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In this paper, we study a class of Caputo-type fractional stochastic differential equations (FSDEs) with time delays. Under some
new criteria, we get the existence and uniqueness of solutions to FSDEs by Caratheodory approximation. Furthermore, with the
help of Holder’s inequality, Jensen’s inequality, Ito isometry, and Gronwall’s inequality, the Ulam-Hyers stability of the con-
sidered system is investigated by using Lipschitz condition and non-Lipschitz condition, respectively. As an application, we give
two representative examples to show the validity of our theories.

1. Introduction

The fractional-order differential equations can better
simulate many natural physical processes than integer-
order differential equations, so it gradually becomes a
powerful tool to analyze and solve problems in modern
science and technology with the continuous development
of natural science and production technology. It is mainly
used in the fields of economy and insurance, the analysis of
the quantitative structure of biological population, the
control of diseases, and the research of genetic law, and we
can see these monographs in [1-5]. For more notable
achievements of this concept, the readers can also refer to
[6-15].

As it is well known, stochastic disturbance is inevitable in
practical systems, and it has an important influence on the
stability of systems. In [16], du(t) = ku (t)dt was unstable
when k >0, but it increased the stochastic feedback control
ru(t)dW (t) to become du(t) = ku(t)dt + ru(t)dW (t).
Apparently, du (¢) = ku (¢)dt + ru(t)dW (t) was stable if and

only if 7> > 2k. This fact indicated that the stochastic control
ru (t)dW (t) can stabilize the unstable system du (t) = ku ()
dt. Therefore, it is significant and challenging to study
stochastic stabilization of deterministic systems. More rel-
evant results can be found in [17-19].

The research on the existence and uniqueness of solu-
tions to fractional differential equations is an important
content of differential equations. At the same time, the
existence and uniqueness have made rapid development in
the field of applied mathematics. In [20], the authors studied
the existence and uniqueness of positive solutions of some
nonlinear fractional differential equations by using mixed
monotone operators on cones. Under a number of new
conditions and combined with the generalized Gronwall
inequality, the uniqueness of solution for fractional y-Hilfer
differential equation with time delays was investigated in
[21]. In addition, for many other relevant conclusions,
readers can refer to [22-25].

In 1940, S. M. Ulam proposed the stability to functional
equations in a speech at the Wisconsin University [26].
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Hyers [27] was the first to answer the question in 1941. From
then, the Ulam-Hyers stability was produced. At the same time,
more and more people were interested in exploring the
Ulam-Hyers stability. In [28], by using fractional calculus, the
properties of classical and generalized Mittag-Leftler functions
and the Ulam-Hyers stability of linear fractional differential
equations were proved by utilizing the Laplace transform
method. The authors investigated the Ulam-Hyers stability,

DX () = f(t, X (), X(t - 1))+ g(t, X (£), X (t - 1))

X(t) = (1),

where X (0) = @, (1/2)<a<1, f: [0,T]x R x R — R4,
and g: [0,T] x R? x R — R¥™ are measurable contin-
uous functions, W (t) is an m-dimensional Brownian motion
on a complete probability space {Q,F,P}, O(t):
[-7,0] — R? is a continuous function, E||® (¢)|* < 0o, and
E is the mathematical expectation.

Compared with the research results of [12, 20, 21, 24,
25, 28, 34], the major contributions of this paper include at
least the following three aspects:

(1) In contrast to [20, 21, 28], the system we study is
more generalized because it has not only the sto-
chastic term but also the delay term.

(2) In the methods we investigate the existence and
uniqueness of solutions to FSDEs are more novel
than [24, 25]. In [24, 25], to explore the existence and
uniqueness, Krasnoselskii’s fixed point theorem and
Monch’s fixed point theorem, respectively, were
used. However, in this paper, we adopt the Car-
atheodory approximation to investigate the existence
and uniqueness.

(3) In the study of various stability or existence and
uniqueness of FSDEs, many literatures (see [12, 21, 34])
have used a stronger Lipschitz condition. However, in
this paper, we used the weak non-Lipschitz condition
to discuss the Ulam-Hyers stability of stochastic
differential equations. This is a breakthrough in the
exploration of the stability to FSDEs.

The structure of this article is arranged as follows. We
present some basic definitions and necessary assumptions in
Section 2. In Section 3, by Caratheodory approximation, a
number of assumed conditions are established for existence
and uniqueness of solutions. Section 4 is devoted to testify
stability results for the FSDEs with time delays. Examples are
given to certify the application of our findings in Section 5.

