decay result. In particular, the energy result holds for H(t) �

tp with the range p ∈ [1, 2) instead of p ∈ [1, (3/2)) in [30].
Hence our results extend and improve the stability results in
[30] and also in [16–18, 21]. We mainly adopt the idea of
[14, 15, 31] and some properties of convex function de-
veloped in [7, 32].

)e remaining of the paper is organized as follows: in
Section 2, we propose some preliminaries. In Section 3, main
results are given. Section 4 is devoted to proving the general
decay result.

2. Preliminaries

Taking the derivative of (2) with respect to t, we shall see that

zu

z]
� −

1
g(0)

ut + g2′ ∗
zu

z]
􏼢 􏼣. (5)

We denote the resolvent kernel of (− g′/g(0)) by k

satisfying for t≥ 0:

k(t) +
1

g(0)
g′
∗
k􏼐 􏼑(t) � −

1
g(0)

g′(t). (6)

Using Volterra’s inverse operator and taking
α � (1/g(0)), we have

zu

z]
� − α ut + k2 ∗ ut􏼂 􏼃. (7)

Assume u0 � 0 on Γ1 in this paper, we get

zu

z]
� − α ut + k(0) + k∗ u􏼂 􏼃, on Γ1 × R

+
. (8)

In the following, we use boundary conditions (8) instead
of (2).

As in [30], we consider the following assumption:
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(A1) )ere exists a fixed point x0 ∈ R2 and some con-
stant δ0 > 0 such that for m(x) � x − x0,

Γ0 � x ∈ Γ: m(x) · ](x)≤ 0{ },

Γ1 � x ∈ Γ: m(x) · ](x)≥ δ0􏼈 􏼉.
(9)

For the kernel k, we assume
(A2) k: R+⟶ R+ is nonincreasing and twice differ-

entiable function satisfying for any t≥ 0,

k(0)> 0,

k′(t)≤ 0.
(10)

(A3) )ere exist a C1 function H: R+⟶ R+, with
H(0) � H′(0) � 0, which is linear or is strictly
increasing and strictly convex function of class
C2(R+) on (0, r], r≤ − k′(0) such that

k″(t)≥ η(t)H − k′(t)( 􏼁, ∀t≥ 0, (11)

where η(t) is C1 nonincreasing continuous
function.

Remark 2.1. If assuming further limt⟶∞k(t) � 0, since
limt⟶∞k(t) � 0 and (− k′(t)) is nonincreasing and non-
negative, we can get

limt⟶∞ − k′(t)( 􏼁 � 0. (12)

)en for some t1 ≥ 0 large,

− k′ t1( 􏼁 � r⇒ − k′(t)≤ r, ∀t≥ t1. (13)

Noting that (− k′) is nonincreasing, − k′(0)> 0, and
− k′(t1)> 0, we have − k′(t1)> 0 for any t ∈ [0, t1], and for
any t ∈ [0, t1],

0< − k′ t1( 􏼁≤ − k′(t)≤ − k′(0),

0< η t1( 􏼁≤ η(t)≤ η(0).
(14)

)erefore we obtain that there exist two positive con-
stants a and b such that for any t ∈ [0, t1],

a≤ η(t)H − k′(t)( 􏼁≤ b. (15)

)en for any t ∈ [0, t1],

k″(t)≥ η(t)H − k′(t)( 􏼁≥ a �
a

k′(0)
k′(0)≥

a

k′(0)
k′(t).

(16)

)is implies that there exists a constant d> 0 such that
for any t ∈ [0, t1],

k″(t)≥ − dk′(t). (17)

)e proof is done.

3. Main Results

)e well-posedness result is given in [30] proved by using
the Faedo–Galerkin method as in [17].

Theorem 1. Assume that (A1) and (A2) hold. Let
(u0, u1) ∈ (H2(Ω)∩V) × V, and then problem (2) admits a
unique solution u satisfying

u ∈ L
∞ 0, T; H

2
(Ω)∩V􏼐 􏼑∩W

1,∞
(0, T; V)

∩W
2,∞ 0, T; L

2
(Ω)􏼐 􏼑,

(18)

where V � v ∈ H1(Ω): v � 0 on Γ0􏼈 􏼉.

