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In this paper, we attend to investigate the steady flow of a Newtonian fluid through a sine-curved channel working with the least-
square technique of Galerkin’s approach. We implement the whole simulation using Comsol Multiphysics 5.4. To study the fluid
flow through this channel, we take the Reynolds numbers in the range from 1000 to 10,000 and amplitude of the sine-curved
channel in the range from 10 cm to 30 cm. We examine the flow rate and pressure at the outlet. It is observed that, at the outlet,
maximum speed is increasing linearly along the Reynolds number and that the maximum pressure settled a negative relationship
with the Reynolds number when increased. It is also determined that due to an increase in the hydraulic jumps, when increasing
the amplitude of vibration of the channel, the velocity of flow got fluctuated at the above walls, which also results in a decline in the
pressure from the inlet to exit of the channel. Moreover, the several correlations keeping amplitude as constant have been
developed for the maximum flow velocity magnitude at the exit of the channel relating to the Reynolds number.*ese correlations
will be definitely used for the future production and comparison for the fluid flow for the curvy channel.

1. Introduction

*e perceptions of the fluid flow occasions are happening
everywhere in the universe [1–3], for example, in engi-
neering and modern applications [4–6]. *e streams of the
basic models are flying creatures [1], stalagmites production
in the sea [2], falling motions of hailstones [3], spreading of
contamination [7], the instances of penetrating in the pe-
troleum engineering [8], movement of planes in the sky [9],
atomic explosions in the field of nuclear energy [10], heat
reduction of solar-powered batteries in the field of energy
sciences [11], creation of a fine exchanger [12], and so on.
Fluid flow through the pipes with curvy shapes in the field of
computational fluid dynamics is under investigation by
several authors for decades due to its application in the
industry and research. Fluid flow through the pipes with
curvy shapes is considerably complicated as compared to the

flow through pipes or rectangular slits. *e transportation of
urine organized between the bladder and kidney, a stream of
the chime in the direction of the small and large intestine, the
unforeseen motion of the blood vessels, and crusade of
caustic fluid are few applications. Velocity of the fluid and
pressure distribution within the fluid depend upon the shape
of the channel, and therefore, several scientists and re-
searchers set their light of intellect upon the current topic of
fluid flow through the curved channels to talk about the
various parameters used in industrial applications.

An observation and examination [13] was conducted for
the fluid flow along with the heat transfer through a sinu-
soidal channel by considering a fully developed flow at the
inlet taking the wavelength of the channel to be 0.04m. It
was discovered that, with the rise in the Reynolds number,
the pressure drops significantly. *is phenomenon is in
contrast with the flow through rectangular channels. *e
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fluid flow along with heat transfer through the two-di-
mensional sinusoidal wavy channel is inspected in [14] with
the help of a simple algorithm. *e fluid is fully developed
and the range of the Reynolds number is from 100 to 1000. It
was observed that the increase in the Reynolds number also
increases the isotherms in the curved wall as well as the heat
transfer rate. Several experiments [15] were performed on
the curvy geometry considering the single-phase, New-
tonian, laminar, and turbulent fluid flows with the Reynolds
numbers in the range 0<Re< 7500. It was determined that
due to the boost in the flow rate of the curvy channel as
compared to the rectangular regions, the heat transfer is
increasing significantly. Escorted by the help of the power-
lawmodel of non-Newtonian fluid, a peristaltic flow through
the curvy channel was examined in [16]. A third-grade fluid
was used to obtain that, with the increase in the wavelength
of the vibration of the channel, pressure is decreased.
Decomposing the governing equations [17] in the harmonic
one with the help of the stream functions of the components
of the velocity field, Stokes flow via the sinusoidal channel
was determined. It was found that the velocity field, which
occurred in the domain, is the function of the amplitude of
the oscillation of the wall. Tracking the pattern of fluid flow
through the wire gauze or screen, an asymptotic solution
that connects the stream-velocity gained through numerical
solution compared to the analytic solution was provided in
[18] while experiencing air as a working fluid through the
rectangular duct connected by parallel plates. On imple-
menting the finite element analysis based on COMSOL
Multiphysics 5.4 [19] the emerging technology of least-
square Galerkin’s scheme was implemented, which experi-
enced the fluid flow simulation through the rectangular
channel with three screens situated at the middle of the
channel with angles in the range from − 45° to 45° degrees.
*ey have obtained that the maximum velocity and maxi-
mum pressure in the rectangular domain can be further
optimized by improving angles. With the implementation of
Galerkin’s least-square scheme using the COMSOL Multi-
physics 5.4 [20], an air laminar flow was examined through
the channel fixed with the three screens situated at incli-
nations from − 45 to 45 degree. It was found that, with the
increase in resistance coefficients, the optimum velocity in
the domain can further be optimized. In the problem that the
speed, pressure factor, and temperature are the entropy
variables in any flow streams, an overall solution can be
framed to address the compressible and incompressible flow
issues. *e formulation [21] is known as Galerkin’s least-
square scheme and developed by Hauke and Hughes and
serving from two decades to solve the complex fluid flow
through different geometries. *e velocity and the pressure
pattern along the circular object was studied [22] with the
help of an emerging simulation tool COMSOL Multiphysics
5.4 with the least-square approach. It was stated that the
numerical approach is in good agreement with the as-
ymptotic solution for the screen boundary condition. Using
the FEM technique with the least-square approach, a laminar
flow was studied [23] through the backward steps ranging
the Reynolds number 100–1000. *e vortex length obtained
in the downstream was in good agreement with the

