Hindawi

Mathematical Problems in Engineering
Volume 2023, Article ID 9835825, 1 page
https://doi.org/10.1155/2023/9835825

Retraction

Q@) Hindawi

Retracted: Application Analysis of Wearable Technology and
Equipment Based on Artificial Intelligence in Volleyball

Mathematical Problems in Engineering

Received 18 July 2023; Accepted 18 July 2023; Published 19 July 2023

Copyright © 2023 Mathematical Problems in Engineering. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

This article has been retracted by Hindawi following an inves-
tigation undertaken by the publisher [1]. This investigation has
uncovered evidence of one or more of the following indicators
of systematic manipulation of the publication process:

(1) Discrepancies in scope

(2) Discrepancies in the description of the research
reported

(3) Discrepancies between the availability of data and the
research described

(4) Inappropriate citations

(5) Incoherent, meaningless and/or irrelevant content
included in the article

(6) Peer-review manipulation

The presence of these indicators undermines our confi-
dence in the integrity of the article’s content and we cannot,
therefore, vouch for its reliability. Please note that this notice is
intended solely to alert readers that the content of this article is
unreliable. We have not investigated whether authors were
aware of or involved in the systematic manipulation of the
publication process.

In addition, our investigation has also shown that one or
more of the following human-subject reporting requirements
has not been met in this article: ethical approval by an Institu-
tional Review Board (IRB) committee or equivalent, patient/
participant consent to participate, and/or agreement to publish
patient/participant details (where relevant).

Wiley and Hindawi regrets that the usual quality checks did
not identify these issues before publication and have since put
additional measures in place to safeguard research integrity.

We wish to credit our own Research Integrity and Research
Publishing teams and anonymous and named external

researchers and research integrity experts for contributing to
this investigation.

The corresponding author, as the representative of all
authors, has been given the opportunity to register their agree-
ment or disagreement to this retraction. We have kept a record
of any response received.

References

[1] X. Dai and S. Li, “Application Analysis of Wearable Technology
and Equipment Based on Artificial Intelligence in Volleyball,”
Mathematical Problems in Engineering, vol. 2021, Article ID
5572389, 10 pages, 2021.


https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/9835825

Hindawi

Mathematical Problems in Engineering
Volume 2021, Article ID 5572389, 10 pages
https://doi.org/10.1155/2021/5572389

Research Article

Hindawi

Application Analysis of Wearable Technology and Equipment
Based on Artificial Intelligence in Volleyball

Xianyan Dai' and Shangbin Li®?

1School of Physical Education, Harbin University, Harbin 150086, China
2Physical Education Department, Harbin Engineering University, Harbin 150001, China

Correspondence should be addressed to Shangbin Li; sports@hrbeu.edu.cn

Received 15 January 2021; Revised 7 March 2021; Accepted 22 March 2021; Published 31 March 2021

Academic Editor: Sang-Bing Tsai

Copyright © 2021 Xianyan Dai and Shangbin Li. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Today, while people’s satisfaction with materials is high, the pursuit of health has begun and sports are becoming increasingly
important. Volleyball is a good physical and mental exercise, which helps improve the health of the body. However, excessive
exercise usually leads to muscle strain and more serious accidents. Therefore, how to effectively prevent excessive fatigue and
sports injuries becomes more and more important. In the past, some methods of exercise fatigue detection were mostly self-
assessment through some indicators, which lacked real-time and accuracy. With the advancement of smart technology, in order to
better detect sports fatigue, smart wearable technology and equipment are used in volleyball. Firstly, surface electromyography
signals (SEMG) are collected through wearable technology and equipment. Secondly, the signal is preprocessed to extract features
that are conducive to exercise fatigue assessment. Finally, a motion fatigue detection algorithm is designed to identify and classify
features and evaluate the motion status in real-time. The simulation results show that it is feasible to collect ECG signals and EMG
signals to detect exercise fatigue. The algorithm has good recognition performance, can evaluate exercise conditions in real-time,

and prevent fatigue and injury during exercise.

