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*e natural microdefects of shale and the expansion of microcracks under hydration and overlying rock loadings are important for
the wellbore stability. According to the conservation of energy, the force of the microdefects and microcracks under finite de-
formation is studied by the method of configuration force through the migrating control volume in the spatial observer. Under the
hydration stress and rock pressure, the equation of hydration stress and its work in reference configuration has been obtained, and the
equations of configuration forces and configuration moment have been established as a consequence of invariance under changes.
*e relationship between the configuration and deformation forces is determined by the second law.*e energy dissipation equation
of the crack tip has been deduced, which shows that the projection of the concentrated internal configuration body force at the crack
tip in the opposite direction of the crack is equal to the energy dissipation of the crack tip per unit length. *e inertial and internal
parts of the concentrated configuration body force at the crack tip have been derived; it is indicated that the internal configuration
force plays a leading role in the irreversible fracture process. Moreover, the energy release rate of shale under hydration is proved to
depend on constitutive responses and hydration stress. In the theoretical system of configuration force, the migrating control volume
at the crack tip contains inclusions, microcracks, microvoids, and heterogeneity of the rock itself. We use the configuration force
theory to solve the problem of rock crack propagation and rock fracture.*e factors considered are more comprehensive, which can
better reflect the actual situation and provide a theoretical basis for the study of wellbore stability.

1. Introduction

*e instability of the shaft lining is closely related to the
properties of the rock itself. Shale contains various defects,
inclusions, microcracks, and microvoids. Under the action
of external force and hydration, when the surrounding rock
of the shaft wall cannot bear the energy accumulated in the
rock, microcracks or original microcracks start to crack,
extend, communicate with each other, and then form
macrocracks. *is process can be seen as energy dissipation
and release. Wellbore stability is mainly studied from the
three aspects of mechanics, chemistry, and multiphysical
coupling. Mechanical research studies the stress distribution
around the wellbore and the influence of anisotropy on
wellbore stability from the perspective of mechanical energy
[1–4]. Chemical research studies the influence of hydration

of drilling fluid filtration and shale on the rock strength from
the perspective of chemical energy, which leads to borehole
wall falling or collapse [5–8]. Mechanical energy, chemical
energy, formation stress, and other factors are compre-
hensively considered in the multiphysical coupling study of
shale [9, 10]. Finally, it is concluded that the chemical energy
of shale hydration caused by the contact between shale and
drilling fluid is the main reason for wellbore instability.

In the process of drilling, the pressure of overlying rock
produces mechanical energy on the surrounding rock of the
shaft wall, and the infiltration and hydration reaction of
drilling fluid filtration in the formation produce chemical
energy on the surrounding rock of the shaft wall. When the
accumulation of this energy exceeds the bearing limit of
rock, a fracture will occur, resulting in wellbore instability.
Santos [11] puts forward the energy model of wellbore
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stability according to the law of energy conservation.
According to the law of conservation of energy, Griffith [12]
integrates the strain energy density around the rock crack
and obtains the crack growth when the elastic potential
energy release rate is greater than the surface energy increase
rate. On this basis, Irwin [13] considered the influence of
material plasticity on crack growth. Based on the principle of
strain energy equivalence, Kemeny [14] studied the failure
process of rock containing mode II crack and established a
constitutive model. Basista [15] studied the propagation
process of slip mode crack from the angle of energy
transformation. Xie et al. [16] discussed the relationship
between energy release and dissipation, rock strength, and
overall failure from the perspective of mechanics and
thermodynamics. Chen et al. [17] analyzed the transfor-
mation of energy and gave the calculation formula of surface
energy, elastic potential energy, and kinetic energy of rock
fracture. Zhang [18], Zhang [19], and Zhou [20] studied the
relationship between energy dissipation and rock failure
from different perspectives. Zhao [21] applied entropy
theory and energy principle to the study of hydraulic
fracture initiation and extension and established the entropy
change equation and fracture initiation model of hydraulic
fracture. Zhao [22] used an analyzed numerical simulation
method to analyze the characteristics of energy accumula-
tion and release at the tip of shale hydraulic fracture. Li [23]
carried out a study on the energy transformation law in the
process of hydraulic fracturing and pointed out that the rock
mass damage and fracture propagation are the results of the
transformation of external load work and fracturing gravity
potential energy. According to the conservation of energy, it
is an effective method to solve the problem of rock failure.

