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With the development of mobility techniques, the transportation systems become smarter, pursuing higher goals, such as
convenience for passengers and low cost. In this work, we investigate the taxi-sharing system, which is a promising system
recently. .e passengers can share the same taxis to different destinations to save cost. Considering the property of taxis’ routes,
the corresponding model is established and our aim is to design the trip for each taxi to reduce the total number of taxi trips in the
whole system if one taxi can be shared by several passengers. Compared with the previous work, we do not have any constraint
about the taxi stations. .e taxi trips have more flexibility in reality. We analyze this problem and prove it is NP-Complete. .ere
are two proposed algorithms to solve this problem, one is a heuristic algorithm and the other is an approximate algorithm. In the
experiment, two real-world taxi data sets are tested, and our algorithm shows the superiority of our taxi-sharing system. Using the
taxi-sharing system, the number of trips can be reduced by about 30%.

1. Introduction

In recent years, with the increment of traveling and com-
muting, the numbers of private cars and public trans-
portation are increased. According to the Federal Highway
Administration (FHWA)’s report, the total rural and urban
vehicles travel 3,262 billion miles [1], which is a huge
number. .e road congestion problem [2, 3] and the limited
parking spaces [4, 5] are becoming new problems for people.

With the increased price of gas line and limited parking
space, an efficient car-sharing system has been introduced to
a large number of people. .is system is a method to share
one car with more than one passenger who can follow a
common route to similar or close destinations [6]. Although
there are some issues about this system, such as reservation
strategy, passengers having to walk to the nearest parking lot,
it can also bring a lot of benefits. It makes the private
transportation flexible, produce less pollution, and traffic
congestion. .erefore, it is becoming more and more
popular, and people are willing to engage in this new mode
of transportation. In practice, the conventional car-sharing

systemsmainly combine the passengers who have close pick-
up locations and destinations because the private cars have
predetermined route and cannot stop at any location on the
road. In addition, people using this system mainly focus on
their commutation to the work location, which means that
the routes are stable. .us, there are a lot of restrictions for
such private car-sharing systems. .ese restrictions make
this system not practical in real life.

In this work, we mainly focus on the taxi-sharing system.
For taxi drivers, their goal is to carry more passengers to
destinations, obtaining more benefits. Given that taxi drivers
travel all the time continuously, passengers do not need to
have the close pick-up locations and destinations because
they can be picked up along the way. Once passengers’ trips
have some continuous common routes and do not make a
large detour, they can share taxis without the loss of much
time. .us, for the taxi-sharing system, it has fewer re-
strictions than the car-sharing system. In most of the time,
passengers can provide their source and destination to the
platform and according to the current trip of the taxi, the
sharing trips can be dispatched to the corresponding taxi
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driver. In this way, the empty-load rate of a taxi can be
reduced. Meanwhile, there can be fewer taxis on the road,
which improves the environment.

In real-world application, this taxi-sharing system can
still meet some challenges. First, passengers’ requirements
for taxi-sharing are different. Some passengers are sensitive
to time. In the sharing process, drivers should deliver them
to destinations on time. .us, there is no detour in the
process. Some passengers do not want to share with too
many people, or frequently picking up other passengers.
.us, there should be some limitations on the number of
passengers on taxis. How to guarantee the sharing process is
very important in this system, meeting the different de-
mands of passengers.

Second, if all the information about passengers is known,
including pick-up locations, destinations, and pick-up time,
it is important to find a schedule to dispatch taxi drivers to
pick-up them to destinations. It is not easy to make such a
schedule. In the conventional car-sharing system, passengers
are connected according to their information, similar in time
and space. In the taxi-sharing system, some passengers can
be picked up in the middle, and do not need to be dropped
off at the same destinations. .us, for that, we wish to design
the sharingmodes for passengers, i.e., what kind of similarity
between their trips can make them share the same taxi..ere
is an illustration figure shown in Figure 1. In these two cases,
two passengers can be shared with one taxi if their time is
matched.

Last, taxi demand is huge in city-scale. Given the pick-up
location, time, and destinations of passengers, it is still hard
to schedule taxi drivers and dispatch the delivery tasks..ere
are many traditional ways to do such schedules. At the same
time, for online tasks, it becomes more difficult. We can use
the greedy idea to pick-up the waiting passengers as more as
possible. However, there is no guarantee for the results,
which brings difficult for us to estimate the number of taxis
needed. .us, some better algorithms for the taxi-sharing
scheduling problem can help us in city planning and traffic
management.

