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)is study focuses on the power allocation (PA) problem in code division multiple access (PDMA) networks with amplify-and-
forward (AF) relays. We provide two wireless communication technical performance indexes, which are system throughput and
outage probability. A multiobjective version of particle swarm optimization is proposed to solve Pareto-optimal solutions for
optimal PA problems. A novel programming model is built based on improvement of constraint functions, and the accuracy and
efficiency of solution can be improved via compact constraints. )e technique for order preference by similarity to an ideal
solution is proposed to balance the performance indicators, which include outage probability and system throughput. It has been
calculated that the proposed approach for optimal PA is verified and performs better than a genetic algorithm approach.

1. Introduction

Renewable energy has become a trend in smart grid de-
velopment. Wind power and photovoltaic are representa-
tives of renewable energy. To address the randomness of
wind power, robust sliding mode control [1], maximum
power point tracking control [2, 3], and passivity-based
sliding-mode control [4] are presented to maximize the
availability of wind power. Maximum power point tracking
is also used in the photovoltaic system, which can get the
maximum power output under partial shading condition
[5, 6]. )e reliability of the renewable energy communica-
tion system has significant engineering significance for
optimization and control in distribution networks integrated
with renewable energy.

With the development of 5G networks, wireless com-
munication technology will support the intellectualization of
the renewable energy system. 5G networks can deliver su-
perfast speeds and support extremely low-latency connec-
tions. Power communication adopts both optical fiber
communication and wireless communication, which are

applied to new energy monitoring systems. 5G networks can
meet the real-time data acquisition and transmission and
realize data measurement, state awareness, and scheduling
control. Nonorthogonal multiple access (NOMA) has
emerged as a key component of 5G networks and has
attracted extensive attention and research for its superior
spectral efficiency performance [7]. )e core concepts of
NOMA are to service multiple users on the same resource
simultaneously by utilizing power allocation (PA) and to
separate multiplexed users at the receiver side by using the
successive interference canceller (SIC) technique [8]. Dif-
ferent from the traditional orthogonal transmission, NOMA
uses nonorthogonal transmission at the transmitter and
actively introduces interference information. At the re-
ceiving end, the correct demodulation is realized by a SIC
technology. Huawei, ZTE, and Datang Telecom have pre-
sented their own multiple access technologies, which are
called sparse code multiple access (SCMA) [9], multiuser
shared access (MUSA) [10], and pattern division multiple
access (PDMA) [11], respectively. Although these technical
details are different, they basically belong to NOMA
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schemes. SCMA, MUSA, and PDMA [11] have been studied
in both academia and industry. PDMA is a multicarrier
NOMA scheme that has attracted significant attention due
to its unequal diversity design at the transmitting side, and
its ability to obtain almost equal or approximately equal
diversity benefits at the receiving side. PDMA combined
with relay technology can enhance system performance [12].
PDMA is a significant NOMA technology, which defines
sparse mapping from data to a great sum of resources.
Compared with other multiple access technologies, such as
SCMA and MUSA, the advantage of PDMA is that PDMA
patterns provide unequal classification to meet the com-
munication requirements of different users [13]. Different
diversity orders are provided for multiple users to alleviate
the error propagation problem of the SIC receiver in PDMA-
based systems.