1. Introduction

With the rapid growth of our country’s economy, the pace
of people’s lives is also accelerating. Most people are in a
two-point living situation and a line at home and at work.
In this fast-paced state of life, although it can bring better
living conditions, people pay for it is the cost of health.
According to the study, the age of patients with cardio-
vascular and cerebrovascular diseases is not limited to the
elderly, the proportion of young patients is gradually in-
creasing, and the number of deaths from cardiovascular
and cerebrovascular diseases worldwide is as high as 15
million people each time, ranking first among all causes of
death. Stimulated by these shocking data, people are
slowing down their pace of life and devoting more energy
to their health problems. Nowadays, people are willing to
devote more time to sports. According to the “China Sports
Report 2016” based on QQ sports released by QQ big data,

the average number of walking steps per day in China is
5112. Walking and running have become the most popular
sports. In sports, although young people have devoted
more enthusiasm than before, middle-aged and old people
also pay more attention to health. Therefore, with more and
more people’s enthusiasm for sports, how to exercise
scientifically and reasonably has become one of the hot
spots of people’s attention [1].

Volleyball is a good sport for physical and mental health.
Since it was introduced to China, it has been loved by the
majority of people. Especially with the advancement of
artificial intelligence technology [2], venues and training
have been greatly strengthened, and the viewing and safety
have been continuously improved. More and more people
are beginning to pay attention to volleyball, and the pop-
ularity of volleyball at the grassroots level is increasing,
which greatly promotes the healthy development of vol-
leyball in China.
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In the process of volleyball, there are many cases of
sudden death and morbidity caused by excessive intensity of
sports beyond the endurance of the players themselves.
Therefore, only scientific and reasonable sports can achieve
the purpose of physical exercise without damaging the body.
Scientific and reasonable exercise can not only achieve the
purpose of physical exercise but also prevent athletes from
sports injury due to excessive intensity of exercise. Moni-
toring the changes of physiological parameters can help
athletes to achieve scientific and rational exercise. The
commonly used physiological parameters include heart rate,
body temperature, respiratory rate, and blood oxygen
concentration. Because heart rate is sensitive to physio-
logical changes and easy to monitor, it is used as an indicator
of exercise intensity by most sports enthusiasts and athletes
[3]. In addition, the acceleration can be used to calculate the
energy consumption of sports so that the athletes can control
their own sports consumption.

Among the traditional methods of heart rate measure-
ment, common methods of heart rate measurement include
electrocardiogram measurement, pressure method, and
pulse diagnosis of Chinese medicine for heart rhythm di-
agnosis. However, ECG measurement requires electrodes to
be connected to the body to extract the heart rate from the
ECG signal of the body. The pressure measurement
equipment is very large and requires an air pump; TCM
pulse diagnosis requires the experience of a doctor. These
methods all show that we cannot provide real-time moni-
toring of physical conditions in our daily lives. In recent
years, with the rapid development of artificial intelligence
technology, it is possible to develop portable body fatigue
monitoring equipment [4]. At the same time, as mobile
smart devices such as smartphones and tablet computers are
increasingly integrated into people’s daily lives, combined
with their good interactive interfaces and powerful data
processing capabilities, a portable real-time detection and
analysis of human fatigue data can be developed. And the
analysis function of cloud storage technology is realized.

Wearable technology is a technology that studies and
intellectualizes the design and develops wearable equipment
that meets the needs of users [5]. It mainly includes inte-
gration technology, recognition technology (voice, motion,
and eyeball), detection technology, connection technology,
and flexible screen technology. It refers to the integrated use
of different technologies for identifying, detecting, con-
necting, and interacting cloud and storage services [6-10].
Wearable technology is a technology integrated in people’s
daily belongings, along with the daily activities of users, and
users can operate at any time. Its intelligence in physical
space manifests itself in the user-centered access, which can
help extend the human body’s limbs and memory function.
At the same time, it processes the data and presents the data
results to users in a visual form.