Our Contribution. First, we design the taxi-sharing
model based on real-world application. Given a large
number of passengers in a region within a time duration,
their pick-up locations, time, and destinations are known in
advance or given sequentially. We assume that between any

pair of pick-up location and destination, the shortest path is
unique. All the passengers are sensitive to time, so the taxi
drivers cannot make any detour to deliver passengers to
destinations, as well as pick-up other passengers. At the same
time, the sharing mode requirements are determined. For
the trips of the current passengers, only when the other
passengers can be satisfied to arrive at the destination on
time, no matter they are dropped off earlier or later than the
current passenger. .is model is suitable for real-world
applications. .e taxi drivers just need to consider the
current passengers and try to pick-upmore passengers along
the way. Of course, the number of passengers on the taxi is
constrained, and the waiting time of passengers is also
limited. If a passenger waits for a sharing taxi too long, an
empty taxi will be dispatched to her.

Based on this model, our taxi-sharing problem is for-
mally defined, which is to minimize the number of taxi-
sharing trips. For the passengers who can share one taxi, they
need only one taxi-sharing trip instead of the number of
passengers. .is problem is proven to be NP-complete,
which does not have an optimal solution. Hence, we design
two algorithms to solve it, one is a greedy algorithm and the
other is an approximation algorithm. For the greedy algo-
rithm, the taxi drivers are dispatched to each passenger if this
passenger cannot share taxis with another passenger. .en,
in the delivery process, taxi drivers pick-up all the satisfied
passengers without exceeding the limitation of passengers
on a taxi. In addition, this algorithm can also be applied into
the online setting. For the approximation algorithm, we first
try to find all the possible taxi-sharing trips, which is a time-
consuming task in the raw data. To speed up this process, we
convert these passengers into a graph network. Each directed
edge represents whether these two passengers can share one
taxi. Based on this graph, it becomes easier to obtain all
possible taxi-sharing trips from the graph. Later the cor-
responding combinatorial algorithm is proposed, and the
approximation ratio O(log m) is proved, where m is the
number of passengers. However, the result of this algorithm
performs well in the experiments.

In the end, we implement our model and algorithms into
two real-world data set, which is taxi trajectories in San
Francisco, America, and Porto, Portugal. .ere are more
than 536 taxis in the city of San Francisco, over one month.
Similarly, there are 442 taxis in the city of Porto, over one
complete year. .ere are more than 170, 000 taxi trajectories
in the data set. All the trips of passengers are stored with
their pick-up locations, time, destinations, and trajectories.
.eir trajectories are regarded as the shortest path from the
pick-up location to the destinations. .us, we check the
number of trips that can be reduced if we count the taxi-
sharing trip as one trip. When there are about 30, 000 trips
that happened in one day, in the original system, the same
number of taxi trips needs to be dispatched. Now, with a
taxi-sharing system, more than 10% trips can be shared with
other passengers. With more trips given in the system, the
probability of sharing is getting larger and the reduction is
becoming more obvious, more than 20%. Similarly, if the
requirement of taxi-sharing becomes loose, such as waiting
time, waiting locations, and the maximum number of
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Figure 1: .e red line and the blue line represent the trips of two
passengers. Currently, the red passenger is picked up by the taxi
driver, and the blue passenger is waiting for taxis at crossing A. In
the left plot, two passengers can share one taxi because the red
passenger can be dropped off at the crossing B and the taxi driver
can continue to deliver the blue passenger. In the right plot, the taxi
driver can drop off the blue passenger at the crossing B and
continue to deliver the red passenger.
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passengers on a taxi, the reduction can also be enlarger,
especially when there are a very large number of trips within
a short period.

In the following, we start by reviewing the related work
in Section 2. In Section 3, we introduce our taxi-sharing
model and propose the problem definition. .en, two al-
gorithms are provided in Section 4. .e experiments are
presented in Section 5, and Section 6 concludes this paper.

2. Related Work

Nowadays, there are many enterprises providing car-sharing
service, e.g., ZipCar, EVCARD, Turo, Sixt, and so on.
According to the rule of vehicle returning, the car-sharing
system can be divided into two types [7], one is one-way and
the other is round-trip [8, 9]. For the round-trip system, the
car needs to be returned to the station where it is initially
rented, while this limitation is removed in the one-way
system. In our work, our system can be regarded as one-way
system. At the same time, we also do not constrain the initial
rental location. We consider the taxi that can pick up the
passengers anywhere.