)e programming problem is a common problem in
wireless communication systems, including optimal pa-
rameter setting and optimal power allocation (OPA). Bae
and Han joined power and time allocation to minimize
system outage probability for two-way cooperative NOMA
[14]. Cao et al. [15] presented two PA schemes to improve
the secrecy of wireless transmissions in a NOMA system.
One scheme jammed eavesdropping attempts, and the other
optimized the PA power. Zhu et al. presented a PA method
to achieve max-min fairness, weighted sum rate maximi-
zation, sum rate maximization with quality of service (QoS)
constraints, and energy efficiency maximization with
weights or QoS constraints under a given channel assign-
ment in NOMA systems [16]. Cui et al. investigated PA in
multicell multicarrier NOMA (MC-NOMA) networks by
considering maximizing the sum mean opinion scores
(MOSs) of users and proposed a low-complexity suboptimal
approach based on successive convex approximation tech-
niques, which attained a good computational complexity-
optimality trade-off [17]. Ni et al. developed a centralized
minimum power control algorithm to minimize the total
transmit power by considering the user data rate require-
ments for multicell MC-NOMA networks where the user
assignment is fixed [18]. Khan et al. presented an iterative
local optimal solution to calculate the optimal PA and en-
hance the sum capacity, which considered the transmission
power in sending node, the user PA, and the minimum rate
requirements per user [19]. Zhao et al. presented a joint
problem of spectrum allocation and power control to
maximize the sum rate of small-cell users in a NOMA
network by considering user fairness. )e PA problem used
sequential convex programming to update the result itera-
tively. )e spectrum allocation problem used a many-to-one
matching game with peer effects [20]. Song et al. presented a
PA algorithm based on a bisection search algorithm and a
gradient value to maximize the energy efficiency in downlink
NOMA networks with imperfect channel state information.
)e nonconvex problem was transformed to a convex
problem by sequential convex programming, and the PA
factors were attained by the Lagrangian multiplier method
[21]. He et al. presented a deep reinforcement learning
framework where PA and channel assignment were com-
bined to allocate resources to users in a near optimal way.

Specifically, an attention-based neural network was
exploited to perform the channel assignment [22]. Xiao et al.
presented an improved PSO algorithm to improve the en-
ergy efficiency of the systems while guaranteeing the spectral
efficiency [23]. Except GA, particle swarm optimization
(PSO) is another artificial intelligence algorithm that can be
used for wireless communication system optimization [24].
From the point of view of the programming solution
method, the following comparison can be summarized [24],
and the proposed methods are artificial intelligence algo-
rithms. )e main difference between this study and [24] is
that, in this study, OPA is a multiobjective optimization
problem rather than a single-objective optimization problem
as in [24]. High system throughput is a major target in [24].
Both high system throughput and low outage probability are
targets in this study. We not only improve the constraint
functions in [24] but also propose an effective method for
multiobjective programming.

)e existing OPA methods only consider a single per-
formance objective, that is, the system throughput, but
single-objective optimization cannot meet the requirements
of multiple performance indicators of wireless communi-
cation. Beside system throughput, outage probability is
another important index to measure the performance of the
communication system. Multiobjective optimization can
make power allocation meet the requirements of different
performance indexes of PDMA at the same time, that is, the
significance of this work. Multiobjective optimization is of
vital importance in a wireless communication system, but it
is more complex and time-consuming than single-objective
optimization. )is motivates us to find an OPA algorithm in
amplify-and-forward (AF) relaying with PDMA (AF-
PDMA) networks to improvemultiple system performances.
)e first challenge is that OPA is a nonconvex problem,
which cannot be solved effectively by the gradient descent
method. )e second challenge is that how to balance the
optimization needs of different system performance indi-
cators. It was proved that different performance objectives
make the optimization problem become a constrained
multiobjective optimization problem in PDMA systems
[25].

)e contributions of this study can be outlined as fol-
lows. (1) We present a multiobjective PSO algorithm con-
sidering a Pareto-optimal solution to solve the complicated
PA solution problems in an AF-PDMA network.)e benefit
is that the feasible region of the PSO algorithm is greatly
reduced by modifying the original constraint functions, and
the convergence efficiency is greatly improved. )e iteration
in the infeasible region is also avoided. (2) We analyse the
relationship of user outage probabilities and system
throughput from which a trade-off between the outage
probability of a single user and system throughput is
attained. )e benefit is that different requirements of users
and systems on OPA are taken into consideration, and the
proposed multiobjective evaluation theory can be extended
to other wireless communication systems for equilibrium
optimization.

Notation: the notation ⊙ represents the dot multiple.
(·)− 1 denotes the matrix inversion. (·)H denotes the matrix
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conjugate transpose. IN represents an identity matrix with
an N × N vector.

2. System Model

In this section, we consider an AF-PDMA downlink network
as outlined in [26]. A PDMA pattern matrix
GN,K

PDMA � [g1, g2, . . . , gK] denotes a K pattern with gi

mapping on N resources, where gi is the ith user’s PDMA
pattern.