2. Preliminaries

In this section, we intend to recommend a few basic defi-
nitions, lemmas, and some necessary assumptions that will

play a key role in the paper.
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generalized Ulam-Hyers stability, Ulam-Hyers-Rassias sta-
bility, and generalized Ulam-Hyers-Rassias stability of im-
pulsive integrodifferential equations with Riemann-Liouville
boundary conditions in [29]. For more researched results, we
can pay attention to [30-34].

Inspired by the abovementioned, in this article, we are
concerned with the existence and Ulam-Hyers stability of
Caputo-type FSDEs with time delays:

dw (1)
dr ’

te]= [07T])
(1)

t € [-71,0],

Let [¢,d] (—0o <c<d< + 00) be a finite interval, and we
define the norm of X (t) = (X, (£), X, (£),..., X, (£))" € R¥
on [c,d] as follows:

d (1/2)
IX®)l = (fo(t)> . )

i=1

Definition 1 (see [35]). The Riemann-Liouville integral
operator of fractional-order a >0 is defined by

S0 =i | 6= f 0 3)

where t >0 and I': (0,00) — R is the well-known Eulers
Gamma function.

Definition 2 (see [1]). For any continuous function f: [0,T] x
R x RY — R?, the Caputo derivative of fractional-order a>0
is defined by

t

DG (1) = ﬁ [ e- P man @

0

where n—1<a<n, neN.
In particular, for o € (0,1),

13.°Dg. f (t) = £ (£) - f(0). (5)

Definition 3. An R%-value stochastic process {X (t)}_,.,or is
called a solution to equation (1) if it satisfies the following
conditions:

(1) {X(t)} is t-continuous and F, adapted.

@ {fE&. X, X(t-1))} el ([0,T] xR x R%;RY)F
and {g(t, X (1), X (t - 1))} € L*([0, T]xR?xR%
Rdxm)‘

(3) For Vt € [-1,T],
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t

0

O [ o gmxmxe-mave, e,
0

T(a) Jo

L D (1),

where E(["_IIX (1)?dt) < co.

(4) For any other solution
P{X(t) =X (t),-t<t<T}=1.

X(t), we obtain

E < sup
0<t<T

and there exists a solution X(t) € ([0,T],R%) of (1)
satisfying

[E( sup [1Z(t) - X(t)||2> < €. (8)

0<t<T

Remark 1 (see [21]). A function Z(¢) € ([0,T],R%) is a
solution of equation (7) if and only if there exists a function
h(t) € ([0,T],R%), such that

(D) E(supllh(Dl*o<,<r) <e
(ii) °Dg. Z (1) = f(LZ (1), Z(t=1) + g (£, Z (1), Z (t - 7))
(dW (£)/dt) + h(t)

Hypothesis 1 (Lipschitz condition). As for any f, g € RY,
there is a constant />0 such that, for all X,,X,,Y,,
Y, e R%,t € [0,T],

"f(t’ Xy Yl) - f(t’ X5 Yz)”V“g(t’ X1 Yl) -9 (t’ X5 Yz)"
<I(1%, = X[+, - Yo,

(9)
where f and g are uniformly continuous functions and V is
defined as Y, VY, = max{Y,,Y,}.

Hypothesis 2 (non-Lipschitz condition). There is a function
G(t,U,V), [0,+00) x R* x Rt — R", such that
(1) For all X|,X,,Y,,Y, € R? and 0<t<T,

If (6 X0 70) — £ (6 X0 V)|
Vgt X0 Y1) - gt X0 7)) (10)

<6(u - I, - voF )

CD8‘+Z(t) -ft,ZW),Z(t-1)—-g(t,Z(t), Z(t - 1))

' <D0+ﬁ J =X W), X(v-1))dv

(6)

t € [-1,0],

Definition 4 (see [36]). System (1) is Ulam-Hyers stable if
there exists a real number & > 0 such that Ve > 0 and for each
continuously differentiable function Z(t) € ([0,T1], RY)
satisfying

dw ()
dt

2
)Ss, (7)

where fandg are continuous as well as bounded
functions, and for any fixed t>0, G(¢t,U,V) is
monotone, nondecreasing, continuous, and concave
function with G(t,0,0) = 0.