In recent years, many researchers began to investigate
this area. .e most important problem that they focus on is
the vehicle dispatching problem. It is necessary for the car-
sharing system. We need to consider how to deploy these
cars to provide the service as soon as possible. In 2015,
Nourinejad et al. [10] build an optimization model to in-
vestigate the trade-off between the vehicle fleet size and the
human demand, to minimize the investigation cost. .e
vehicle allocation problem is also related to the capacity of
the stop station [11]. For the real-time requests or online
settings, some dynamic models are proposed to optimize the
car dispatch problem with heuristic idea [12, 13]. With the
development of the neural networks, many works [14, 15]
are trying to predict the demand in real time, which can help
the dispatch tasks get prepared in advance. .ere are some
works to investigate the trajectories similarity, which can
help saving the vehicles number [16]. For our work, although
we do not have the limitation for the number of cars, our
goal is to reduce the number of cars. According to the
demand, we can dispatch the car to pick up the passengers
within a comfortable waiting time.

With the development of electric cars, more and more
car-sharing system began to consider the charging problems.
.e reason is that each electric car can only execute about ten
hours, then it needs to get charged for about one hour. .us,
this charging time is a long time, which needs to be
scheduled better [17]. Zhao et al. [18] present a mathematical
model for the integrated electric car rebalancing and staff
relocation for one-way station-based systems.

In our work, the taxi-sharing problem is different from
the previous car-sharing problem. .e taxi drivers do not
have a fixed route and time restrictions. .us, they can
satisfy more passengers without the requirement for pick-
up locations and destinations. .ere are many researchers
studying the constraints of the taxi-sharing system. For
example, the sharing agreement is based on social networks
[19]. Passengers have permission to select other passengers,

according to some features such as sex and age [20]. Some
software systems were proposed to manage the schedules
for sharing taxi and monitor whether the drivers make a
detour [21].

3. Problem Definition

In this section, we introduce some preliminary concepts of
our taxi-sharing system..e taxi drivers are allowed to carry
more than one passenger to improve their benefit.

Given a region area Ω, many passengers are waiting for
taxis to pick-up them and deliver them to their destinations.
Suppose that there are m passengers in the regionΩwithin a
long time duration, denoted P � p1, p2, . . . , pm . For each
passenger pi, she has her own pick-up location, pick-up
time, and destination, represented by si, sti, and di. In most
of the time, it is hard to control the arrival time by taxi, but
taxi drivers guarantee the passengers will be carried to
destinations as soon as possible without any detour. Given a
waiting time threshold δ, which is the maximum waiting for
a sharing taxi, it means that it is possible for a passenger to
wait for a taxi driver δ time with available spaces; otherwise,
this passenger is not satisfied. For each passenger, she is
willing to take a sharing taxi instead of an empty taxi because
she can save some cost by sharing a trip with others.

.en let us focus on the taxi driver side. For each taxi-
sharing trip, it should start from a pick-up location of one
passenger and goes to the destination of another passenger.
If there is only one passenger on this taxi-sharing trip, the
pick-up location and the destination belong to the same
passenger. If there are more passengers, the pick-up location
and destination might belong to different passengers. In the
taxi-sharing system, drivers are allowed to pick-up more
passengers along the way, only if they can deliver passengers
to their corresponding destinations on time. .us, taxi
drivers cannot make a detour for any passenger, which
means that the taxis should be one of the shortest path to the
destinations of all the passengers on the whole trip. In this
work, we regard a continuous trip with at least one passenger
as one taxi-sharing trip. If all the passengers are dropped off,
this taxi-sharing trip is finished and the driver should wait
for the next dispatch task. Now, we define the trip:

Definition 1 (trip). Each trip T, as a trajectory of the taxi
driver within a short time, refers to a sequence of positional
points that chronologically sampled during a time period,
denoted as T � (l1, t1), (l2, t2), . . . , (lr, tr) , where li is the
location of the taxi driver at timestamp ti and r is the length
of this trip. .is location li can be GPS location or other
format of position.

Now, let us take a look at taxi-sharing trips. Given a
parameter k, as the maximum number of passengers in one
taxi, it is 3 or 4 for the general taxi cars. For a taxi-sharing
trip, there is at least one passenger and at most k passengers
on the taxi along all the way. Such trips are called taxi-
sharing trips.