)e transmission powers for the BS and relaying node
are equal (Ps � Pr � P). )e channel coefficients among the
BS, the kth user, and the AF relaying node are denoted as
hmnk

, (mnk ∈ buk, br, ruk ), in which hmnk
∼CN(0, μmnk

).
nbr∼CN(0, N0) and nbuk

∼CN(0, N0) represent additive
white Gaussian noise at the relaying node and the kth user,
respectively. c≜ (P/N0) is a transmit SNR.

)e received signals at kth user from the BS or relaying
node are denoted as follows:

ybuk
� hbuk
⊙ 

K

i�1

���
αiP


gixi + nbuk

� 
K

i�1

���
αiP


hbuk

xi + nbuk
� Hx + nbuk

,

yruk
� Ghruk
⊙ hbr 

K

i�1

���
αiP


gixi + nbr

⎛⎝ ⎞⎠ + nruk
,

(1)

where ybuk
and yruk

are the signals from the BS or relaying
node, respectively. nbuk

and nruk
are the noises from the BS

and relaying node, respectively. hbuk
and hruk

are the channel
responses from the BS and relaying node, respectively.
hbuk

� hbuk
⊙ gk, hruk

� hruk
⊙ gk, and H is the PDMA

equivalent channel response matrix. xi is the ith user’s signal.
αi is the PA coefficient, where α1 + α2 + · · · + αK � 1. x �

����
α1P


x1

����
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x2 · · ·

����
αKP


xK 

T
is the modulated

symbol. G is the amplifying gain factor in which
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��������������

P/(P|hbr|
2 + N0)



.
)e corresponding SINR for the kth user who receives a

signal from the BS is represented as follows:

cbuk
� Pk

hbuk
 

H
N0IN + 

K

i�k+1
Pi

hi
hi 

H⎛⎝ ⎞⎠

− 1

hbuk
. (2)

Pk � αkP denotes the kth user’s transmit power.
)e corresponding SINR for the kth user who receives

the signal from the relaying node is represented as follows:

cruk
� αkc

2 hruk
⊙ hbrk

 
H

KZk
 

− 1 hruk
⊙ hbrk

 , (3)

where Zk is the noise plus the interference from the relaying
node. KZk

is the covariance of Zk, which is calculated as
follows:

KZk
� c

2


K

i�k+1
αi

hrui
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  hrui
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H

+ chruk

hruk
 

H

+ chbr hbr 
H

+ IN.

(4)

)e metrics are defined as follows. Generally, outage
probability is defined as the probability by which SINR is
smaller than a specified threshold value in both BS-to-user
and relay-to-user channels. An outage occurs if neither the
direct nor the relay transmission succeeds [24]. System
throughput is defined as the product of the transmission rate
and the probability of successful transmission [27].

To simplify the outage expressions, we define function
Gk(x) as (5).

Gk(x) �

1 − e
− (x/c) 1/μbr( ) + 1/μruk

  
��������
4x(x + 1)

μbrμruk
c



K1
4ϕ(x + 1)

μbrμruk
c

 , x≠ 0,

0, x � 0,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(5)

where K1(·) is the first-order modified Bessel function of the
second type, and μmnk

is the channel coefficient where
mnk ∈ buk, br, ruk .

)e matrix with two rows (N� 2) and three columns
(k� 3) is the most representative matrix with the minimum

degree of unequal diversity. Other larger dimensionmatrices
can be extended similarly. )e PSO algorithm has a good
applicability. When the number of users and channels
change, we only need to modify the PSO parameters,
constraints, and objective functions, rather than the
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algorithm mechanism. Taking the PDMA pattern matrix
G2,3
PDMA as an example, the outage expressions for users are as

follows:

O1 �
1 − e

− τ1/μbu1 + e
− τ2/μbu1  × 1 + G1 τ1(  − G1 τ2( ( , if a< 0,

e
− τ1/μbu1 − e

− τ2/μbu1  × G1 τ2(  − G1 τ1( ( , if a> 0,

⎧⎪⎨

⎪⎩

O2 �
1 − e

− ς1/μbu2 + e
− ς2/μbu2  × 1 + G2 ς1(  − G2 ς2( ( , if a< 0,

1 − e
− ς/μbu2 + e

− ς1/μbu2 − e
− ς2/μbu2  × G2(ς) − G2 ς1(  + G2 ς2( ( , if a> 0,

⎧⎨

⎩

O3 �
1 − e

− ξ1/μbu3 + e
− ξ2/μbu3  × 1 + G3 ξ1(  − G3 ξ2( ( , if a< 0,

1 − e
− ξ/μbu3 + e

− ξ1/μbu3 − e
− ξ2/μbu3  × G3(ξ) − G3 ξ1(  + G3 ξ2( ( , if a> 0,

⎧⎨

⎩ (6)

where τ1 � max 0, x1 , τ2 � max 0, x2 , ς � (ϕ2/α2c), ς1 �

max (ϕ2/α2c), x1 , ς2 � max (ϕ2/α2c), x2 , ψ1 � max
x1, (ϕ2/α2c), (ϕ3/α3c) , ψ2 � max x2, (ϕ2/α2c), (ϕ3/α3c) ,
ψ � max (ϕ2/α2c), (ϕ3/α3c) , and a � [α1(α2 + α3) −

α2α3ϕ1]c2.
ϕk is the targeted SNR of the kth user; x1 and x2 stand for

different values of |hbu1
|2, and they can be obtained by

solving the following equation.

α1 α2 + α3(  − α2α3ϕ1 c
2

hbu1




4

+ 2α1 − α2 + α3( ϕ1 c hbu1




2

− ϕ1 � 0.

(7)

)eAF-PDMA system throughput expression is denoted
as

Rsum � R1 1 − O1(  + R2 1 − O2(  + R3 1 − O3( . (8)

3. Optimal Power Allocation

)e optimal PA is mathematically equivalent to the optimal
PA factor setting. Multiobjective programming is an effec-
tive way to solve complicated PA problems.

3.1. Programming Model. Two typical objectives, based on
system throughput and outage probability, have been pro-
posed for optimal PA in a downlink network. Hence, the PA
allocation problem is an optimization problem with two
objective functions, and it can be formulated as

minf(α, θ) � O3(α, θ), − Rsum(α, θ) , (9)

where α is the three PA coefficients (i.e., α1, α2, and α3), θ is a
system parameter vector in the downlink network, O3 is the
outage probability of the third user, the significance ensures
the reliability of single-user communication, and Rsum is the
system throughput.

)e inequality constraints are given as follows:

1> α1 > α2 > α3 > 0. (10)

)e equality constraint is given as follows:

α1 + α2 + α3 � 1. (11)

)e challenge of PSO is that once the initial value and
update particles are not in the feasible region, all the particles
may be updated in the infeasible region. We propose a new
approach to address this issue by revising the existing
constraints through logic. After the constraint conditions are
modified, the decision variables are changed from three
coefficients to two coefficients. )e third coefficient is cal-
culated as a parameter by (11).)e inequality constraints are
improved as follows:

1
3
< α1 < 1, (12a)

0< α2 <
1
2
, (12b)

0< α2 < α1, (12c)

1 − α1 − α2 < α2. (12d)

Equations (13) and (14) are broad constraints, but
(12a)–(12d) make the constraints narrow. )e point is that
the constraint conditions are very important for the effi-
ciency and accuracy of the evolutionary algorithm. With
respect to PSO, the programming model based on (13) and
(14) is easy to iterate in the infeasible region, but the model
based on (12a)–(12d) can avoid this problem.