)e total energy of the system is defined by

E(t) �
1
2

ut

����
����
2

+
1
2
‖∇u‖

2
+
α
2

k(t)‖u‖
2
Γ1 − 􏽚

Γ1
k′°u dΓ􏼢 􏼣,

(19)

where

(k ∘ u)(t) � 􏽚
t

0
k(t − s)[u(t) − u(s)]

2ds. (20)

We can get the following stability result.

Theorem 2. Assume k satisfies (A1)–(A3) and further
limt⟶∞k(t) � 0. 4en there exist λ1, λ2 > 0 such that

E(t)≤ λ2H
− 1
4 λ1 􏽚

t

K− 1(r)
η(s)ds􏼠 􏼡, ∀t>K

− 1
(r), (21)

where

H4(t) � 􏽚
r

t

1
sH0(s)

ds,

H0(t) � H′(t),

(22)

and K(t) � − k′(t). In particular, if H(t) � tp, then for any
t> 0,

E(t)≤
c1e

− c2 􏽚
t

0
η(s)ds

, if p � 1,

c3 1 + 􏽚
t

0
η(s)ds􏼠 􏼡

− (1/(p− 1))

, if 1<p< 2,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(23)

where c1, c3, and c2 ≤ 1 are positive constants.

Remark 3.1. From (23), the energy result holds for H(t) �

tp with the full admissible range p ∈ [1, 2) instead of
p ∈ [1, (3/2)). If the viscoelastic term is as internal feedback,
Lasiecka and Wang [10] provided the proof for optimal
decay rates of second-order systems in the full admissible
range [1, 2).

At last, we show two examples to illustrate explicit
formulas for the decay rates of the energy, which can be
found in the studies of Mustafa and Mustafa [14, 15].

Example 1. Take k′(t) � − e− tq with 0< q< 1, we get
k″(t) � H(− k′(t)), where H(t) � ((qt)/([ln(1/t)](1/q)− 1)).
Since
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H′(t) �
(1 − q) + q ln(1/t)

[ln(1/t)](1/q)
,

H″(t) �
(1 − q)[ln(1/t) +(1/q)]

[ln(1/t)]((1/q)+1)
,

(24)

we can deduce that the function H satisfies (A3) on (0, r] for
any 0< r< 1. )en,

E(t)≤ c1e
− c2tq

. (25)

Example 2. Consider k′(t) � (− 1/((t + e)[ln(t + e)]p)) with
p> 1, we get
k″(t) � ([ln(t + e) + p]/((t + e)2[ln(t + e)]p+1)). Clearly,

k″(t) �
[ln(t + e) + p]

(t + e)ln(t + e)
− k′(t)􏼂 􏼃. (26)

By part 1 of (23), we get

E(t)≤ c1 exp − c2 􏽚
t

0

[ln(t + e) + p]

(t + e)ln(t + e)
ds􏼠 􏼡

�
c1

(t + e)(ln(t + e))
p

􏼂 􏼃
c2

.

(27)

As c2 ≤ 1, this is slower rate than [− k′(t)]. In addition,

k″(t) �
[ln(t + e) + p]

(t + e)
(1− (1/p))

− k′(t)( 􏼁
(1+(1/p))

. (28)

From part 2 of (23), we infer that for large t

E(t)c3 1 + 􏽚
t

0

ln(t + e) + p

(t + e)1− (1/p)
ds􏼠 􏼡

− p

≤
c3

(t + e)[ln(t + e)]
p,

(29)

which is the same rate as [− k′(t)].

4. Proof of Main Result

To prove )eorem 2, we need the following lemmas.

4.1. Technical Lemmas

Lemma 1. 4e total energy functional E(t) satisfies for any
t≥ 0,

E′(t)≤ −
α
2

ut

����
����
2
Γ1

+ 􏽚
Γ1

k″°udΓ􏼠 􏼡≤ 0. (30)

Proof. See [30]. □

As in [31], for 0< δ < 1, we introduce

Cδ � 􏽚
∞

0

k′(s)􏼂 􏼃
2

k″(s) − δk′(s)
ds,

h(t) � k″(s) − δk′(s).