Fora taxi driver carrying the passenger pi with trip T,
there is si � l1 and sti � t1, which means that the pick-up
location and time of pi are the start point of the trip T. .en,
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along the way, the drive can meet another passenger pj. If
this driver wants to pick up the passenger pj to her desti-
nation, there are two conditions, pick-up condition and
destination condition.

.e pick-up condition is easy to understand. When the
taxi driver arrives at the pick-up location of the passenger pj,
the passenger pj waits less than the maximum waiting time
δ, i.e., sj � la and ta − stj ≤ δ, where 1≤ a≤ r. If the passenger
pj is shared this taxi with pi, their following trip should be
same until one of them arrive the destination, which is the
destination condition. .ere are two cases are shown in
Figure 1:

(1 ).e passenger pi arrives at the destination first, as
shown in the left plot of Figure 1. .us, the desti-
nation of pi should be on the shortest path of pas-
senger pj.

(2) .e passenger pj arrives at the destination first, as
shown in the right plot of Figure 1. .us, the des-
tination of pj should be one the shortest path of
passenger pi.

When there is more than one passenger on the taxi, it
also needs to satisfy the pick-up condition and destination
condition to pick-up more passengers..e following trips of
all the current passengers are the same at any timestamp.We
hope to minimize the number of taxi-sharing trips satisfying
all the passengers in the region. We define our problem
under the offline setting, as shown below:

Definition 2 (taxi-sharing problem). Given a region Ω, for
any two locations in this region, the shortest path between
them are unique and known. With a set of m passengers
P � p1, p2, . . . , pm  in the region, for any passenger pi, her
pick-up locations, pick-up time, and destinations are rep-
resented as si, sti, and di. We need to design a set of taxi-
sharing trips T � T1, . . . , Tn , such that all the passengers
are satisfied with the pick-up condition and destination
condition. Our goal is to minimize the number of taxi-
sharing trips, i.e., n, in the set.

min n � |T|

s.t.∀pi,∃Tj, si � la, la, ta(  ∈ Tj

ta − stj ≤ δ, la, ta(  ∈ Tj.

(1)

For the offline taxi-sharing problem, with the finite
number of passengers, we can find all possible taxi-sharing
trips through the enumerate or other better methods. .en,
the optimal solution is one of the combinations of these taxi-
sharing trips. We can show the difficulty of this problem
below:

Theorem 1. #e offline taxi-sharing trip problem is NP-
complete.

Proof We can reduce this problem from a known NP-
complete problem, named the set cover problem [22]. Given
a set of element E and a collection of sets S, the goal of set

cover problem is to select the minimum number of sets from
S such that each element can be covered by these sets.

For offline taxi-sharing problem, when we obtain all the
possible taxi-sharing trips, we know which passengers can be
satisfied by the special taxi-sharing trip. For any instance
S, E{ }, each element can be regarded as a passenger, and the
set can be a taxi-sharing trip. Suppose we have an algorithm
A to compute offline taxi-sharing problem, the output can
be seen as the solution to the set cover problem as well.
.erefore, according to Cook’s reduction, offline taxi-
sharing problem is NP-complete.

4. Algorithm Design

In this section, we propose a heuristic algorithm for online
taxi-sharing problem. Another approximation is proposed
for offline taxi-sharing problem.

First, in the problem definition, it requires that each
passenger needs to be delivered via the shortest path. It
means that each taxi-sharing trip can be composed of
multiple concatenated shortest path. To simplify this
problem, we suppose that each taxi-sharing trip need to
travel from a source point to the destination via the shortest
paths. In this way, the taxi-sharing trip is a shortest path
between two locations. .e taxi drivers try to pick up as
many passengers as possible along the way.

Each passenger has their own pick-up location and
destination. We need to design the shortest path for taxi
drivers to pick all the passengers up and take them to their
destinations. We will introduce the concept of VC-dimen-
sion [23], used in our following analysis.

Definition 3 (VC-dimension). Given a set system (X,R), let
A be a subset of X. We say that A is shattered by R if
∀Y⊆A, ∃R ∈R such that R∪A � Y. .e VC-dimension of
(X,R) is the cardinality of the largest set that can be
shattered by R.

Now, we consider the VC-dimension of our case.

Theorem 2. For the passenger set system (P,T), if each
taxi-sharing trip Ti ∈ T is the shortest path, then the VC-
dimension of this set system (P,T) is at most 2.