However, according to the law of conservation of energy,
there are few reports on the application of configuration
force theory to the analysis of rock crack propagation. *e
concept of configuration force could be traced back to
Eshelby [24–27], who put forward the energy-momentum
tensor. On this basis, configuration force has been developed
to study the evolution and defects of material structures
[28–32]. *en, the velocity of migrating control volume was
introduced to configuration force by Gurtin [30–32], so the
configuration force could be applied to the dynamic crack.
However, the equilibrium equation of configuration force
was established under pure mechanical loading. It was
confirmed that the configuration force at the crack tip was
the driving force of crack propagation [30–32]. In the case of
thermoelastic fracture, it was deduced that the crack driving
force was consistent with the well-known energy release rate
[33–36]. Lately, configuration force was used to study the
interplay between the crack driving force and the fracture
evolution [37]. Eshelby stress has been applied to analyze the
configuration force opposing the crack tip motion using the
tensor and local force balance law in cracked and hetero-
geneous domains [38]. *e configuration force could be also
viewed as the resultant of the contact forces acting on the
perturbed shape of an object of substance equivalent to the
defect and evaluated in the limit of the shape being restored
to the primitive configuration [39]. *e configuration force
could be computed efficiently and robustly when a

constitutive continuum model of gradient-enhanced vis-
coplasticity was adopted [40]. *e small strain multiphase-
field model accounting for configuration forces and me-
chanical jump conditions was constructed [41]. *e theory
of configuration force based on r-adaptive mesh refinement
was discussed in the context of isogeometric analysis [42].

However, the systematic configuration force theory of
shale under hydration following Gurtin’s point of view is still
absent. *erefore, this paper will follow the key point of
Gurtin, as Gurtin considered the velocity of the defect
evolution. In the present paper, the basic concept and laws of
configuration force of shale under hydration are con-
structed, which will be applied to dynamic fracture of shale.
*e working of all loadings will be constructed, and the
energy release rate of shale under hydration will be
evaluated.

2. Basic Theory

2.1. Definition of Migrating Control Volume. In Gurtin’s
theory [30–32], the key point is migrating control volume.
Br is a body where material points X exist in the reference
configuration (Figure 1); that is, X ∈ Br and t ∈ R. y �

y
⌢

(X, t) represents the position of the material points in the
current configuration, F is the deformation gradient, and _y

is the material velocity; consequently, Bt � y
⌢

(Br, t) denotes
the whole body’s deformation Br in the current
configuration.

R(t) represents the reference configuration of deform-
able-body (a subset of Br ), which takes up space for R0 at the
reference moment t0.*e control volume boundary zR(t) in
the reference configuration is in constant motion. Material
points corresponding to the different times can be expressed
as

X � X
⌢

ξ1, ξ2, t( 􏼁. (1)

*e boundary velocity of the evolutionary control vol-
ume zR(t) from the angle of the spatial observer is

u �
zX

⌢
ξ1, ξ2, t( 􏼁

zt
, zX

⌢
ξ1, ξ2, t( 􏼁 ∈ zR(t), (2)

where u describes the evolutionary rate of defects, so this
paper tends to use Gurtin’s theory to study the crack
propagation caused by hydration of shale. (ξ1, ξ2) is the
parameter to control the tangential evolution velocity of
interface zR(t), which can be freely chosen in the case that
the normal component UzR(t) of the interface evolution
velocity is unchanged.

UzR(t) � u · n, (3)

where n is the unit normal vector of the boundary of the
migrating control volume. y � y

⌢
(X, t) represents the po-

sition of the material points in the current configuration. In
this way, the points’ position X � 􏽢X(ξ1, ξ2, t) of the control
volume boundary zR(t) in the current configuration is
y � y

⌢
( 􏽢X(ξ1, ξ2, t), t). On this basis, we can define the in-

terface deformation velocity caused by the migrating control
volume.
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u(X, t) �
zy

⌢ 􏽢X ξ1, ξ2, t( 􏼁, t􏼐 􏼑

zt
� _y + Fu, (4)

where _y is the motion rate of the material points. From the
above model, it can be found that the velocity of interfacial
deformation is the amount of motion that describes the
motion of material points and the interaction between
continuum deformation and interface evolution.

2.2. Geometry and Motion Description of Cracked Bodies.
As shown in Figure 2, Br represents a closed region whose
boundary is zBr, ℓ(t) is a crack in Br. Assuming that one of
the end points Z0 is fixed, the crack tip Z(t) is extended.*e
position of the reference time in the reference configuration
is represented by Z(t0). *e unit vector e represents the
direction of crack propagation, and m(X) is the normal
direction of the crack surface. n(X) is the normal direction
of the migrating control volume containing crack tip R(t).

Here, we define a special disk migrating control volume
Dδ(t) with a crack tip (shown in Figure 2).