(31)

Lemma 2. Define the functional Φ(t) by

Φ(t) ≔ 􏽚
Ω

[2m · ∇u +(n − 1)u]utdx. (32)

)en we can get for any t≥ t1,

Φ′(t)≤ − ut

����
����
2

−
1
2
‖∇u‖

2
+ c ut

����
����
2
Γ1

+ Cδ􏽚
Γ1

h ∘ udΓ. (33)

Proof. From the same arguments as in the study of Mustafa
[30], we can obtain

Φ′(t)≤ − ut

����
����
2

− ‖∇u‖
2

− δ0‖∇u‖
2
Γ1 + 􏽚

Γ1
(m · ]) ut

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dΓ

+ 􏽚
Γ1

(2m · ∇u)
zu

z]
dΓ +(n − 1)􏽚

Γ1
u

zu

z]
dΓ.

(34)

It follows from Young’s inequality that for any ε> 0,

􏽚
Γ1

(2m · ∇u)
zu

z]
dΓ +(n − 1)􏽚

Γ1
u

zu

z]
dΓ

≤ δ0‖∇u‖
2
Γ1 + ε‖u‖

2
Γ1 + c

zu

z]

�������

�������

2

Γ1
.

(35)

Recalling k′ ∗ u � (− k′ ⊙ u) + [k(t) − k(0)]u, where
k⊙ u � 􏽒

t

0 k(t − s)(u(t) − u(s))ds; then we have from (8),

zu

z]
(t) � − α ut(t) + k(t)u(t) + − k′ ⊙ u( 􏼁(t)􏼂 􏼃. (36)

By using Young’s inequality, we obtain
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zu

z]
(t)

�������

�������

2

Γ1
≤ 4α2 ut

����
����
2
Γ1

+ k
2
(t)‖u‖

2
Γ1 + 􏽚

Γ1
− k′ ⊙ u( 􏼁

2dΓ􏼢 􏼣.

(37)

Hölder’s inequality implies

− k′ ⊙ u( 􏼁
2

� 􏽚
t

0
− k′(t − s)( 􏼁(u(t) − u(s))ds􏼠 􏼡

2

� 􏽚
t

0

− k′(t − s)
�������������������
k″(t − s) − δk′(t − s)

􏽰

������������������

k″(t − s) − δk′(t − s)

􏽱

(u(t) − u(s))ds􏼠 􏼡

2

≤ 􏽚
t

0

k′(s)􏼂 􏼃
2

k″(s) − δk′(s)
ds⎛⎝ ⎞⎠ 􏽚

t

0
k″(t − s) − δk′(t − s)( 􏼁(u(t) − u(s))

2ds

≤Cδ(h ∘ u),

(38)

which, together with (37), gives us that

zu

z]
(t)

�������

�������

2

Γ1
≤ 4α2 ut

����
����
2
Γ1

+ k
2
(t)‖u‖

2
Γ1 + Cδ􏽚

Γ1
(h ∘ u)dΓ􏼢 􏼣.

(39)

Inserting (39) into (35), we obtain for any ε> 0,

􏽚
Γ1

(2m · ∇u)
zu

z]
dΓ +(n − 1)􏽚

Γ1
u

zu

z]
dΓ

≤ δ0‖∇u‖
2
Γ1 + ε + 4α2k2

(t)􏼐 􏼑‖u‖
2
Γ1

+ 4α2c ut

����
����
2
Γ1

+ Cδ􏽚
Γ1

(h ∘ u)dΓ.

(40)

Noting that

‖u‖
2
Γ1 ≤ c‖∇u‖

2
, (41)

using limt⟶∞k(t) � 0 and taking ε> 0 small enough, we
can get (33) from (34) and (40). )e proof is done. □

To get the optimal energy decay, we need the following
estimate.