In recent years, wearable equipment based on wearable
technology has become popular in the market. The so-called
“wearable intelligent device” is the general term for the
application of wearable technology to the intelligent design
of daily wearable items or the development of wearable
equipment, such as glasses, watches, and clothing. Wearable
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intelligent devices in the broad sense include comprehensive
functions and appropriate size and can achieve complete or
partial functions without relying on smart phones. For
example, smart watches or smart glasses, as well as appli-
cations that focus only on a certain category, need to be used
in conjunction with other intelligent devices such as mobile
phones, smart bracelets for signs monitoring, and smart
head wear and constantly derived a large number of medical,
health, sports, and other wearing equipment. According to
Gartner-Research, a well-known market research company,
“Worldwide, wearable income for sports and personal health
and fitness categories will be about $1.6 billion in 2013 and
$5 billion in 2016.”

With the rise of wearable medical devices, heart rate
monitoring devices have appeared on the market. Although
they are still in the embryonic stage, they can also enable
users with such devices to measure the rate anytime, any-
where, simply, quickly, and conveniently. At present, the
wearable devices of heart rate monitoring on the market are
in full blossom, ranging from heart rate to heart rate meter.

Based on the above conditions, it is feasible to apply
wearable technology and equipment to volleyball sport. It is
of great significance to develop wearable testing equipment
for volleyball sport fatigue. It is helpful for people to monitor
their physical condition in real-time in volleyball sport and
avoid sports fatigue and injury. The specific contributions of
this paper are as follows:

(1) Using wearable technology and equipment to collect
surface EMG signals

(2) Preprocessing the signals and extracting the features
which are beneficial to the evaluation of sports
fatigue

(3) Designing a motion fatigue detection algorithm to
recognize and classify the features and evaluate the
motion situation in real-time

2. Proposed Method

2.1. Wearable Technology and Signal Acquisition

2.1.1. Wearable Technology. In the 1960s, MIT Laboratory
put forward the wearable technology as an innovative
technology. This technology integrates multimedia, wireless
sensor, and wireless communication technology skillfully
through the media and carries on the induction-feedback-
interaction experience through our basic body movements.
Wearable technology action process, also known as human-
computer interaction (HCI) [11, 12], is a technology to study
human, computer, and their interaction. The purpose of
human-computer interaction is to make the computer
system and wireless sensor technology cooperate and in-
fluence each other and to complete user instructions more
efficiently and safely. The details are shown in Figure 1.
Early wearable devices were just conceptual products.
Historically, in 1975, Hamilton Watch launched Pulsar
computer watches, which opened the era of smart wear-
ability [13]. Limited by the social development environment
and technological capabilities at that time, as well as the
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attributes of the product, Pulsar could not be widely pro-
moted. It was not until Sony released smart watch-generation
in 2012 that smart wear technology came into the public eye
[14]. Of course, with the advancement of science and tech-
nology and the strengthening of awareness of innovation,
after years of fermentation and development, portable
equipment also introduced the period of explosion of product
development. Because of its more and more comprehensive
functions and wider application, the statistical analysis of
wearable devices of Vandrico company shows 291 pieces, and
the functions of wearable devices (for example, bracelets) are
gradually increasing. From the initial movement monitoring
to today’s daily life services (heart rate, sleep quality, smart
calls, and intelligent wake-up), this also reflects the rapid
development of wearable technology since entering the new
century.

With the rapid development of wearable technology in
society, there is a diversified development trend in aero-
space, military special technology, medical and health
technology, and sports science monitoring. Of course, the
most frequent wearable technology to enter the public’s
vision is sports wear technology such as Huawei, NIKE,
millet, and other electronic or sports equipment giants that
have launched their own brand of wearable equipment,
which is used in health monitoring, sports data collection,
and other fields.