3.2. PSO 6eory. PSO exhibits strong randomness and
covers most solution spaces to avoid reaching a local op-
timum [28]. )e advantage of an artificial intelligence al-
gorithm is that it is amenable to almost all stochastic
programming models. Its disadvantage is that it cannot
guarantee that a global optimal solution can be found. Even
if the global optimal solution is found, it is impossible to
provide a strict mathematical proof. In addition, adjusting
the parameters, including the step size and penalty coeffi-
cients, is difficult. Reasonable parameters are necessary
conditions for obtaining the optimal solution, and the PSO
parameters in this study are listed in Table 1.
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3.3. Pareto Frontier. )e Pareto frontier is a key to solving
the multiobjective programming problem [29]. A Pareto-
optimal solution can include a noninferior solution set, a
nondominated solution set, and a nondominant solution set.
Based on the Pareto dominance, we present a multiobjective
PSO algorithm considering a Pareto-optimal solution. )e
procedure of the multiobjective PSO algorithm is given as
follows: Algorithm 1.

3.4. TOPSIS. )e technique for order preference by simi-
larity to an ideal solution (TOPSIS) is an effective double
benchmark evaluation method [30] that can be used to
balance the outage probability of a single user and system
throughput. TOPSIS can calculate the positive and negative
ideal solutions of each index (i.e., outage probability of a
single user or system throughput). )e relative closeness of
each evaluation object to positive and negative ideal solu-
tions can be used to evaluate the comprehensive perfor-
mance of the system.)e optimal TOPSIS should be close to
the positive ideal solution, and the distance from the neg-
ative ideal solution should be large. )e decision problem of
two objectives is shown in Figure 1.

A+ and A− denote the positive ideal solution and
negative ideal solution, respectively. )e feasible solution A1
is closest to the ideal solution A+ but not the farthest so-
lution from the negative ideal solution A− . )e feasible
solution A2 is further away from the negative ideal A− . )e
disadvantage of TOPSIS is that the weight is not reflected in
the distance calculation. )e calculated Euclidean distance
can be weighted using an entropy-weighing method to
overcome this shortcoming.

)e calculation steps of an entropy TOPSIS method are
as follows. A standard treatment of the evaluation matrix
data using 0-1 transformation is implemented.

When the index is positive, the following formula is used
for standardized transformation.

b
∗
ij �

bij − minjbij

maxjbij − minjbij
, 1≤ i≤m, 1≤ j≤ n, (13)

where bij is an optimal system throughput in step 3 in section
C, and n is equal to two. When the index is an inverse index,
the following formula is used for standardized
transformation.

b
∗
ij �

maxjbij − bij

maxjbij − minjbij
, 1≤ i≤m, 1≤ i≤ n, (14)

where bij is an optimal outage probability in step 3 in section
C.

According to the standardized decision matrix, the
characteristic proportion of the jth index and the ith eval-
uation sample can be calculated using

cpij �
b
∗
ij


m
i�1b
∗
ij
. (15)

)e entropy of the index is calculated using

ej � −
1

ln m


m

i�1
cpij ln cpij, 1≤ j≤ n. (16)

Note that when cpij � 0, we set ln (cpij) equal to zero. )e
entropy weight formula is

wj �
1 − ej


n
i�11 − ej

, 1≤ j≤ n. (17)

From here, it follows that

cij � wj × bij, i � 1, 2, . . . , m; j � 1, 2, . . . , n,

C
+

� max cij, 1≤ i≤m,

C
−

� min cij, 1≤ i≤m,

(18)

where C� (cij)m×n is the weighted normal matrix, C+ is the
set of positive ideal solutions, and C− is the set of negative
ideal solutions.

)en, the weighted Euclidean distances from each
evaluation object to the positive and negative ideal solutions
are calculated separately.

d
+
i �

�������������



n

j�1
w

2
j cij − c

+
j 

2




, i � 1, 2, . . . , m,

d
−
i �

�������������



n

j�1
w

2
j cij − c

−
j 

2




, i � 1, 2, . . . , m,

fi �
d

−
i

d
+
i + d

−
i

, i � 1, 2, . . . , m,

(19)

where fi is the evaluation result of the comprehensive per-
formances. One can find the best solution at the Pareto
frontier by finding the greatest fi.

)e implementation process of the proposed algorithm
is shown in Figure 2.

4. Results and Discussion

4.1. Subheadings. We use a step-by-step validation method
to demonstrate the power optimization method for AF-
PDMA in a downlink network. First, we compare GA with
the proposed PSO algorithm. )en, system throughput
performance and the minimum outage probability of the
third user are taken as planning objectives, and different

Table 1: Simulation parameters for PSO.