Lemma 3. 4e functional Ψ(t) is defined by

Ψ(t) ≔ 􏽚
t

0
k(t − s)‖u(s)‖

2
Γ1ds, (42)

which satisfies for any t> 0,

Ψ′(t)≤
1
2

􏽚
Γ1

k′°udΓ + 3k(0)‖u(t)‖
2
Γ1 . (43)

Proof. Differentiating Ψ(t) with respect to t, we get

Ψ′(t) � k2(0)‖u(t)‖
2
Γ1 + 􏽚

t

0
k2′(t − s)‖u(s)‖

2
Γ1ds

� 􏽚
t

0
k′(t − s)􏽚

Γ1
[u(s) − u(t)]

2dΓds + k(t)‖u(t)‖
2
Γ2

+ 2􏽚
Γ1

u(t) 􏽚
t

0
k′(t − s)[u(s) − u(t)]dsdΓ.

(44)

In view of Young’s and Hölder’s inequalities, we obtain

2􏽚
Γ1

u(t) 􏽚
t

0
k′(t − s) u(s) − u(t)

������

a
2

+ b
2

􏽱

􏼢 􏼣dsdΓ

≤ 2k(0)􏽚
Γ1

u
2
(t)dΓ +

1
2k(0)

􏽚
Γ1

􏽚
t

0

��������

− k′(t − s)

􏽱 ��������

− k′(t − s)

􏽱

[u(s) − u(t)]ds􏼠 􏼡

2

dΓ

≤ 2k(0)‖u(t)‖
2
Γ1 +

􏽒
t

0 k′(s)ds

2k(0)
􏽚

t

0
k′(t − s)‖u(s) − u(t)‖

2
Γ1ds.

(45)
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)en we can get (43) following from the fact

k(t)≤ k(0),

􏽒
t

0 k′(s)ds

2k(0)
≥ −

1
2
.

(46)

)e proof is complete. □

4.2. Proof of 4eorem 2

Proof. Define the functional L(t) by

L(t) ≔ NE(t) +Φ(t), (47)

where N> 0 is a constant that will be taken later. Clearly we
can take N a large value to get

L(t) ∼ E(t). (48)

Recalling k″ � δk′ + h, combining (30) and (33), we
conclude that for any t> t1,

L′(t)≤ −
α
2

N − c􏼒 􏼓 ut

����
����
2
Γ1

− ut

����
����
2

−
1
2
‖∇u‖

2

· −
α
2

Nδ􏽚
Γ1

k′°udΓ −
α
2

N − cCδ􏼒 􏼓􏽚
Γ1

h°udΓ.
(49)

Noting − k′ > 0 and k″ > 0, for each s ∈ [0,∞), we shall
see below,

lim
δ⟶0

δ k′(s)􏼂 􏼃
2

k″(s) − δk′(s)
ds � 0,

δ k′(s)􏼂 􏼃
2

k″(s) − δk′(s)
< − k′(s).

(50)

It follows from Lebesgue dominated convergence the-
orem that

lim
δ⟶0

δCδ � lim
δ⟶0

l 􏽚
∞

0

δ k′(s)􏼂 􏼃
2

k″(s) − δk′(s)
ds � 0. (51)

)erefore there exist 0< c< 1 such that if δ < c, then

δCδ <
1
4c

. (52)

And then we choose N a larger value that
α
2

N − c> 4k(0), (53)

and take δ > 0 satisfying

δ �
1

2αN
< c. (54)

)is implies
α
2

N − cCδ > 0. (55)

)en there exists a positive constant β such that for large
t1 > 0,

L′(t)≤ − β ut

����
����
2

+‖∇u‖
2

􏼒 􏼓 − 4k(0) ut

����
����
2
Γ1

−
1
4

􏽚
Γ1

k′°udΓ, ∀t≥ t1.

(56)

By (17) and (30), we get

􏽚
t1

0
− k′(s)( 􏼁􏽚

Γ1
[u(t) − u(t − s)]

2dΓds

≤
1
d

􏽚
t1

0
k″(s)􏽚

Γ1
[u(t) − u(t − s)]

2dΓds≤ − cE′(t).

(57)

)en from (56), we infer that there exists a constant χ > 0
such that

L′(t)≤ − χE(t) − c 􏽚
t

0
k′(s)􏽚

Γ1
[u(t) − u(t − s)]

2dΓds

≤ − χE(t) − cE′(t) − c 􏽚
t

t1

k′(s)􏽚
Γ1

[u(t) − u(t − s)]
2dΓds.