2.1.2. Signal Acquisition. EMG signals originate from
motor neurons in the spinal cord, which are part of the
central nervous system. The cell body of motoneurons is
located in which the axons extend to the muscle fibers and
are coupled to the muscle fibers via the endplate region, and
there is more than one muscle fiber associated with each
neuron. These parts are combined to form a so-called
motion unit. The movement of muscle is controlled by
consciousness. When the brain sends out excitation and
transmits downward, the cell bodies and dendrites of motor
neurons in the central nervous system produce electrical
impulses (action potentials) stimulated by synapses, which
are transmitted along the axons of neurons to the junctions
of nerves and muscles at the terminals. When the motor
nerve touches the muscle, its axons branch to many muscle
fibers, and each branch terminates to form synapses on the
muscle fibers, which are called motor endplates [15]. The
action potential conducting to the axonal endings releases
acetylcholine, a chemical at the nerve-muscle junction.
Acetylcholine changes the ionic permeability of the motor
endplate and produces the endplate potential. This endplate
potential makes the myocyte membrane reach the depo-
larization threshold potential, generates the action po-
tential of muscle fibers, and propagates along the muscle
fibers to both sides, causing a series of changes in the

muscle fibers, resulting in the contraction of muscle fibers,
and a large number of muscle fibers contraction produces
muscle force. It can be seen that the transmission of
electrical signals (action potentials of muscle fibers) leads to
muscle contraction, while the electrical signals in trans-
mission cause electric current field in human soft tissues
and show potential difference between detection electrodes,
that is, EMG signals.

Surface electromyogram (SEMG) is a bioelectrical
signal recorded from the muscle surface when the nerve
and muscle system is moving through electrodes. It is
mainly the combined effect of EMG of superficial muscle
and electrical activity of nerve trunk. It is related to the state
of muscle activity and function in varying degrees, so it can
reflect the activity of neuromuscles to a certain extent and
diagnose neuromuscular diseases in clinical medicine. The
ergonomic analysis of muscle work in the field of ergo-
nomics has important practical value in the evaluation of
muscle function in the field of rehabilitation medicine and
in the determination of fatigue in sports science and in the
analysis of the rationality of sports technology, the type of
muscle fibers, and the noninvasive prediction of anaerobic
thresholds.

Surface EMG signal is very weak, distributed in
uV ~mV order of magnitude, so the weak signal needs to be
amplified to meet the requirements of AD acquisition unit.
Because the human body is a conductive body, power fre-
quency interference and external electric and magnetic field
induction will form measurement noise in the human body,
interfering with the detection of EMG information, so signal
filtering and circuit shielding become the focus of amplifier
circuit research. The structure of a typical weak signal
amplifier circuit is shown in Figure 2.

As can be seen from Figure 2, the design of the digital
sensor for facial EMG signal includes the following parts:
input electrode, preamplifier, high-pass circuit, low-pass
circuit, secondary amplifier, power frequency interference
notch circuit, and A/D conversion circuit.

2.2. Preprocessing of Surface Electromyography Signal and
Extraction of Fatigue Characteristics

2.2.1. Surface EMG Signal Preprocessing. Due to the non-
stationary, nonlinear, and weak amplitude (10u4V ~ 6mV) of
SEMG, it is often submerged in various noises and distur-
bances during detection. For example, 50 Hz power fre-
quency, harmonic interference, ECG, and low-frequency
noise caused changes in muscle and joint angles. For this
reason, the pretreatment process of EMG signal is designed
as follows. Firstly, the baseline drift is removed by high-pass
filter [16-18] (cut-off frequency is 5 Hz). The band-pass filter
(the range of band frequency is 5-200 Hz) is used to extract
the effective frequency band signal, and then the signal is
amplified. Finally, the 50 Hz power frequency interference
and harmonics are separated and removed by independent
component analysis (ICA).