Proof We regard each passenger as an element in the set.
Any set of passengers is tried to be shattered by the taxi-
sharing trip. Now, each taxi-sharing trip is a shortest path
between two locations. For any set of three passengers, a
taxi-sharing trip cannot shatter it. In this case, the taxi-
sharing trip is the shortest path between two locations. If
these three passengers are all along this shortest path, we
cannot shatter any two of them from the set..us, there is no
taxi-sharing trip with the shortest path can shatter the set of
three passengers.

Actually, our taxi-sharing trips are composed of multiple
concatenated shortest paths. Suppose each taxi-sharing trips
are at most k concatenated shortest paths..en we can check
its VC-dimension.
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Theorem 3. For the passenger system (P,T), if each taxi-
sharing trip Ti ∈ T is k concatenated shortest paths, then the
VC-dimension of this set system (P,T) is at most 2k2.

Proof Similarly, for any set of 2k2 + 1 passengers, there
are at least 2k + 1 passengers on the same shortest path,
according to the Pigeonhole principle. .en we select the
alternative passengers or passengers of the odd index. .ere
are at least k + 1 passengers and they cannot be shattered by
k shortest paths. .e reason is that any two passengers
cannot share one shortest path, so each one passenger needs
one shortest path..us, the VC-dimension of this set system
is at most 2k2.

4.1.HeuristicAlgorithm. Basically, for each taxi driver, when
she picks up the first passenger, she wants to find the next
passenger who satisfies the pick-up condition and desti-
nation condition. Similarly, when one passenger is waiting
for a taxi, the first option is a sharing taxi..us, our heuristic
algorithm is based on this greedy idea: when a driver picks
up one passenger, she will try to find another passenger
along the way.

With the request arriving sequentially, there are many
taxi-sharing trips on the road, if this request can be satisfied
by one of the trips, the passenger can be picked up by one
sharing taxi, otherwise, an empty taxi will go to the pick-up
location. .e pseudo-code is shown in Algorithm 1.

Here, the set of passengers are still given in advance. In
this way, it can show that this algorithm can also solve the
offline taxi-sharing problem. In Line 1, all the passengers are
sorted by their pick-up time, which is suitable for the online
setting..e setf[i] represents the current sharing passengers
on the taxi with the passenger pi. .us, we check the pas-
sengers according to their pick-up location in Line 4. First, all
the existing taxi-sharing trips need to be checked in Line 5
and the current timestamp is sti, i.e., the pick-up time of the
passenger pi. For each taxi-sharing trip, some passengers
arrive at their destination before the time sti, so we remove
these passengers from the corresponding set f[j]. If there are
still k passengers on the taxi, i.e., ‖f[j]‖ � k, it is impossible
to accommodate the passenger pi on this taxi. If there are still
some available seats, we can check whether the pick-up
condition and destination condition are satisfied in Line 9. If
it is satisfied, the passenger pj is included, and all the pas-
sengers are stored in the set f[j]. If it cannot be satisfied with
all the taxi-sharing trips, an empty taxi will be dispatched to
pick her up in Line 13–15. .e number of trips is added in
Line 15 and return the result in Line 16. For the offline taxi-
sharing problem, with the finite number of passengers, we
can find all possible taxi-sharing trips through the enumerate
or other better methods. .en, the optimal solution is one of
the combinations of these taxi-sharing trips.We can show the
difficulty of this problem below:

We can see that this algorithm also works for the offline
taxi-sharing problem. .is idea is suitable for our daily life.
Passengers are willing to wait for a taxi to share with someone,
saving the cost. .e taxi drivers do not make any detours and
deliver every passenger to the destination on time.

4.2. Approximation Algorithm. In Section 3, we mention
that we can enumerate all possible taxi-sharing trips for the
given m passengers under the offline setting. It costs too
much time to enumerate them. .us, we first propose a
better way to find all possible taxi-sharing trips, which is easy
to understand.

Given that there are m passengers, all the information of
them is known, including pick-up locations, pick-up time,
destinations, and the shortest paths. It is not difficult to
check whether any pair of passengers can share one taxi, i.e.,
checking the pick-up condition and destination condition.
.us, we can build a graph G(P) for all the passengers to
represent this relationship, which helps us to find all possible
taxi-sharing trips.