Dδ(t) � X ∈ Br: |X − Z(t)|≤ δ􏼈 􏼉, (5)

where δ represents the radius of the disk. In the meantime,
the following notations are given: ℓδ(t) � ℓDδ

(t) � ℓ(t)

∩Dδ(t), ℓRδ
(t) � ℓR(t)\ℓδ(t), ℓR(t) � ℓ(t)∩R(t), Rδ(t) � R

(t)\Dδ(t), zRδ(t) � zR(t)∪ zDδ(t).
*e crack propagation velocity describes the position

change of the crack tip in the reference configuration. It can
be defined as

v(t) �
dZ(t)

dt
. (6)

In fracture mechanics, the arbitrary field variable in the
fixed frame Φ(X, t) can be expressed as 􏽢Φ(Y, t) in the frame
with the movement of the crack tip. It can be expressed as

􏽢Φ(Y, t) � Φ(X, t). (7)

*e formula Y � X − Z(t) expresses the position of
material points X with respect to the crack tip Z(t). *en,
the time derivative Φ∘ (X, t) of the Φ(X, t) relative to the
crack tip motion reference system can be defined as

Φ∘(X, t) �
z 􏽢Φ(Y, t)

zt

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌Y�const
� _Φ(X, t) + ∇Φ(X, t) · v. (8)

Taking Φ(X, t) as y � y
⌢

(X, t), the velocity of the ref-
erence point with Y distance from the crack tip in themotion
observation can be defined as

y
∘
(X, t) � _y(X, t) + Fv. (9)

When X⟶ Z(t), (9) represents the velocity of the
crack tip in the current configuration v(t), i.e., the defor-
mation velocity at the crack tip.

v(t) � y∘(Z(t), t) � _y(Z(t), t) + Fv. (10)

*e deformation velocity of crack tip v(t) and the de-
formation velocity of migrating control volume interface u
are similar. Both of them are not the material points’ ve-
locity; they are the position changes of the different material
points in special structures or defects in the current
configuration.

3. Basic Laws of Shale under Hydration

3.1. Hydration Stress of Shale. For shale, each force incre-
ment per unit volume ΔF produces the volume deformation
energy. According to the energy equivalent principle, the
total deformation per unit volume equals the volume de-
formation energy under the condition of certain stress,
which is hydration stress σh.

All clay minerals (per unit volume δ′) do the work Wi
t in

the direction i, because of hydration expansion.

W
i
t � W

i
+ W

i
cS � εhi

􏽘
j

hjΔFj hj􏼐 􏼑nj 􏽚
π

0
Pjai

cos2aidai􏼔 􏼕

+ εhi
hcSΔFcS hcS( 􏼁ncS 􏽚

π

0
Psai

cos2aidai.

(11)

According to the energy equivalent principle, all the
work, made by all clay minerals (per unit volume δ′), equals
deformation energy, which is made from the strain in the
direction i of shale produced by the component σhii

of
hydration expansion σh in the direction i.

1
2
σhii

εhi
� εhi

􏽘
j

hjΔFj hj􏼐 􏼑nj 􏽚
π

0
Pjai

cos2aidai􏼔 􏼕

+ εhi
hcSΔFcS hcS( 􏼁ncS 􏽚

π

0
Psai

cos2aidai.

(12)

*e deformation density Wt produced by hydration
stress (per unit volume δ′) is

W
t

� εhi
􏽘

j

hjΔFj hj􏼐 􏼑nj 􏽚
π

0
Pjai

cos2aidai􏼔 􏼕

+ εhi
hcSΔFcS hcS( 􏼁ncS 􏽚

π

0
Psai

cos2aidai,

(13)

whose material form in reference configuration is

Br

⌣

R(t)R0

∂R0 = X (ξ1,ξ2,t)n
t

Figure 1: Diagrammatic sketch of the migrating control volume.
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W
w

� JFF
− 1εhi

􏽘
j

hjΔFj hj􏼐 􏼑nj 􏽚
π

0
Pjai

cos2aidai􏼔 􏼕

+ JFF
− 1εhi

hcSΔFcS hcS( 􏼁ncS 􏽚
π

0
Psai

cos2aidai,

(14)

where JF is the deformation gradient value of the Jacobian
determinant.

According to (12), the stress tensor of shale hydration is

σhik
�

2 􏽘
j

hjΔFj hj􏼐 􏼑nj 􏽚
π

0
Pjai

cos2aidai􏼔 􏼕

+hcSΔFcS hcS( 􏼁ncS 􏽚
π

0
Psai

cos2aidai

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

, i � k,

0, i≠ k,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(15)

whose material form in the reference configuration is

Thik � JFσhik
F− T

, (16)

where Thik is the stress tensor of shale hydration in reference
configuration.

3.2. Equilibrium Equation of Deformation Force. *e de-
formation force balance equation (9) is

∇ · T + b � 0,

TFT
� F(T)

T
,

(17)

where b � ρ0 €y + f , ρ0 is the density, and f is the volume
force.