(58)

Denoting F(t) ≔ L(t) + cE(t) ∼ E(t), and using (58),
we know that

F′(t)≤ − χE(t) − c 􏽚
t

t1

k2′(s)􏽚
Γ1

[u(t) − u(t − s)]
2dΓds.

(59)

In the sequel, we consider two cases.

Case 1. )e particular case H(t) � tp.

(I) p � 1.
Multiplying (59) by η(t), and using (19) and (A2)-(A3),
we have

η(t)F′(t)≤ − χη(t)E(t) − cE′(t), ∀t≥ t1. (60)

Since η(t) is a nonincreasing continuous function and
η′(t)≤ 0 for a.e. t, then

(ηF + cE)′(t)≤ η(t)F′(t) + cE′(t)

≤ − mη(t)E(t), a.e. t≥ t1.
(61)

In view of ηF + cE ∼ E, we obtain that there exist two
positive constants c1, c2 > 0,

E(t)≤ c1e
− c2 􏽚

t

t1

η(s)ds
.

(62)

(II) 1<p< 2.
Define G(t) by

G(t) � L(t) + Ψ(t). (63)

It follows from (43) and (56) that E(t)≥ 0, and for any
t≥ t1,
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G′(t)≤ − β ut

����
����
2

+‖∇u‖
2

􏼒 􏼓 − k(0) ut

����
����
2
Γ1

+
1
4

􏽚
Γ1

k′°udΓ.

(64)

)en there exists a certain constant β1 > 0,

G′(t)≤ − β1E(t), ∀t≥ t1. (65)

)is gives us

β1 􏽚
t

t1

E(s)ds≤G t1( 􏼁 − G(t)≤G t1( 􏼁. (66)

Hence

􏽚
∞

0
E(s)ds<∞. (67)

Define

I(t) � 􏽚
t

0
􏽚
Γ1

[u(t) − u(t − s)]
2dΓds, (68)

we know that

I(t)≤ c 􏽚
t

0
E(s)ds. (69)

Without loss of generality assuming t1 so large that
I(t1)> 0, then

0< I t1( 􏼁≤ I(t)<∞, ∀t≥ t1. (70)

Using Jensen’s inequality and by (30) and (A2)-(A3),
we can derive from (56) that for some constant q> 0,

L′(t)≤ − qE(t) +
cI(t)

I(t)
􏽚
Γ1

− k′( 􏼁
p·(1/p) ∘ u􏼔 􏼕dΓ

≤ − qE(t) + cI(t)
1

I(t)
􏽚
Γ1

− k′( 􏼁
p ∘ udΓ􏼢 􏼣

(1/p)

≤ − qE(t) + cI
1− (1/p)

(t) 􏽚
Γ1

k″
η
∘ udΓ􏼢 􏼣

(1/p)

≤ − qE(t) +
c

[η(t)]
(1/p)

􏽚
Γ1

k″ ∘ udΓ􏼢 􏼣

(1/p)

≤ − qE(t) +
c

[η(t)]
(1/p)

− E′(t)􏼂 􏼃
(1/p)

.

(71)

We multiply (71) by Ep− 1(t) and use (19) to deduce

LE
p− 1

􏼐 􏼑′(t)≤L′(t)E
p− 1

(t)≤ − qE
p
(t)

+c −
E′(t)

η(t)
􏼢 􏼣

(1/p)

E
p− 1

(t).

(72)

By Young’s inequality, we have for any ε1 > 0,

LE
p− 1

􏼐 􏼑′(t)≤ − qE
p
(t) + ε1E

p
(t) +

c

ε1
−
E′(t)

η(t)
􏼢 􏼣.