For the passenger graph G(P) � V, E{ }, where V is the
set of vertices, represented by each passenger, and E is the set
of directed edges. Owing to that the pick-up order of pas-
sengers needs to be considered, these edges have direction. If
the passenger pj can be satisfied by the taxi-sharing trip of
the passenger pi, there is an edge from vi to vj. Hence, our
passenger graph is established. Each vertex has two attri-
butes, pick-up time, and arrival time. .is arrival time is
computed by the speed of the taxi and the shortest path. In
this way, we know when the passenger is dropped off. An
illustration figure is shown in Figure 2.

.en, we can use depth-first search and topology sort to
find all possible trips in the graph G(P). As shown in
Figure 2, we take a look at vertices v1, v2, and v3. It shows that
the trip with the passenger p1 can pick up the passenger p2,
but cannot pick up the passenger p3. Here, we need to check
the arrival time of p1 and the pick-up time of p3. .e below
plot is much complex. .ere are edges from v4 to v5 and v7,
but there is no edge between v5 and v7. It means that the
passengers v5 and v7 cannot share one taxi. .us, the taxi-
sharing trip of p4 can only pick-up one of passengers p5 and
p7. .e case of the passenger p6 is the same with the pas-
senger p3. Now, let uss look at the vertex v8, which shows
that the passengers p4 and p7 can share a taxi-sharing trip
with p8. .us, we do not need to check the time of p8.

In this search process, we need to use the technique of
topology sort. If we want to include this vertex, we need to
check the arrival time and pick-up time to remove some
vertices in the set. .en, if all the vertices in the set have a
directed edge to this vertex, this vertex can be included. At
the same time, we also need to consider the maximum
number of passengers on a taxi. Using this, we can find all
possible taxi-sharing trips with a different combination of
passengers, speeding up this process. Of course, some
memory techniques can be applied in this search process to
improve the time complexity.

Based on the set of all possible taxi-sharing trips Γ, we
need to select the minimum number of taxi-sharing trips
such that all the passengers are satisfied. For each taxi-
sharing trip T, we denote w(T) as the number of passengers
can be satisfied by it. .en we design the approximation
algorithm to select these taxi-sharing trips one by one. In
each iteration, we select the taxi-sharing trip that can satisfy
the most waiting passengers. Or we can imagine each taxi-
sharing trip is a set. We need to select the minimum number
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of sets to cover all the vertices in the passenger graph G(P).
In each iteration, we select a set that can cover the maximum
number of uncovered vertices. We now show that this al-
gorithm is an O(log m) approximation, where m is the
number of passengers, which turns out to be the best ap-
proximation one can achieve (unless P � NP).

Theorem 4. #is approximation algorithm can achieve
O(log m) approximation.

Proof Consider a step of the algorithm. Let c be the
number of waiting passengers before selecting a taxi-sharing
trip on this step. Among the taxi-sharing trips that are not
selected by the algorithm, the optimal solution uses some set
of these taxi-sharing trips to satisfy the remaining waiting
passengers. Let ROPT be the optimal set of taxi-sharing trips
based on the previous selection.

Let OPT be the number of taxi-sharing trips in the
optimal solution. Clearly, we have that |ROPT|≤OPT since
these taxi-sharing trips are a subset of the optimal solution,
where |ROPT| is the size of set ROPT. In addition, we observe

that there is T∈ROPT
w(T)≥ c since by definition these trips

satisfy the remaining waiting passengers.
.erefore, we have:

max
T∈ROPT

w(T)≥
 T ∈ ROPTw(T)

ROPT



≥

c

OPT
, (2)

where the first inequality follows from an average argument,
and the second inequality follows from our above obser-
vations. .us, on this step where there are c remaining
waiting passengers, there must be a taxi-sharing trip that can
satisfy the average number which is at least c/OPT.

We try to divide up the cost of taxi-sharing trip to each
passenger. .e cost of each taxi-sharing trip is all the unit
cost. .us, each passengers gets a charge as 1/w(T). Now,
we can claim that the jth passengers to be satisfied can
receive a charge at most OPT/(m − j + 1). It follows
equation (2) and the fact that when the jth waiting pas-
senger is satisfied, there must be at least (m − j + 1) waiting
passengers on this step.