(1) Adaptive high-pass filter removes baseline drift, and
band-pass filter extracts the effective frequency band
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of EMG signal. In the process of EMG signal ac-
quisition, low-frequency noise is generated by the
relative movement of muscle and joint, the change of
joint angle, and so on. These noises are generally less
than 5Hz, and the amplitude is very large (usually
several times of EMG signal). Therefore, high-pass
filter is used to remove low-frequency interference
signal (baseline drift). Digital filters are divided into
FIR filters and IIR filters [19-21]. Because FIR filters
are more stable than IIR filters and can achieve linear
phase characteristics, this paper uses FIR-based
adaptive high-pass filters to remove baseline drift
[22, 23]. Adaptive filtering consists of two parts: FIR
digital filter and adaptive algorithm for modifying
digital filter.

The weight iteration formula of the adaptive filter
designed in this paper is as follows:

h(n+1)=h(n) —/,ﬁn,
= h(n) + 2ue(n)x (n)e (n), (1)

=z(n) —h+*x(n),

where p represents the iteration step, x(n) is the
input vector of the adaptive filter, e () is the error, h
is the weight of the filter, and z (n) is the expected
output of EMG signal.

(2) Independent Component Analysis to Remove Power
Frequency Interference. Independent component
analysis (ICA) effectively solves the problem of blind
source separation, especially for nonlinear and
nonstationary signals. Therefore, ICA separation has
been well applied in pattern recognition, medical
signal, and other fields. Independent component
analysis (ICA) can be used to remove noise from
EEG and EMG signals. For the collected EMG signal,
there will be power frequency interference. The
traditional 50 Hz notch wave will remove the
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corresponding useful EMG signal while eliminating
the power frequency. In order to solve this problem,
this paper uses the independent component analysis
method. Fast ICA is the most commonly used
method in ICA. Fast ICA belongs to nonlinear
convergence, and processing speed is relatively fast.
Therefore, Fast ICA is chosen to remove power
frequency interference. The 50 Hz power frequency
interference is separated from sEMG by Fast ICA,
and the useful EMG information is retained, which
improves the quality of the signal.

2.2.2.  Fatigue  Feature  Extraction  of  Surface
Electromyography. According to the existing research re-
sults, the time domain and frequency domain indices of
surface electromyography signal are analyzed in this paper.

(1) Time domain analysis parameters are as follows:

(1) Integrated EMG (IEMG). Integral EMG value
[24, 25] is used to represent the excitation
characteristics of muscle fibers in unit time. It is
shown that the amplitude of sEMG signal
changes with the change of movement time. It is
the area of EMG curve and transverse axis in unit
time domain. IEMG can reflect the change of
SsEMG signal:

t+T
IEMG = J [EMG (t)|ds, (2)
t
where T is the length of time and EMG (¢) is the
EMG signal at ¢ time.

(2) Root Mean Square (RMS). The root mean square
value [26-29] indicates the change characteris-
tics of SEMG in unit time. The root mean square
value is proportional to the magnitude and is
positively related to the number of exciting
muscle fiber units. With the deepening of muscle
fatigue, more exciting units are recruited. The
formula is as follows:

\/1 t+T 5 (3)
RMS = | L IEMG (1) 2dt.

(3) Zero-Crossing Rate (ZCR). ZCR [30, 31] refers to
the speed at which sSEMG sets its zero value
artificially. ZCR can reflect the oscillation fre-
quency of sEMG. As the amount of training
continues, the muscles begin to feel tired. At this
time, the conduction current of muscle fibers
decreases, and the ZCR changes rapidly.

count
ZCR = ——, (4)
N
where N is the number of surface electromyo-
graphic signal value x; and count is the count of
x; % x;,, <0.

(2) Frequency domain analysis parameters are as
follows:
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(1) Mean Power Frequency (MPF). MPF [32] is the
function index of sEMG in time. The size of MPF
is mainly affected by the conduction speed of
action potential and the type of excitation unit of
peripheral excitation unit. The surface EMG
signal changes obviously when the load is very
low.

e Jo S PSD(NAS
[ PSD(f)df

where PSD ( f) is the spectral density function of
surface EMG signal.