In (17), the deformation force T consists of two parts,
because the material particles in shale are not only affected
by overlying rock loadings, but also affected by the hydration
stress [43, 44]. Accordingly, we have the following form:

T � TJ
+ Thik , (18)

where TJ is the first Piola–Kirchhoff stress.

4. Basic Law of Configuration Force in
Shale under Hydration

4.1. Total Work of Migrating Control Volume. Because the
current control body R(t) is subjected to hydration and
overlying rock loadings, the total work on it can be expressed as

W(R) � 􏽚
R

_edV � 􏽚TJn · udS + 􏽚
R(t)

b · udV

+ 􏽚
zR(t)

Thikn · udS

+ 􏽚
R(t)

Thik · udV + 􏽚
zR(t)

Cn · udS + 􏽚
R(t)

g · udV.

(19)

For the migrating control volume R(t), the work of the
deformation force and the configuration force should be
considered simultaneously. Material accretion has no con-
nection with the body deformation; thus, the configuration
stress C and the configuration body force g are accompanied
by the migrating control volume. It is reasonable that they
work over the velocity u in the reference configuration,
because the intrinsic material description of the deformed
body y(R(t)) is nonexistent owing to the dependence of
R(t) on t. Furthermore, material points are constantly being
removed and added through the boundary of the control
body [36] zR(t). On this basis, it is rational that the de-
formation tractive force TJ and the deformation force b
perform work over velocity u, which takes the coupled
motion of material points and boundary evolution of zR(t)

into account, and the hydration stress Thik performs work
over u at the boundary evolution of zR(t) and performs
work over _y in the interior of migrating control volume.

In the interior of migrating control volume u � 0, (19)
can be simplified as

W(R) � 􏽚
zR(t)

TJn · udS + 􏽚
R(t)

b · _ydV + 􏽚
zR(t)

Thikn · udS

+ 􏽚
R(t)

Thik · udV + 􏽚
zR(t)

Cn · udS.

(20)

4.2. Derivation of Configuration Force Equilibrium Equation.
In this subsection, the configuration force balance equation
is based on the rotation transformation of the arbitrary rigid
body in the spatial observer. Based on the basic idea of
Gurtin, the configuration force balance and configuration
moment balance are obtained under an overlying rock and
hydration loadings. *e time-dependent change is consid-
ered in translation (see Figure 3).

Reference configuration

Br
Br

n(X)
n(X)

m(X) m(X)Z(t0)
Z(t)

l(t0) l(t)
R(t0) R(t)

Dδ(t0) Dδ(t)
ee

Figure 2: Control volume evolution and crack propagation in reference configuration.
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X⟶ X+
� Q(t)X + t − t0( 􏼁A, (21)

where A is a constant and Q(t) is the orthogonal matrix,
which represents transformation between the reference
configuration and the current configuration. *e equivalent
equation (30) can be expressed as

X � QT X+
− t − t0( 􏼁A􏼂 􏼃 � QTr+

, (22)

where r+ denotes the translation metric of vector X in the
new spatial observation, andQT is the transpose matrix ofQ.

By (21), the velocity of the migrating control volume
boundary zR(t) in the reference configuration can be
written as

u+
�

zX
⌢+

ξ1, ξ2, t( 􏼁

zt
� A + Qu + _QX. (23)

By (22), (23) may be rewritten in the form

u+
� A + Qu + _QQTr+

� A + Qu + Ωr+
� A + Qu + _θ × r+

,

(24)

where Ω � _QQT is the angular velocity tensor of the new
spatial observer moving relative to the old spatial observer
angular velocity tensor, _θ � − (1/2)ϵ: Ω is the axis vector
corresponding to Ω, and ϵ is the displacement tensor.

According to the definition of migrating control volume,
compared with the old spatial observer X1OX2, the
boundary of the control body migrates with the velocity u,
but the internal material points are static. Relative to the new
spatial observer X+

1OX+
2 , material points inside the control

volume migrate with the velocity A + _θ × r+, and the
boundary of the control volume migrates with the velocity
A + Qu + _θ × r+.

By the transformation relation equation (21), we can
define the following physical quantities:

F+
�

zy
zX+ � FQT

,

_y+
�

zy
zt

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌X+

� _y − FQT A + _θ × r+
􏼐 􏼑.

(25)

*e boundary velocity of the migrating control volume
[20] is

u+
c �

zy⌢ X
⌢+

ξ1, ξ2, t( 􏼁, t􏼒 􏼓

zt
� _y+

+ F+u+
.