.us, we can sum up the total charge of all the pas-
sengers. .e total charge is

Input: .e set of pick-up location si and destinations di from m passengers P

Output: Number of trips needed
(1) Sorted the passenger set P according to si

(2) f[i] � ∅, 1≤ i≤m

(3) res � 0
(4) for i � 1, . . . , m − 1 do
(5) for j � 1, . . . , i − 1 do
(6) Remove the passengers who arrive destinations from f[j];
(7) if ‖f[j]‖ �� k then
(8) Continue
(9) if pj can share with passengers in f[i] then
(10) f[j] � f[i]∪ pj ;
(11) f[i] � ∅;
(12) Continue;
(13) if f[j] �� ∅ then
(14) f[j] � pj 

(15) res� res + 1
(16) return res

ALGORITHM 1: Greedy algorithm

υ1 υ2 υ3

υ4

υ5 υ6

υ7 υ8

Figure 2: .e passenger graph P(G): here we omit the attributes on vertices. .e vertices between one edge can share one taxi. If the
passenger p1 is dropped off before picking up the passenger p3, then passengers p1, p2, and p3 can share one taxi-sharing trip.
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m

j�1

OPT
m − j + 1

� OPT · 
m

j�1

1
j

� OPT · O(log m), (3)

where the last equality follows the fact that themth harmonic
number is O(log m).

.is approximation seems not good enough because the
number of trips are very large. However, for the independent
vertices, i.e., some passengers who cannot share with others
are not counted into the approximation ratio. .e most
sharing cases are easy to find because there is no too many
combinations. .us, the performance of this algorithm in
the real application is good enough to satisfy the
requirement.

5. Numerical Experiments

In this section, we test our model and algorithms in two real-
world data sets. First, we introduce our experimental setup,
including data sets, hardware, and baseline algorithms as
references.

Hardware. We implemented our algorithm in Python
with version 3.8. We ran the experiments on the machine
equipped with Intel(R) Core(TM) i7-8700 CPU@ 3.20GHz-
, and 32GB of RAM.

Data set. We test our model and algorithms on two real-
world data set. .e first one is a set of taxi trajectories from
San Francisco [24]. .ere are 536 taxis delivering passengers
over onemonth in an area of 6, 327 × 6, 827km2. In each day,
there are about 21, 843 trips of these taxis, which is a huge
number. .e visualization map of San Francisco is shown in
Figure 3. Each line represents a trip of taxi, and the color
shows the frequency of traveling. We can see that the central
part of the city is very dense and there is some high way
around the city.

.e second one is also a set of taxi trajectories in the
center of Porto, Portugal [25], which is an area of size
8, 116 × 8, 068km2. .ere are 442 taxis running in the city
over a complete year (from 01/07/2013 to 30/06/2014).
More than 170, 000 trajectories are included in this data
set, which is visualized in Figure 4. We can see that these
trajectories are radial shaped around the city. In the
central part of the city, the trajectories are denser, which
means that more passengers are traveling in a similar
route. It has a large probability to take a sharing taxi to
destinations.

For these two data sets, the passengers’ demands are
given, including their pick-up locations, pick-up time, and
destinations. At the same time, their trips based on GPS
locations and times are also provided. In our imple-
mentation, we can regard their trips from pick-up locations
to destinations as the shortest paths. We also know the exact
time of taxis arriving at each location, which helps us to
determine whether another passenger can be picked up. .e
taxi drivers cannot make any detour in this process. .e
sharing modes should be based on their trips in the real-
world data sets.

Tool chain. We implement our proposed algorithms
based on Python, and the source code can be shared after

publication. We provide a tool chain of our framework,
including data processing, graph building, algorithm
implementation, and comparison. .e main processes are
introduced below:

(1) Data set Processing. Given the initial real-world data
sets, we first need to do some preprocessing jobs for
data sets, including removing some outlier trips
(with unrealistic speed or at an impossible location).
For the San Francisco data set, the whole trajectories
of taxis are given including empty states. .us, we
also need to extract the trips from the data sets. .en
we have to sort all the trajectories according to the
pick-up time of each passenger for these two data
sets.

(2) Graph Building. For our approximation algorithms,
we hope to embed all the passengers with their trip
information into a graph G(P). Each vertex repre-
sents passengers, and edges between vertices show
whether two passengers can share one taxi. Similarly,
our greedy algorithm can also do this step first and
then try to includemore passengers in one trip..us,
in this step, we need to check whether one passenger
can share the trip with the other passenger. .en,
using this information to build our passenger graph.
To speed up this process, we can use the hashing
technique to store passengers, with the keys as the
pick-up locations and destination separately. .e
lookup can be improved to constant time.

Figure 3: .e visualization map of San Francisco, America.