Item Value
)e PSO particle size 30
)e PSO iteration number 15
)e penalty function factor 106
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solutions for OPA are derived. To balance the need for
system throughput with the desire to minimize outage
probabilities, a Pareto frontier consisting of a set of possible
solutions is found.)e Pareto solutions are further evaluated
with the TOPSIS approach to help the decision-maker find
the desired OPA solution. )e simulation in this study is
performed on a Lenovo laptop with an Intel(R) Core (TM)
i7-1065G7 CPU operating at 1.30GHz with 15.7 GB of
available memory.

An internal function of MATLAB, i.e., a GA solver for
mixed-integer or continuous-variable optimization, con-
strained or unconstrained, is used to solve the OPA
problem. Because GA internal function is installed in
Matlab, the solution performance is reliable and can be
used to verify the accuracy and effectiveness of the pro-
posed PSO algorithm.

PSO and GA are used to solve the OPA problem to
obtain the maximum system throughput. As shown in
Figures 3–5, the performances of this method are better than
those of the GA. It should be noted that it is important to
adjust parameters in an artificial intelligence algorithm

according to the programming model. )e simulation re-
sults do not demonstrate that PSO is more efficient and
accurate than GA but demonstrate that the solution per-
formance of the artificial intelligence algorithm depends on
the parameter setting. Noted that the PSO algorithm uses the
modified constraints, the GA uses the constraints before
modification. )e feasible region of GA solution is original
and broad, and the solution is limited by (13)-(14). )e
feasible region of the PSO algorithm is modified and
compact, and the solution is limited by (12a)–(12d). It will
greatly improve the efficiency and accuracy of the solution
via transforming (10)-(11) to (12a)–(12d). With respect to

Outage 
probability 

System 
throughput

Feasible
solution

A–

A+

Ai

A· 2

A1

Figure 1: Positive ideal solution and negative ideal solution.

Step 1. Single-objective optimization

(i) Find the optimal solution of the maximum system throughput using the PSO algorithm
(ii) Find the optimal solution of the minimum outage probability of user3 using the PSO algorithm

Step 2. Probability distribution calculation

(i) Calculate the system throughput using the solutions, which ensures the minimum outage probability of user3
(ii) Generate a row vector of m linearly equally spaced points between the optimal system throughput and the system throughput,

which is solved in the last step

Step 3. Obtain the Pareto frontier

(i) Add inequality constraint Rsum (α, θ)>a, which is an element of the above equally spaced points. For each solution, a constraint is
added in order.

(ii) Find the optimal solution of the minimum outage probability of user3 using the PSO algorithm based on the above added
inequality constraint

(iii) Repeat the above process m times to obtain m groups of optimization target values

ALGORITHM 1: Process for multiobjective optimization.

Start

Model an AF-PDMA downlink network considering 
three users and two channels.

End

Derive the formulas of outage probability and 
system throughput as objective functions.

Improve constraint functions via formula 
derivation of the original constraint functions.

Set the condition that does not satisfy 
15 (c) and 15 (d) as penalty terms.

Combine the penalty terms and objective 
functions to create the fitness of PSO.

Set the upper and lower limits of the 
solutions according 15 (a) and 15 (b).

Obtain the Pareto frontier surface using the procedure 
of the multiobjective PSO algorithm in section C.

OPA solutions are obtained on the 
Pareto frontier based on TOPSIS.

Figure 2: Implementation process of the proposed algorithm.
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the proposed method, the feasible regions of α1 and α2 have
been reduced to improve the calculation efficiency. α3 is no
longer used as a solution, and it is directly calculated using α1
and α2. )e benefit of such a treatment is that the equality
constraint (11) is avoided when generating fitness function.
)is result shows that rigorous mathematical derivations
and reductions of the feasible region are important for an
intelligent optimization algorithm.