(26)

*e transformation of u+
c into the reference configura-

tion is obtained

u+
� Qu+

c � Q _y+
+ F+u+

( 􏼁. (27)

Equations (23), (24), (4), and (27) yield the following
form:

u+
� Qu+

c � Q _y+
+ F+u+

( 􏼁 � Qu. (28)

*e transformation of n and _y into the configuration is

n⟶ n+
� Qn,

_y⟶ Q _y.
(29)

In the reference configuration, configuration forces and
deformational forces are defined as

b+
� Qb,

g+
� Qg,

T+n+
� Q(Tn),

C+n+
� Q(Cn),

Th+
ik � QThik ,

TJ+ � QTJ
.

(30)

Because of the relative translation and rotation between
the new reference configuration and the current reference
configuration, configuration body moment h is introduced.
*e work it does can be expressed as Qh · _θ in the reference
configuration. Configuration force g+ does work at the
velocity of A + _θ × r+ in the new spatial observer. Defor-
mation body force b+ does work at the velocity of Q _y.
Hydration stress Thik + does work at the velocity of u on the
surface of the migrating control volume; it also performs
work at the velocity of _y inside the control volume.

In the reference configuration, the work done on the
migrating control volume is

O
X1

X2

X+
2 X+

1

O+

∂R0 ∂R(t)

X
X+

r+

O
Y1

Y2

deformation
y(∂R0)

y(∂R(t))⌣

y(B)⌣

Figure 3: Migrating control volume in spatial observers.
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Wm(R(t)) X
+

􏼂 􏼃 � 􏽚
zR(t)

TJ+n+
􏼐 􏼑 · u+dS + 􏽚

R(t)
b+

· Q _ydV + 􏽚
zR(t)

C+n+
· u+dS

+ 􏽚
zR(t)

Thik+n+
· u+dS + 􏽚

R(t)
QThik+

· Q _ydV + 􏽚
R(t)

g+
· A + _θ × r+
􏼐 􏼑dV + 􏽚

R(t)
Qh · _θdV.

(31)

By (24) to (30), (31) may be rewritten as

Wm(R(t)) X
+

􏼂 􏼃 � 􏽚
zR(t)

TJn · udS + 􏽚
R(t)

b · _ydV + 􏽚
zR(t)

Cn · udS

+ 􏽚
zR(t)

(QCn) · A + _θ × r+
􏼐 􏼑dS + 􏽚

zR(t)
Thikn · udS + 􏽚

zR(t)
QThikn􏼐 􏼑 · A + _θ × r+

􏼐 􏼑dS

+ 􏽚
R(t)

Thik · _ydV + 􏽚
R(t)

Qg · A + _θ × r+
􏼐 􏼑dV + 􏽚

R(t)
Qh · _θdV.

(32)

As a consequence of the invariance under changes, (20)
and (32) yield the following form:

􏽚
zR(t)

C + Thik􏼐 􏼑n · A + _θ × r+
􏼐 􏼑dS + 􏽚

R(t)
g · A + _θ × r+

􏼐 􏼑dV

+ 􏽚
R(t)

h · _θdV � 0.

(33)

According to divergence theorem, (33) can be written as

A · 􏽚
R(t)
∇ C + Τhik􏼐 􏼑 + g􏼐 􏼑dV

+ _θ ·

􏽚
R(t)

h − ϵ: C + Thik􏼐 􏼑 × r+
􏼐 􏼑dV

+􏽚
R(t)

r+
×􏽚

R(t)
∇ C + Thik􏼐 􏼑 + g􏼐 􏼑dV

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
� 0.

(34)

For any A and _θ, the above formula is always established,
which requires

∇ C + Thik􏼐 􏼑 + g � 0,

h − ϵ: C + Thik􏼐 􏼑 × r+
� 0.

(35)

Formula (35) is the configuration force equilibrium
equation of shale under hydration. Considering the rotating
transformation of the spatial observer, the configuration
moment equilibrium equation is obtained.

4.3. Equation ofConfiguration StressC. By (4), the total work
equation (20) on the migrating control volume can be
written as

Wm(R(t)) � 􏽚
zR(t)

TJn · _ydS + 􏽚
R(t)

b · _ydV + 􏽚
zR(t)

Thikn · _ydS

+ 􏽚
R(t)

Thik · _ydV + 􏽚
zR(t)

C + FTTJ
+ FTThik􏼐 􏼑n · udS.

(36)

*e last part is the configuration work.*emagnitude of
configuration work is only related to the amount of material,
not to the manner in which it increases or decreases. In other
words, it is only related to the normal component U � n · u
of the evolutionary velocity of the interface u, but it is in-
dependent of its tangential component, for any of the
tangential component t; that is,

􏽚
zR(t)

C + FTTJ
+ FTThik􏼐 􏼑n · tdS � 0, for all t, (37)

which equals

C + FTTJ
+ FTThik � wI, (38)

where w is an undetermined parameter, which acts on the
increase or decrease of material boundaries. By (38), (36) can
be rewritten as

Wm(R(t)) � 􏽚
zR(t)

TJn · _ydS + 􏽚
R(t)

b · _ydV + 􏽚
zR(t)

Thikn · _ydS

+ 􏽚
R(t)

Thik · _ydV + 􏽚
zR(t)

wUdS.