(2) Median Frequency (MF). Similar to the above
average power frequencies, MF represents the
median of the frequency of muscle fiber emission
signals during exercise, which corresponds to the
frequency of 1/2 area of the surface EMG energy
spectrum. The MF value is less disturbed by noise
and is suitable for high intensity and sustained
gentle motion and has a wide range of applica-
tions. Normally, the proportion of muscle fibers
in different parts of skeletal muscle is different,
and the MF value of muscle cells in different
parts of the human body varies greatly. The
principle is that muscle fibers are divided into
high-frequency and low-frequency discharges
due to the different rate of expression of
characteristics.

MP (5)

1 [e¢]
MF:EJ PSD(f)df, (6)
0
where PSD ( f) is the spectral density function of
surface EMG signal.

Based on the analysis of the five characteristics, the
frequency domain index MF and the time domain index
IEMG are finally selected for the classification experiment of
sports fatigue.

2.3. Volleyball Fatigue Estimation. Due to the influence of
individual differences, subjective emotions, and environ-
mental changes in the detection of different human bodies,
the traditional algorithm model SVM pattern recognition
cannot resolve the above changes and the accuracy of the
classification is affected. The optimal decision-making sur-
face of classification is fixed after training. It cannot effec-
tively utilize the current input and output optimization
model and cannot retain historical information in the
model. Its application flexibility and scope are limited. In
order to better solve the above problems, the motion fatigue
detection technology based on the LSTM neural network
model is proposed. The principle and application of LSTM
neural network are introduced below.

2.3.1. LSTM Neural Network Model. LSTM is an improved
RNN network. By adding long-term and short-term
memory function RNN to the hidden layer structure change,

it can maintain the persistence and long-term dependence of
RNN network [33]. LSTM hidden layer structure solves the
problem of gradient explosion and gradient disappearance
of long-distance information transmission so that infor-
mation will not decay.

The standard hidden RNN network level unit contains
only one tanh layer, and its structure is very simple. The
LSTM network improved by the standard RNN network
mainly improves the structure of the hidden level unit. The
traditional RNN network unit has only one layer, but the
improved LSTM unit has four layers. LSTM network hiding
layer module includes three multiplication units and mul-
tiple self-connected storage units. The three multiplication
units represent forgetting gates, input gates, and output
gates, which can realize unit module reading, writing, and
resetting operations.

The key of LSTM network is cell state Ct. Cell state is
represented by upper straight line, which includes two point-
by-point operations. Cell states are transmitted and updated
in this straight line, involving only some linear operations.
Therefore, the cell state is like conveying information along
the LSTM network on the conveyor belt. The cell state does
not involve nonlinear changes, so it will not change or
disappear.

The LSTM neural network unit controls discarding or
adding information from the cell state through some “gates”
structures, which consist of a nerve layer and a pointwise
multiplication operation. The output of the Sigmoid layer is
a value between 0 and 1, which is used to control the degree
of information flow. When the output of Sigmoid layer is 0,
it means that the “door” is closed and no letter is passed at
this time; when the output is 1, it means that the “door” is
opened, allowing all information to pass through. There are
three gates in LSTM network unit to control the discarding
and retention of cell state, which are called “input gate,”
“output gate,” and “forgetting gate.” The “forgetting gate” is
used to control the degree to which information in the cell
state should be discarded; then, the “forgetting gate” and the
“input gate” determine what information will be retained
and added to the new cell state; finally, the “output gate” is
used to control what information is output in the cell state.

2.3.2. Volleyball Sports Fatigue Estimation Based on LSTM.
In this paper, the extracted physiological signal characteristic
parameters are expressed as multivariate characteristic
matrices, which are used for input of the LSTM neural
network model, and a fatigue estimation model of volleyball
sports based on LSTM neural network is constructed. The
training steps of the model are shown in Figure 3.