Figure 4: .e visualization map of Porto, Portugal.
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(3) Algorithm Implementation. In this step, two pro-
posed algorithms are implemented. For the greedy
algorithm, each trip is selected based on its order of
pick-up time. .en this driver will try to pick-up
passengers in this continuous process as much as
possible. For the approximation algorithm, we first
need to find all possible taxi-sharing trips using the
deep-first search process. In this process, the to-
pology order needs to be considered. Based on all
possible taxi-sharing trips, each trip with the max-
imum number of waiting passengers is selected in
each iteration, until all the passengers are satisfied.

(4) Comparison. To investigate the benefit of our taxi-
sharing system, we need to compare with the results
without taxi sharing. Actually, the number of pas-
sengers is the number of trips needed without taxi-
sharing system. It can be regarded as the baseline if
we do not use the taxi-sharing system. Here, we
denote the original number of trips as “Original” in
the figure. .e greedy algorithm and the approxi-
mation algorithm are denoted as “Greedy Alg.” and
“Approx. Alg.” We can check how many trips can be
reduced by the taxi-sharing system.

First, we look at the San Francisco data set. Owing to that
there are only about 536 taxis in a large area, all the trips in
one day are sparse in space and time. We can combine
trajectories of multiple days to one day and check the re-
lationship between the number of passengers and the

number of trips needed. We start from all the passengers in
one day and include more passengers gradually. .e results
are shown in Figure 5 and Table 1. We can see the numbers
of taxi-sharing trips are increased linearly with the increased
number of passengers, no matter whether we use the taxi-
sharing system or not. We can also see that with taxi-sharing
system, the number of trips is reduced compared with the
conventional system, especially using the approximation
algorithm.When there are more than 50, 000 passengers, the
number of trips can be reduced by more than 20%. If the
number of passengers exceeds 80, 000, the reduction is more
than 40%. .e reason is that when there are more pas-
sengers, their trips become denser in space and time. .e
probability that one passenger has someone to share one taxi
is increased. At the same time, we can see that our ap-
proximation algorithm performs better than the greedy
algorithm. Although the approximation ratio is O(log m),
which is a large number, its performance is great in the real
implementation.

Second, for the Porto data set, the trip of each passenger
only has the pick-up time, without the timestamp in the
delivery process. .us, we assume that the GPS locations are
sampled with about 30 − 50 seconds according to the dis-
tance in the interval. .en we check whether one passenger
can share a taxi with other passengers. .e results are shown
in Figure 6 and Table 2. .e results are similar to the San
Francisco data set, but the reduction is smaller than the one
in San Francisco. .e reason is that the size of Porto city is
larger than San Francisco. In addition, we can also see from
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Figure 5: Number of taxi-sharing trips in San Francisco: the number of taxi-sharing trips is increased approximately linearly with the
increased number of passengers. With the taxi-sharing system, the performance using approximation algorithm works best, which can
reduce more than 40% trips compared with the case without taxi-sharing system.

Table 1: San Francisco: number of taxi-sharing trips (ten thousand).

# of Passengers 2 4 6 8
Original 2.03 4.09 5.97 8.11
Greedy alg. 1.92 3.25 4.65 6.17
Approximation alg. 1.84 3.02 3.93 5.04
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the visualization map, the trips in Porto are distributed in a
larger area. In the central part, the trips are not denser than
in San Francisco.

Some constraints for taxi-sharing trips also influence the
results, such as the maximum number of passengers on one
taxi and maximum waiting time. .e results are similar to
the above experiments. .e number of taxi-sharing trips is
increased with the number of passengers. When the con-
straints become looser, like more passengers can be shared in
one taxi, and more waiting time, the reduction in the
number of taxi-sharing trips becomes larger.

6. Conclusion and Future Work

In this work, we have studied the taxi-sharing problem,
aiming at minimizing the number of trips needed. First, the
formal taxi-sharing model is established. .en the problem
is formulated, and we prove this problem is NP-complete.
We designed two algorithms to solve this problemwith some
analysis and optimization for implementation. Extensive
experiments on two real-world data sets show the superiority
of our algorithms and the advantage of the taxi-sharing
system.

In the future, we will continue to focus on this kind of
problem. Some detours can be considered in the model.
Some constraints can be flexible according to the time and
passengers. Besides, we can use the machine learning
method to predict the passengers’ demand and dispatch taxis
to the popular region. We hope to pay more attention to this
topic to improve our traffic design and city planning.

Data Availability

.e real-world trajectory data used to support the findings of
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