(73)

Taking ε1 < (1/2)q, we conclude

LE
p− 1

􏼐 􏼑′(t)≤ −
q

2
E

p
(t) − c

E′(t)

η(t)
. (74)

Define F(t) � ηLEp− 1 + cE ∼ E. Multiplying (74) by
η(t), we have

F′(t)≤ −
q

2
η(t)E

p
(t). (75)

)en there exists a certain constant q0 > 0 such that

F′(t)≤ − q0η(t)F
p
(t), (76)

from which we obtain

E(t)≤ c3 1 + 􏽚
t

0
η(s)ds􏼠 􏼡

− (1/(p− 1))

, (77)

where c3 is a positive constant.
Combining (I) and (II) and using the boundedness of
η(t) and E(t), we can get (23).

Case 2. )e general case.
Define

I(t) ≔ q 􏽚
t

t1

􏽚
Γ1

[u(t) − u(t − s)]
2dΓds. (78)

In view of (67), we can take 0< q< 1 such that

I(t)< 1, ∀t≥ t1. (79)

Without loss of generality, we assume that I(t)> 0 for all
t≥ t1. On the other hand, we define

π(t) ≔ 􏽚
t

t1

k″(s)􏽚
Γ1

[u(t) − u(t − s)]
2dΓds. (80)

From (30), we can easily get π(t)≤ − cΕ′(t). As H(t) is
strictly convex on (0, r] and H(0) � 0, we see that
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H(λx)≤ λH(x), i � 1, 2, 0≤ λ≤ 1, x ∈ (0, r]. (81) It follows from Jensen’s inequality and (11) and (79) that

π1(t) �
1

qI(t)
􏽚

t

t1

I(t) k″(s)( 􏼁q􏽚
Γ1

[u(t) − u(t − s)]
2dΓds

≥
1

qI(t)
􏽚

t

t1

I(t)η(s)H − k′(s)( 􏼁q􏽚
Γ1

[u(t) − u(t − s)]
2dΓds

≥
η(t)

qI(t)
􏽚

t

t1

H I(t) − k′(s)( 􏼁( 􏼁q􏽚
Γ1

[u(t) − u(t − s)]
2dΓds

≥
η(t)

q
H

1
I(t)

􏽚
t

t1

I(t) − k′(s)( 􏼁q􏽚
Γ1

[u(t) − u(t − s)]
2dΓds􏼠 􏼡

�
η(t)

q
H q 􏽚

t

t1

− k′( 􏼁(s)􏽚
Γ1

[u(t) − u(t − s)]
2dΓds􏼠 􏼡

�
η(t)

q
H q 􏽚

t

t1

− k′(s)( 􏼁􏽚
Γ1

[u(t) − u(t − s)]
2dΓds􏼠 􏼡,

(82)

where H, which is strictly convex and increasing function on
(0,∞) of class C2, is called the extension of H. We infer
from (82) that

􏽚
t

t1

− k′(s)( 􏼁􏽚
Γ1

[u(t) − u(t − s)]
2dΓds≤

1
q
H

− 1 qπ(t)

η(t)
􏼠 􏼡.

(83)

)en we can get from (59) that for any t≥ t1,

F′(t)≤ − χE(t) + cH
− 1 qπ(t)

η(t)
􏼠 􏼡. (84)

Denote

H0(t) � H′(t). (85)

For r0 < r, we define K1(t) by

K1(t) � H0 r0
E(t)

E(0)
􏼠 􏼡F(t) + E(t) ∼ E(t). (86)

Since E′(t)≤ 0, H′ > 0, and H″ > 0, we get from (84) that

K1′(t) � r0
E′(t)

E(0)
H0′ r0

E(t)

E(0)
􏼠 􏼡F(t) + H0 r0

E(t)

E(0)
􏼠 􏼡F′(t) + E′(t)

≤ − mE(t)H0 r0
E(t)

E(0)
􏼠 􏼡 + cH0 r0

E(t)

E(0)
􏼠 􏼡H

− 1 qπ(t)

η(t)
􏼠 􏼡.