experimental results. Moreover, the horizontal and vertical
flow patterns were discussed in detail. Several linear re-
gression lines [24] for optimum pressure and velocity in the
rectangular domain and the drag force due to screen for in
terms of the Reynolds number were expressed using the
FEM approach with Galerkin’s scheme. With the imple-
mentation of the screen boundary condition, another
benchmark problem [25] for Newtonian and the non-
Newtonian fluid using the power-law model of Oswald-de
Waele was observed in the rectangular channel. Several
empirical equations relating to optimum velocity as well as
pressure with the Reynolds number are found on the basis of
power-law indexes used.

2. Methodology

2.1. Geometrical Structure and Meshing. *e simplified di-
agram of the sine-curved channel is demonstrated through
Figure 1. *e length of the channel is dragged to 2π. *e
lower boundary of the channel is A sin 3 t, and the upper
boundary is A sin 3 t + 1, where A is the amplitude of vi-
bration of the channel and t is a parameter with range
− π < t< π. *e left vertical wall is the inlet, whereas the right
vertical wall is recognized as the outlet. An average velocity
related with the Reynolds number is tricked on the inlet of
the channel to follow the flow right through the domain.*e
lower and upper frontiers are walls and imposed by the slip
condition.

*e designated domain is parted into small queer tri-
angular elements displayed in Figure 2. Two thousand eight
hundred and eighty (2880) elements were utilized with the
mesh area 6.83. To enhance the precision, the minimum
quality element is taken 0.5994 with 0.902 the average quality
element.

2.2. Governing Incompressible Equations. It has been many
years that the Navier–Stokes PDEs are serving to compre-
hend the fluid course through numerous mind-boggling
channels. In this paper, two-dimensional Navier–Stokes
equations are worked out by means of a numerical pro-
gramming tool COMSOLMultiphysics 5.4. Let V � (ux, uy)

be the velocity field with u as the horizontal component and
v as the vertical component. We consider the following set of
equations:

zV
→

zt
+(V

→
· ∇)V

→
+
1
ρ
∇p + μ∇2 V

→
� F, (1)

∇ · V
→

� 0. (2)

Assumption of the steady state situation implies that

zV
→

zt
� 0. (3)

Fluid flow of the air through the sine-curved channel is
going to be analyzed with the nondimensional Reynolds
number; therefore, an average velocity profile related with
the Reynolds number is imposed at the entrance of the
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channel. Let ρ, μ, and L be the density, viscosity, and length
of the channel, respectively; then, the Reynolds number is
defined as

Re �
Inertial force
Viscous force

, (4)

Re �
ρµinL

μ
. (5)

To revoke the viscous consequences along the bound-
aries of the selected channel, we made addition slip-walls on
the upper and lower boundaries. If K

→
is the operator defined

as follows, then we have the following slip boundary
conditions:

V
→

· n
→

� 0, (6)

K
→

− (K
→

− n
→

) n
→

� 0, (7)

where

K
→

� v ∇ · V
→

+(∇ · V
→

)
T

􏼒 􏼓 n
→

. (8)