The physiological signal characteristic parameters of the
input layer are further studied in the LSTM network layer.
The invalid information is discarded by using the excitation
functions of the hidden layer neuron units. The useful
features of the neural network are retained in the network
structure. The appropriate excitation functions are set on the
output layer of the model, and the prediction is changed to
the classification problem. The excitation function selected
in this paper is the softmax function. Softmax is used in the
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multiclassification process. It maps the output of many
neurons into the (0,1) interval. It can be understood as
probability, and then multiclassification can be carried out.

The input sample is calculated by the excitation function
of LSTM neural network, and the class label of the sample is
output. Then, the difference between the output label and the
sample label is calculated by comparing the loss function,
and a non-negative number is output. The numerical size
indicates the difference between the output tag and the
sample tag. The smaller the value, the closer to the ideal
value. The process of training the LSTM neural network
model is to reduce the output value of loss function by
feedback and iteration.

The calculation method of loss function selected in this
paper is as follows:

L(B,P(BIX)) = log, P(B|X) 7

where B represents the sample label and the minimum value
of L(B,P(B|X)) is the maximum value of — log, P (B|X).
The process of solving the maximum value is to find the B in
X to maximize P(B|X) according to the classification
results.

3. Experiments

In this paper, portable technology and equipment are ap-
plied to volleyball. The main objective is to avoid athletic
fatigue and injury caused by excessive exercise and to
monitor in real-time its situation. The wearable sensor is
mainly designed to collect the surface EMG signal of the
human body, then preprocess the EMG signal, extract the
frequency domain index MF and time domain index IEMG,
and then use the method of fatigue assessment based on
LSTM neural network to carry out fatigue analysis and real-
time monitoring of body condition. The specific flow chart is
shown in Figure 4.

In order to better evaluate the performance of the vol-
leyball fatigue assessment method designed in this paper, the
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recognition rate is used as the evaluation index, and the
expression is as follows:

number of samples correctly identified
x 100%.

(8)

recognition rate =
8 total number of test samples

4. Discussion

According to the principle of psychology, Borg, a Swedish
psychologist, identified subjective fatigue and local muscle
fatigue as a subjective fatigue sensation in subjects’ exercise.
This paper classifies muscle states into three categories:
nonfatigue, imminent fatigue, and already fatigue. If the
exercise evaluation finds that the muscles of the body are in a
state of fatigue, wearable equipment reminds the athletes
that the muscles are in a state of fatigue and pay attention to
rest.

Firstly, after the preprocessing of surface electromyog-
raphy signal, the frequency domain index MF and the time
domain index IEMG are used as the analysis characteristics
of fatigue assessment. It is necessary to analyze the changes
of the two indexes with different fatigue degrees and to verify
the feasibility of the two indexes as the analysis of volleyball
sports fatigue. In this paper, 12 volleyball players were asked
to take part in volleyball. Wearable devices were used to
extract information and analyze the changes of their fre-
quency domain index MPF and time domain index RMS.
The average results were observed for one hour, as shown in
Table 1.

According to Table 1, we draw a broken line chart of the
change of integral EMG value with exercise time, as shown
in Figure 5. As can be seen from the figure, with the increase
in exercise time, the degree of muscle fatigue gradually
increases, and the integral EMG value shows a decreasing
trend.

Similarly, a broken line diagram of the median frequency
MF varying with the time of motion is drawn as shown in
Figure 6. It can also be seen that with the increase in exercise
time, the degree of muscle fatigue gradually increases, and
the median frequency also shows a significant decreasing
trend.

From the above analysis, it can be found that the fre-
quency domain index MF and time domain index IEMG
used in this paper will gradually decrease with the increase in
fatigue degree, and their changes are related to fatigue
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TaBLE 1: Characteristic indicators change with movement.
Time (min) IEMG (mV) MF (Hz)
5 1.79 119
10 1.76 109
15 1.69 106
20 1.58 101
25 1.52 91
30 1.48 87
35 1.42 83
40 1.31 79
45 1.20 75
50 1.07 67
55 0.89 61
60 0.71 50
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3
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FIGURE 5: The change of integral EMG with exercise time.

degree, which can be used as an evaluation index of sports
fatigue.