(87)

We denote by H
∗ the conjugate function of the convex

function H (see Arnold [33]), and then

H
∗
(s) � s H′( 􏼁

− 1
(s) − H H′( 􏼁

− 1
(s)􏼔 􏼕 (88)

satisfies Young’s inequality,

AB≤H
∗
(A) + H(B). (89)
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Taking A � H0′(r0(Ε(t)/Ε(0))) and B � H
− 1

((qπ(t))

/η(t)), and using H
∗
(s)≤ s(H′)− 1(s) and (87), we have

K1′(t)≤ − χE(t)H0 r0
E(t)

E(0)
􏼠 􏼡 + cH

∗
H0 r0

E(t)

E(0)
􏼠 􏼡􏼠 􏼡 + c

qπ(t)

η(t)

≤ − χE(t)H0 r0
E(t)

E(0)
􏼠 􏼡 + cH0 r0

E(t)

E(0)
􏼠 􏼡 H′( 􏼁

− 1
H0 r0

E(t)

E(0)
􏼠 􏼡􏼠 􏼡 + c

qπ(t)

η(t)

≤ − χE(t)H0 r0
E(t)

E(0)
􏼠 􏼡 + cH0 r0

E(t)

E(0)
􏼠 􏼡 H′( 􏼁

− 1
H′ r0

E(t)

E(0)
􏼠 􏼡􏼠 􏼡 + c

qπ(t)

η(t)

≤ − χE(0) − cr0( 􏼁
E(t)

E(0)
H0 r0

E(t)

E(0)
􏼠 􏼡 + cq

π(t)

η1(t)
.

(90)

We multiply (90) by η(t) to arrive at

η(t)K1′(t)≤ − χE(0) − cr0( 􏼁η(t)
E(t)

E(0)
H0 r0

E(t)

E(0)
􏼠 􏼡 + cqπ(t)

≤ − χE(0) − cr0( 􏼁η(t)
E(t)

E(0)
H0 r0

E(t)

E(0)
􏼠 􏼡 − cE′(t).

(91)

)e functional K2(t) is defined by

K2(t) � η(t)K1(t) + cE(t). (92)

)enwe can easily obtain that there exist constants β5 > 0
and β6 > 0 such that

β5K2(t)≤Ε(t)≤ β6K2(t). (93)

Choosing a suitable r0 > 0, and defining
H3(t) � tH0(r0t), from (91), we infer that for a constant
c> 0,

K2′(t)≤ − cη(t)
E(t)

E(0)
H0 r0

E(t)

E(0)
􏼠 􏼡 ≔ − cη(t)H3

E(t)

E(0)
􏼠 􏼡.

(94)

It follows from 0≤ r0(E(t)/E(0)) < r that for any t> 0,

H0 r0
E(t)

E(0)
􏼠 􏼡 � H′ r0

E(t)

E(0)
􏼠 􏼡 � H′ r0

E(t)

E(0)
􏼠 􏼡. (95)

Using (93), we have

R(t) ≔
β5K2(t)

E(0)
∼ E(t). (96)

Since H3′(t) � H0(r0t) + r0tH0′(r0t), then, noting the
strict convexity of H0 on (0, r], we knowH3′(t), H3(t)> 0 on
(0, 1]. By (94), we conclude that there exists c1 > 0 such that
for any t≥ t1,

R′(t)≤ − c1η(t)H3(R(t)). (97)

Integrating (97) over (t1, t), we see that

􏽚
t

t1

− R′(s)

H3(R(s))
ds≥ c1 􏽚

t

t1

η(s)ds⇒􏽚
r0R t1( )

r0R(t)

1
sH0(s)

ds≥ c1 􏽚
t

t1

η(s)ds. (98)

Define

H4(t) � 􏽚
r

t

1
sH0(s)

ds. (99)

It is to verify that H4 is strictly decreasing on (0, r] and
limt⟶0H4(t) � +∞. It follows that

R(t)≤
1
r0

H
− 1
4 ζ1 􏽚

t

t1

η(s)ds􏼠 􏼡. (100)
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Combining (96) and (100), we can obtain (21). )is
finishes the proof of )eorem 2

Data Availability

No data were used during this study.

Conflicts of Interest

)e author declares that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

)is work was supported by the Fundamental Research
Funds for the Central Universities (no. JBK1809025).

References

[1] J. Prüss, “Evolutionary integral equations and applications,”
in Monographs in Mathematics, vol. 87, Birkhäuser Verlag,
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