After getting the outcomes for the velocity field mag-
nitude for the domain and dynamic pressure on the extreme
wall, it was found that the rate of flow at the outlet has a
direct relationship with Re and with the amplitude of the
vibration of the channel. Knowing this, we would apply the
liner regression process to determine our empirical equa-
tions which can be used for future forecast and to test the
flow with different numerical methods. *e linear equation
for any x related to y can be written as

y � A + Bx, (9)

where A and B can be determined statistically as

A �
􏽐 xi − x( 􏼁 yi − y( 􏼁

􏽐 xi − x( 􏼁
2 , (10)

B � y − Ax. (11)

*e system of governing equations will be carried
through numerical approach of the finite-element method
with Galerkin’s least-square scheme [9] via commercial
software COMSOL Multiphysics.

2.3. Least-Square Scheme. *e procedure of the least-square
scheme of the finite-element method is only applicable for
the first-order partial differential equations. *e Navier–
Stokes equations which are the combination of the mo-
mentum equation and continuity equation are of 2nd order.
*erefore, to employ the current method, they would be
linearized by putting the auxiliary equation known from the
contents of the fluid dynamics.

Let us consider the boundary value problem of the first-
order partial differential equation with linear operators L
and B as the boundary operator.

Lu � f inΩεR2
, (12)

Bu � g in ΓεΩ. (13)

Let us consider the solution vector u �

u1 u2 u3 . . . um􏼂 􏼃
T which contains m-unknowns. If Ai

H=1 m
uin = uav

L=2π

Slip

Figure 1: Schematic diagram of the channel.

Figure 2: Coarse mesh of the geometry.
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and A are the positive definite matrices involving the
functions of x as their entries, then equation (12) can be
written as

Lu � 􏽘

nd

i�1
Ai

zu
zxi

+ Au. (14)

*e current problem of the fluid flow is examined for the
two-dimension only. So, let us involve the set L2(Ω) that
contains the function whose squares are defined on the
domain Ω. *e inner product in this set defined as follows:

(u, v) � 􏽚
Ω

uvdΩu, vεL2
(Ω), (15)

where the norm for the self-inner product is defined as

‖u‖
2
0 � (u, u). (16)

Let us define a set of Sobolev space

H
1
(Ω) � uεL2

(Ω); z
α
uεL2

(Ω), ∀|α|≤ 1􏽮 􏽯, (17)

where

α � α1, α2, α3, . . . , αnd
􏽮 􏽯εNnd , |α| � α1 + α2 + α3 + · · · + αnd

,

(18)

which will be redefined as the definition of the norm on the
Sobolev space H1(Ω) as follows.

Also, their norm is

‖u‖
2
1 � 􏽘

|α|≤1
z
α
u

����
����
2
0, (19)

where the element u is the vector of m-components whose
set of product space will be defined as follows:

L
2
(Ω) � L

2
(Ω)􏼐 􏼑

m
, (20)

H
1
(Ω) � H

1
(Ω)􏼐 􏼑

m
. (21)

For the abovementioned product space, we would like to
define the following norms:

‖u‖
2
1 � 􏽘

|α|≤1
z
α
u

����
����
2
0,

u
���

���20 � 􏽘
m

j � 1
uj

�����

�����
2

0
.

(22)

*e current problem of the fluid flow is the boundary
value problem; therefore, we are also going to explain space
sustaining the following conditions on any type of domain:

S � u ε H
1
(Ω)􏼐 􏼑

m
; B u � 0 on Γ􏽮 􏽯. (23)

Let u be an arbitrary trial function belonging to S, and we
are considering f ∈ L2 andL: S⟶ L2. Now, we are in a
position to assume the least-square formulation which is
nothing but minimizing the I(u) which is the inner product
of the residuals obtained from the governing set of partial
differential equations defined as

I u( 􏼁 � L u − f
�����

�����
2

0
� L u − f, L u − f􏼐 􏼑. (24)

From the method of variation of the finite-element
method, we have to minimize the energy term by
δ � 0 and δ u � w. Later, to get the vector u, we will use the
following formulation:

L w, L u( 􏼁 � L w, f􏼐 􏼑, ∀w ∈ S . (25)

Let us divide the whole domain of interest and Nd
denote the nodal values in the discretized domain, and Ψj is
the linear shape function defined on each subdomain. Let us
apply the well-known procedure of the finite-element
scheme; now, we define

uh x( 􏼁 � 􏽘

Ne

j � 1
χj x( 􏼁

u1

u2

⋮

um

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

j

, (26)

where the vector (u1, u2, u3, . . . , um)j is the values on each
node for the jth element and h is the length of the element.