Secondly, the classification accuracy of using frequency
domain index MF and time domain index IEMG as eval-
uation index and using frequency domain index MF and
time domain index IEMG as classification index is analyzed.
The analysis results are shown in Table 2. It can be seen from
the table that the effect of using characteristic parameters in
frequency domain or time domain as evaluation index is not
as good as using time domain and frequency domain as
evaluation index at the same time. The worst one is fre-
quency domain index MF, with the recognition rate of
75.61%, followed by time domain index IEMG, with the
recognition rate of 81.08%; the best one is that IEMG and

frequency domain MF are used as evaluation index at the
same time, with the recognition rate of 93.62%.

Finally, this paper uses SVM “one-to-one” and SVM
“one-to-many” classifiers as classification performance
comparison and takes IEMG in time domain and MF in
frequency domain as evaluation indicators to analyze the
recognition performance of the fatigue classifier in this
paper. The results are shown in Table 3,and the histogram is
shown in Figure 7.

Combining Table 3 and Figure 7, it can be seen that the
classification performance of the proposed fatigue assess-
ment method is much better than that of SVM “one-to-one”
and SVM “one-to-many” classifiers. The recognition rate of
the proposed method is 10.47% higher than that of SVM
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TaBLE 2: Fatigue classification
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FIGURE 6: Variation of median frequency with motion time.

accuracy of different evaluation

Indicator Recognition rate (%)
IEMG 81.08
MF 75.61
IEMG and MF 93.62

TaBLE 3: Fatigue assessment performance of different methods.

Method

Recognition rate (%)

SVM “one-to-one” 83.15
SVM “one-to-many” 72.67
Method of this paper 93.62
100 - oo --93.62
90 -83.15 - - -
80 - 72.67
70
- 60
s 50
8 40
30
20
10
0
SVM “one-to-  SVM “one-to-  Method of this
one” many” paper
m Recognition rate (%) 83.15 72.67 93.62
Group

Figure 7: Comparison of fatigue evaluation performance of dif-

ferent methods.

“one-to-one” classifiers and 20.95% higher than that of SVM
“one-to-many” classifiers. It can be seen that the perfor-
mance of the proposed fatigue assessment analysis method is
good.

In conclusion, the simulation analysis shows that it is
feasible to apply wearable technology and equipment in
volleyball, and it can identify the fatigue of the body well,
realize real-time monitoring of the body in sports, and
prevent the occurrence of sports fatigue and sports
injury.

5. Conclusions

Today, the rapid development of portable devices has a
very wide range of applications in life, and application to
sport has attracted more and more attention. Volleyball is
a good exercise for the human body and mind and body,
which contributes to improving the physical health of the
body. However, due to the fierceness of the exercise, it is
easy to produce sports fatigue and cause sports injuries.
Therefore, the application of wearable technology based
on artificial intelligence is used in volleyball. The real-time
monitoring of fatigue has important research significance
and practical significance. Based on the analysis of sports
fatigue assessment methods, this paper designs an arti-
ficial intelligence-based wearable technology sports fa-
tigue assessment method. The wearable sensor is designed
to collect the SEMG signal of the human body. Low-
frequency noise and power frequency interference can be
eliminated by preprocessing the surface EMG signal. The
time domain integrated EMG value IEMG and the fre-
quency domain intermediate frequency MF are extracted



Mathematical Problems in Engineering

as the characteristics of exercise fatigue assessment. Input
the sports fatigue assessment method based on LSTM
neural network to classify sports fatigue and realize the
assessment of volleyball human fatigue. Through simu-
lation analysis, it can be found that the IEMG in the time
domain and the MF in the frequency domain can reflect
human muscle fatigue, and it is better to use the time
domain and frequency domain features at the same time
than to use them alone. In addition, compared with the
support vector machine classifier, the performance of this
method is good.
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