(39)
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Following the line of Gurtin, the second law of ther-
modynamics is still applicable in the framework of con-
figuration forces applied to shale under hydration.

d
dt

􏽚
R(t)

W
wdV + K(R(t))≤Wm(R(t)) � 􏽚

zR(t)
TJn · _ydS

+ 􏽚
R(t)

b · _ydV + 􏽚
zR(t)

Thikn · _ydS + 􏽚
R(t)

Thik · _ydV

+ 􏽚
zR(t)

wUdS.

(40)

In (40), K(R(t)) is the rate of kinetic energy.

K(R(t)) �
d
dt

􏽚
R(t)

kdV − 􏽚
zR(t)

kUzR(t)dS � 􏽚
R(t)

_kdV.

(41)

In (41), k � ρ0 _y2/2 is the kinetic energy density. Because
K(R(t)) denotes the contribution of inertial forces, the right
part of (40) does not include their work.

By the transport theorem, therefore,

d
dt

􏽚
R(t)

WwdV � 􏽚
R(t)

_W
wdV + 􏽚

zR(t)
WwUzR(t)dS. (42)

By (42), (40) can be rewritten as

􏽚
R(t)

_W
wdV + K(R(t))≤􏽚

zR(t)
TJ

n · _ydS + 􏽚
R(t)

b · _ydV

+ 􏽚
zR(t)

Thikn · _ydS + 􏽚
R(t)

Thik · _ydV + 􏽚
zR(t)

w − W
w

( 􏼁UdS.

(43)

Equation (43) is applicable to any control body. No
matter what the migrating velocity UzR(t) is, the above form
is constantly set up. *is requires

w � W
w

. (44)

Equations (44) and (54) yield

C � W
wI − FTTJ

− FTΤhik . (45)

So far, we have obtained the configuration stress
equation of shale under hydration, also known as the energy-
momentum tensor, which is the driving force of rock crack
propagation in the underground.

5. Study on Dynamic Fracture of Shale under
Hydration by Configuration Force

5.1. Equilibrium Equation of the Crack Tip. For shale under
hydration, the integral form of the equilibrium equation (17)
is

􏽉
tip
TndS + bi

tip + be
tip � 0,

bi
tip � lim

δ⟶0
􏽚

Dδ(t)
fdV,

be
tip � lim

δ⟶0
􏽚

Dδ(t)
− ρ0€y( 􏼁dV.

(46)

Normally, the work done by the volume force f is finite,
so bi

tip � 0; the integral equation can be rewritten as

􏽉
tip
TndS + be

tip � 0. (47)

Similarly, the configuration equation of force equilib-
rium in integral form can be obtained:

􏽉
tip
∇ C + Thik􏼐 􏼑ndS + gi

tip + ge
tip � 0. (48)

In (48), be
tip is the inertial force, which is centralized at

the crack tip, gi
tip is the internal part of the configuration

force, and ge
tip is the inertial part of the configuration force.

5.2. Deduction of the Energy Release Rate at the Crack Tip.
According to Gurtin [31], the second law can be applied to
migrating control volumes, and the energy dissipation
Γ(Dδ(t)) on the crack tip disc of the control body Dδ(t) can
be written as

Γ Dδ(t)( 􏼁 � W Dδ(t)( 􏼁 −
d
dt

􏽚
Dδ(t)

W
wdV. (49)

In (49), the first part on the right is the total work, and
the second part on the right is the total potential energy
change. As the crack tip is included in Dδ(t), the total work
W(Dδ(t)) can be written as

W Dδ(t)( 􏼁 � Wm D
r
δ(t)( 􏼁 + W ℓδ(t)( 􏼁 + Wtip. (50)

In (50), Wm(Dr
δ(t)) is the work on the regular region

Dr
δ(t) in Dδ(t) (except the region of the crack tip points),

Wtip is the work at the infinitesimal singular crack tip, and
W(ℓδ(t)) is the work on the crack surface. Here, Wm(Dr

δ(t))

can be expressed as

Wm D
r
δ(t)( 􏼁 � 􏽚

zDr
δ(t)

TJn · udS + 􏽚
Dr

δ(t)
b · _ydV

+ 􏽚
zDr

δ(t)
Thikn · udS

+ 􏽚
Dr

δ(t)
Thik · _ydV + 􏽚

zDr
δ(t)

Cn · udS.