Let U be the global solution in the vector form of all
nodal values and K be the global matrix that is assembled
with the help of local matrices for each element. If F defines
the vector gained through the vector elements, then we
define the finite-element formulation as

KU � f, (27)

where

Ke � 􏽚
Ωd

Lχ1, Lχ2, Lχ3, . . . , LχNe( 􏼁
T

Lχ1, Lχ2, Lχ3, . . . , LχNe( 􏼁dΩ ,

(28)

Fe � 􏽚
Ωe

Lχ1, Lχ2, Lχ3, . . . , LχNe( 􏼁
T

f dΩ, (29)

where Ωe shows the subdomain of the eth element and T
shows the transpose, and we define the operator

Lχj � χj,xA1 + χj,yA2 + χj,zA3 + χjA. (30)

*e least-square procedure will be easily solved once you
get the matrices A, A1, A2, and A3 from the governing partial
differential equation, and K must be the positive definite
matrix. *e process leads to giving the set of algebraic
equations that will be solved later by any method such as the
Newton–Raphson procedure.

After implementation of the corresponding scheme of
Galerkin’s least-square technique, the error estimation
summary is given by Table 1 for the last iteration for each
Reynolds number.

3. Validation and Comparison

Before discussion on the results, we validate by comparing
our numerical solution with the analytical solution available
in the literature. Earlier, the solution of the fluid flow via the
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screens was determined by Elder in 1959, and he developed
the equation for the exit of the channel with a small angle
that can be used to find the streamwise velocity.

In equation (31), μ is estimated numerically using other
parameters. Both the left-hand and right-hand side of
equation (31) are called streamwise velocity. In this problem,
we have also tested the same equation by calculating the
streamwise velocity at the orifice of the channel by fitting the
screen at 45° degree at themid of the channel. Figure 3 shows
that we have achieved excellent results.

μ/µin − 1( 􏼁 1 + η + k cos2 θ􏼐 􏼑

(1 − η)tan θk cos2 θ
�
2
π
log cot

πy

2
􏼒 􏼓􏼒 􏼓. (31)

4. Results and Discussion

Numerically calculated results obtained here are presented
via surface and graphs for speed and the absolute pressure
throughout the domain for different Reynolds numbers and
the optimum speed and pressure at the outlet. Finally, we
will submit our empirical equations calculated by the linear
regression process which show the relation of maximum

speed at the outlet of the channel with the Reynolds number
as well as with the amplitude of the vibration of the channel.

4.1. Velocity Field. *e fully developed flow has been created
by allowing air fluid in the channel with the average velocity
uin. In Figure 4, we present themagnitude of velocity at every
point of the channel. It is shown that the distribution of the
velocity is not uniform because of the periodic change in the
boundaries of the geometry or theremight be involvement of
the zigzag walls. Due to the hydraulic jumps when the
channel slides above, the maximum speed of the fluid always
can be seen at the top boundary of the channel and mini-
mum speed at the lower walls. On observing the fluid flow at
the inlet and outlet in the channel, the velocity of the fluid is
increasing, and also, with an increase in amplitude, the
hydraulic jumps will become more powerful to create the
maximum velocity at the upper boundary of the channel.

*e maximum speed at the outlet of the channel for a
certain Reynolds number possesses a linear relationship with
the amplitude of vibration, see Figure 5(a). *e maximum
speed can be seen increasing with the amplitude with the
same rate up to 25 cm of amplitude and then increasing with

Table 1: Error estimation for each Re.

Re Relative error estimate in solution Relative error estimate in residual
1000 2.3E − 15 1.4E − 15
2000 3.8E − 15 2.1E − 15
3000 5.9E − 15 2.2E − 15
4000 2.2E − 15 2.5E − 15
5000 3.6E − 15 2E − 15
6000 3.9E − 15 2.5E − 15
7000 1.1E − 14 2.8E − 15
8000 3.2E − 15 2.9E − 15
9000 4.2E − 15 3.4E − 15
10,000 2.9E − 15 3.2E − 15
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Figure 3: Comparison of the numerical solution with the analytical solution. (a) Re � 5000 and (b) Re10, 000.