Figures 3–5 show the different evaluation metrics, but
their optimization objectives are the same. System
throughput is taken as the single-objective function.
According to the formulas for outage probabilities and
system throughput, there is no contradiction between them.
When the outage probability is very low, the system
throughput performance can be guaranteed. However, this
does not mean that the outage probability of each user is
completely consistent with the system throughput perfor-
mance of the downlink network. It has been calculated that
the individual user may be sacrificed to maximize the system
throughput. With the increasing of outage probability
(power reduction) of the individual user, the total outage
probability and system throughput may be improved. Al-
though some GA results are better than the PSO results for
user3, system throughput of GA optimization is definitely
worse than that of the proposed PSO optimization. )ere
exist balance and game problems between system
throughput performance and a user outage probability. To
illustrate this problem, the outage probability of user3 is
taken as the objective function, and the proposed PSO
method is used to solve the OPA.

As shown in Figures 6–8, the system performances vary
depending on the target functions. It can be seen that the
optimal system throughput performance does not guarantee
the best performance for every user. Even if multiple users
have the lowest total outage probability, there is no guar-
antee that each user will have the lowest outage probability.
With regards to the solution results, it should be noted that it
is difficult for an artificial intelligence algorithm to find the
global optimal solution. In terms of few individual points,
the system throughput of the curve targeting the best system
throughput can be less than that of the curve targeting the
best user3. Also, these locally optimal solutions are few and
reasonable when PSO is used. To solve the biobjective
programming problem, we use the weighted ideal method to
evaluate Pareto frontier using 500 solutions, which is shown
in Figure 9.

At the Pareto frontier, user3 outage probability and
system throughput performances need to be balanced. OPA
should balance the two to achieve a balance of the two
indicators.

)e index of outage probability is an inverse index and
has a cost type attribute. )e smaller the outage proba-
bility value is, the better the system performance. )e
index of system throughput is positive and has a benefit
type attribute. )e larger the index value, the better the
system performance. According to formulas (9) and (10),
the system throughput and outage probability values in
Figure 9 are standardized. )e weight matrix is deter-
mined by the entropy weight method, and the matrix is
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Figure 3: System throughput (BPCU) versus SNR (dB) using
different solutions.
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Figure 4: Sum of outage probabilities versus SNR (dB) using
different solutions.
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Figure 5: Outage probabilities versus SNR (dB) using different
solutions.
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[0.1408, 0.8592]. )e TOPSIS approach is a double
benchmark that can reduce the probability of the same
evaluation results. We can obtain the best power distribution

scheme using the method combining entropy weight and
TOPSIS, and the solution of PA coefficients is [0.7, 0.2, 0.1].
)e optimal system throughput and outage probability of
TOPSIS is listed in Table 2. It can be seen that each index of
TOPSIS is not the best, but there is a balance between the two
indexes.

Although PSO can be applied to solve nonconvex
multiobjective optimization problems, it cannot avoid the
complexity of parameter setting and program debugging.
)e setting of PA initial values and particle moving speed
will affect the PSO performance. In practical programming,
the biggest challenge is that the particle swarm can be
updated in the infeasible region. With respect to the pro-
posed optimization method, the updating of particle swarm
is strictly limited in the feasible region via putting strict
constraints on the feasible region instead of setting the
penalty term in the fitness function. Of course, multi-
objective will bring about the complexity problem, which
can be dealt with by Pareto frontier and an effective com-
prehensive evaluation method.

5. Conclusion

)e entropy method is used to determine the weight of a
system index (system throughput and outage probability),
which avoids the subjectivity of multifactor weight deter-
mination. )rough the analysis of the comprehensive
evaluation results of the system performance of a downlink
network, the effectiveness and rationality of the TOPSIS
approach for OPA are verified. TOPSIS can calculate the
weighted distance and overcome the shortage of compre-
hensive evaluation results caused by the use of a single
standard. )e simulation results ensure that the outage
probability of a single user is low, and the system throughput
performance is good.
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Figure 6: System throughput (BPCU) versus SNR (dB) considering
different optimization objectives.
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different optimization objectives.
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Table 2: System performances of TOPSIS.

Item System throughput Outage probability
Lower boundary 3.88 0.0010
Upper boundary 3.97 0.0078
TOPSIS 3.96 0.0011
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