(51)

*e work W(ℓδ(t)) is
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W ℓδ(t)( 􏼁 � − 􏽚
ℓδ(t)
⟦uTJ⟧ · mdS − 􏽚

ℓδ(t)
⟦uC⟧ · mdS

− 􏽚
ℓδ(t)
⟦uThik⟧ · mdS.

(52)

Noting that the migrating velocity u on the crack surface
ℓδ(t) is zero, that is, although the control volume migrates,
particles pass through the crack surface, the above form can
be reduced to

W ℓδ(t)( 􏼁 � − 􏽚
ℓδ(t)
⟦TJ

_y⟧ · mdS − 􏽚
ℓδ(t)
⟦Thik _y⟧ · mdS,

(53)

Wtip � be
tipv + ge

tipv. (54)

On the right side of (54), the first part is work done by the
inertial configuration force at the crack tip, due to the crack
propagation. *e crack tip has no fixed material points, so
the conjugate velocity of the inertial force is the deformation

velocity of the crack tip, not thematerial velocity.*e second
part is the work done by the inertial configuration force, and
its conjugate velocity is the evolutionary velocity of the crack
tip.

Equation (49) can be reduced to

Γ Dδ(t)( 􏼁 � Wm D
r
δ(t)( 􏼁 + W ℓδ(t)( 􏼁 + Wtip

−
d
dt

􏽚
Dδ(t)

W
wdV.

(55)

In (55), when δ⟶ 0, Γtip can be written as

Γtip � lim
δ⟶0
Γ Dδ(t)( 􏼁 � lim

δ⟶0

Wm D
r
δ(t)( 􏼁 + W ℓδ(t)( 􏼁

+Wtip −
d
dt

􏽚
Dδ(t)

W
wdV

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(56)

*e limit form of Wm(Dr
δ(t)) may be written as

lim
δ⟶0

Wm D
r
δ(t)( 􏼁 � 􏽉

tip
TJn · udS + 􏽉

tip
Cn · udS + 􏽉

tip
Thikn · udS

+ lim
δ⟶0

􏽚
Dr

δ(t)
b · _ydV + lim

δ⟶0
􏽚

Dr
δ(t)

Thik · _ydV.

(57)

*e integral functions b · _y and Thik · _y are finite in the
integral region Dr

δ(t), as the crack tip is out of the control
volume. *us, the last two terms are zero, and at the same
time, by (2), (4), (6), and (10), when δ⟶ 0,

u⟶ v,

u⟶ v.
(58)

By (57) and (58), (56) can be written as

lim
δ⟶0

Wm D
r
δ(t)( 􏼁 � v · 􏽉

tip
TJ

ndS + v · 􏽉
tip
CndS

+ v · 􏽉
tip
ThikndS.

(59)

Generally, W(ℓδ(t)) is also finite on the crack surface.
*us, no matter what hydration and rock boundary con-
ditions exist on the crack surface of the shale under hy-
dration, the limit equation (53) is zero.

By the transport theorem, we get the following form:

lim
δ⟶0

d
dt

􏽚
Dδ(t)

W
wdV � 0. (60)

By (54), (59), and (60), (72) may be written as

Γtip � v · 􏽉
tip

TJ
+ Thik􏼐 􏼑ndS + be

tip􏼠 􏼡

+ v · 􏽉
tip
CndS + ge

tip􏼠 􏼡.

(61)

By (18), (46), and (47), (61) may be rewritten as

Γtip � − gi
tip · v. (62)

*e energy dissipation Jtip is obtained in the form

Jtip �
Γtip
|v|

� − gi
tip · e. (63)

Equation (63) shows that the negative part of an internal
configuration of the crack tip gi

tip is the energy dissipation
rate Jtip, when the crack propagates per unit length. It is
indicated that the internal force of shale plays a great role in
the damage to irreversible shale under hydration. *e
configuration work done by gi

tip equals the energy dissipated
by the defect migration. *e energy release rate of shale
under hydration is proved to depend on the constitutive
response and hydration stress of shale.

5.3. Deduction of the Configuration Body Force. *e theorem
of kinetic energy is that the rate of kinetic energy is equal to
the power of inertia force. It is noted that the inertial force
includes the inertial part of the deformation force and the
configuration force; its formula is

lim
δ⟶0

d
dt

􏽚
Dδ(t)

kdV − 􏽚
zDδ(t)

k(v · n)dS􏼠 􏼡

� − be
tip · v + ge

tip · v􏼐 􏼑,

(64)
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where k is the kinetic energy density. According to the
transport theorem, the first item on the left of the above form
is zero, so (64) can be simplified as

lim
δ⟶0

􏽚
zDδ(t)

k(v · n)dS � be
tip · v + ge

tip · v. (65)

*e following are further transformations of inertial
configuration force be

tip. For the migrating control volume
Dδ(t), the equilibrium equation can be written as

􏽚
zDδ(t)

TndS + 􏽚
Dδ(t)

fdV − 􏽚
Dδ(t)

_pdV � 0, (66)

with p � ρ0 _y denoting the density of linear momentum.

d
dt

􏽚
R(t)

ΦdV � 􏽚
R(t)

_ΦdV + 􏽚
zR(t)

ΦUdS. (67)

By the transport theorem equation (67), (66) can be
simplified as

􏽚
zDδ(t)

TndS + 􏽚
Dδ(t)

fdV −
d
dt

􏽚
Dδ(t)

pdV + 􏽚
zDδ(t)

pUdS � 0.