Mathematical Problems in Engineering 5



a different rate after 25 cm. By fixing the amplitude, the
maximum speed is calculated at the outlet with increasing
Reynolds number, see Figure 5(b). It can be seen that the
maximum speed increases by increasing amplitude for all
Reynolds numbers due to the hydraulic jumps. In Table 2, we
present the regression equations for the maximum speed
related with the Reynolds number and with the amplitude.

4.2. Pressure. *e pressure distribution is represented
through the surface plots in Figure 6 which describe the
pressure driven throughout the domain for Re � 10, 000. It is
shown that the dynamic pressure is increasing with the in-
crease in amplitude for the fixed Reynolds number from the

inlet to the outlet of the channel. But, for a fixed amplitude of
the vibration, the pressure is decreasing from the entrance to
the exit because of hydraulic jumps which results in an in-
crease in the speed of the fluid and decrease in pressure.

0 5 10 15 20 ×103

(a) (b)

(c)

(e)

(d)

Figure 4: Surface plot of the velocity field through the curved channel at Re � 5000.
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Figure 5: (a) Maximum flow of the fluid at the exits of the channel against amplitude. (b) Maximum flow of the fluid at the outlet against the
Reynolds number.

Table 2: Regression equations of the maximum velocity and the
Reynolds number by fixing amplitudes.

Amplitude Equations
10 Vmax � 2.75E − 6∗Re − 0.00012
15 Vmax � 2.88E − 6∗Re − 0.0004
20 Vmax � 3E − 6∗Re + 0.00009
25 Vmax � 3.10E − 6∗Re + 0.00041
30 Vmax � 3.27E − 6∗Re + 0.00006
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Figure 7(a) describes the maximum pressure calculated
at the outlet for Re� 8000, 9000, and 10000. For a fixed
Reynolds number, the pressure is increasing linearly with the
maximum pressure up to 20 cm of the amplitude of vibration
after which it is increasing nonlinearly. Figure 7(b) describes
the maximum pressure at the outlet for a fixed amplitude of
vibration with varying Reynolds number. *is graph indi-
cates that the maximum pressure at the outlet possesses

nonlinear, in specific, parabolic relationships with the
Reynolds number for a fixed amplitude of vibration of the
channel.

5. Conclusions

Laminar and Newtonian flow of air through the sine-curved
channel with the amplitude of vibration from 10 cm to 30 cm

-5 0 -10 -15 -20 ×10

(e)

(a) (b)

(c) (d)

Figure 6: Surface plot of the pressure through the curved channel at Re � 10, 000.
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Figure 7: (a) Maximum pressure at the outlet against all amplitudes of vibration. (b) Maximum pressure at the outlet against all Reynolds
numbers.
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is analyzed using the finite-element method. Flow patterns
are tested with different Reynolds numbers ranging from
1000 to 10,000. *e magnitude of velocity and pressure has
been examined for the flow stream, and the obtained results
are presented through various plots. *e results are com-
pared with the analytic solution with the available literature.
We have shown that our solution has a good agreement with
the analytical solution, as was expected.

It is shown that, for a fixed amplitude of vibration of the
channel, the flow velocity is increasing because of the hy-
draulic jumps. *rough graphs, we have shown that the area
where maximum air flow appears is near the upper wall and
the area where minimum air flow appears is near the lower
wall. Air flow at the outlet of the channel becomes speedy by
increasing the Reynolds number, which is natural, but speed
also highly depends upon the amplitude of vibration of the
channel. Dynamic pressure has also been described by
various graphs. It is obtained that, for a fixed Reynolds
number, pressure is decreasing from the entrance to exit of
the channel with an increase in amplitude. *e portions
where pressure is minimum appear at the upper boundary.
*e optimum pressure at the exit elaborates the nonlinear
relationship of the pressure with amplitude.

Data Availability

No data were used to conduct this research.

Conflicts of Interest

*e authors declare no conflicts of interest regarding the
publication of this paper.

Acknowledgments

*is research was supported by the Taif University Re-
searchers, Taif University, Supporting Project No. TURSP-
2020/304, Taif, Saudi Arabia.

References

[1] D. Floryan, T. Van Buren, and A. J. Smits, “Efficient cruising
for swimming and flying animals is dictated by fluid drag,”
Proceedings of the National Academy of Sciences, vol. 115,
no. 32, pp. 8116–8118, 2018.

[2] J. Parmentier, S. Lejeune, M. Maréchal et al., “A drop does not
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