(68)

It is noted that the body force f is finite; by (13), when
δ⟶ 0, the second and third items in (68) are zero, so the
limit form can be obtained.

􏽉
tip
TndS + 􏽉

tip
pUdS � 0. (69)

By (69) and (47), the concentrated inertial configuration
force be

tip is equivalent to the following form:

be
tip � 􏽉

tip
p(v · n)dS. (70)

Equation (70) applied to (65) yields the concentrated
configuration force ge

tip.

ge
tip · v � 􏽉

tip
k(v · n)dS − v · 􏽉

tip
p(v · n)dS

� v · 􏽉
tip

(k − p · v)ndS

� v · 􏽉
tip

k
1
2
ρ0 _y2 − ρ0 _y · v􏼒 􏼓ndS � v · 􏽉

tip
krndS

− v · 􏽉
tip

1
2
ρ0|v|

2ndS.

(71)

In (71),

kr �
1
2
ρ0| _y − v|

2
�
1
2
ρ0|Fv|

2
, (72)

which is the kinetic energy at the crack tip. As v is finite, the
second term of (71) equals zero.

ge
tip · e � e · 􏽉

tip
krndS. (73)

At last, (72) and (48) yield the concentrated internal
configuration force.

− gi
tip · e � e · 􏽉

tip
C + Thik + krI􏼐 􏼑ndS, (74)

or

− gi
tip · e � e · 􏽉

tip
W

w
+ kr( 􏼁I − FTTJ

− FTThik + Thik􏼐 􏼑ndS.

(75)

*e concentrated configuration body force at the crack
tip is obtained. It is the driving force of the crack propa-
gation, which agrees with the classical energy release rate of
Moran and Shih [45]. It is indicated that the concentrated
configuration body force is related to the constitutive re-
sponse and hydration stress of shale, and the hydration effect
intensifies the propagation of rock cracks, which is the key to
affecting the stability of wellbore.

6. Conclusions

Aiming at the crack propagation problem of shale under the
coupling action of stress field, seepage field, and chemical
field, the crack propagation mechanism and fracture
problem of shale wellbore under the action of shale load,
seepage, and hydration reaction are studied using the theory
of configuration mechanics and rock mechanics. We use the
configuration force theory to solve the problem of rock crack
propagation and rock fracture. *e factors considered are
more comprehensive, which can better reflect the actual
situation and provide a theoretical basis for the study of
wellbore stability.

(1) Considering the chemical energy produced by hy-
dration and the mechanical energy under the action
of overlying rock load or external force load, the
equilibrium process of rock crack growth, the con-
figuration force equation, and the equilibrium
equation of the configuration moment at the crack
tip are established, under the system of configuration
force theory. *e configuration stress in the control
body of the crack tip, namely, the energy-momen-
tum tensor, is obtained, which is the driving force of
rock crack propagation in the underground.

(2) *e equilibrium equation and energy dissipation of
the crack tip are deduced by the second law, the
divergence theorem, and the generalized transport
theorem applied to the migrating control volume
containing defects. *e theoretical deduction shows
that the projection of the concentrated internal
configuration body force at the crack tip in the
opposite direction of the crack is equal to the energy
dissipation of the crack tip corresponding to the
crack propagation per unit length. *e energy and
direction of crack propagation are found.

(3) Based on the infinitesimal kinetic energy theorem of
migrating control volume at the crack tip, the inertial
and internal parts of the concentrated configuration
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force at the crack tip are derived. *e results show
that the internal configuration force plays a leading
role in the irreversible fracture process of rock, which
indicates that the energy release rate of rock in the
hydration process is related to the constitutive re-
sponse and hydration stress of shale, and the hy-
dration effect intensifies the propagation of rock.

In this paper, the crack propagation and fracture of shale
wall rock under multiphysical coupling are studied, and the
configuration force model of shale wall rock crack propa-
gation under multiphysical coupling is established. *e
additional stress field caused by seepage is considered, but
the seepage problems of two-phase flow and multiphase flow
are not considered. In underground operation, high tem-
perature will affect the crack propagation of borehole wall
rock, so it is necessary to carry out these studies in the next
step.
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