(2) For every t € R* and any nonnegative function Y(t)
such that

Y(t)SmJt G(v, Y (v))dv, (11)
0

wherem >0isaconstantandG(v,Y (v),Y (v)) =G (v, Y (v)),
we get Y (t) = 0.

Hypothesis 3. There exist three functions a (t), b(t), and q(¢),
such that

G, U V)<at)+b(t)U+q(t)V, U, V>0,

T
J a(t)dt < oo,
0

T (12)
J b(£)dt < oo,
0

T
J q(H)dt < co.
0

Lemma 1 (see [37]). Suppose Hypothesis 2 and Hypothesis 3
are fulfilled. Then, there exists constant ¢ > 0 such that, for any
(t,X,Y) € [0,T] x R¥ x R4,

If (& X V)IPVIg (6 X VIP <c(1+IXIP +1Y]). (13)

Proof. Applying Jensen’s inequality and Hypothesis 2 and
Hypothesis 3, we have
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If (&, X, V)1
=|lf (£, X,Y) - f(t,0,0) + £ (£,0,0)[
<2 f (6, X,Y) - £ (,0,0)I* + 2l f (£,0,0)]

<2G(& IXI% 1Y17) +2 sup |1 f (£,0,0)]°
0<t<T (14)

<2a(t) + 26 OIXI* + 2q(OIYI* +2 sup | (£,0,0)|?

0<t<T

<2 sup a(t) +2 sup [ £ (£0,0)* +2 sup b(®)|X|* + 2 sup q()[Y]*

0<t<T 0<t<T 0<t<T 0<t<T

<k (1+IXIP +IYI),

where k; = max{z SUPgerer @ (1) + 2supeorl f (£,0,0))%,2 3. Existence and Uniqueness
SUpPoer b (1), 2supgor q(t)} <co. In a similar way, we

obtain Utilizing Caratheodory approximation [35, 38], the exis-

tence and uniqueness of solutions to SFDEs can be obtained.
lg(t, X, Y)|*< k2(1 +| X1 + ||Y||2). (15) So, let us define the Caratheodory approximation as follows.

For any integer n>1,0<t<T define
Let us set ¢ =max(k;,k,). The proof is therefore

complete.
1 ! a—1 1 1
X0 =0 [ e (X (v )5 (00 - ) Ja
(16)
+—1 Jt (t—v)*! (V X (v—l> X <(V—T)—l>>dW(V)
l"(“) 0 g > n n > n n >
and X, (t) = X(0) = @, for all —(1 + 7)<t<0. Proof. The proof will be divided into three steps, when

t € [0,T].
Theorem 1. Suppose that Hypothesis 2 and Hypothesis 3
hold and 3%/)cT* ' < (a— (3/4)) V21 (a), (3/4)<a<1;  Step 1. The boundedness of the sequence {X,, (t),n>1}.
then, system (1) has a unique solution X (t),t € [-1,T]. By (16) and Jensen’s inequality, we have

E (sup IX, (s)||2)
0<s<t

<3E|@, |

(17)

R e O G

J; (s—»)" 1g<v, Xn<v - %),Xn<(v -7) - %))dW(v)

3
+ = E ( sup
T ((X) O<s<t

)

3
+ = E ( sup
I (a) \oss<t
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According to Ito isometry, Cauchy-Schwarz inequality,
and Lemma 1, it is easy to obtain

E ( sup ||Xn (s)||2>

0<s<t

2

<ol s o[ = x,(v- 1) %, (-0 - 0) o

a5 ufo-0-1)

2

dv

t
_a)\2a-2
E Jo (t—=v)

N
I (o)

< 3E[0, (18)

3T2(X*1 t
+ 72[EJ c(l +
Qa-1DI"(a) Jo

3 ! _a)\2a-2
+_F2(a)[EJ0 (t—v) c(1+

:]1+]2+]3-

2
+

(o)

o)

5o
5

2
>dv
2

)dv

2
+

Letting v, = v — (1/n)andv, = v— 17— (1/n). It is obvi-
ous that v; € [-1,v],v, € [-(1 + 7),v], and

3CT20c—1
(2a - DI (@)

t
[ <1 ‘E <_ls<up< Ix, (V1)||2> + [E<_(1 wp |, (1/2)"2) >dv
<L20‘_1 Jt 1+2E(  sup X, ()] ] |dv (19)
B (Z(X - 1)1“2 ((X) 0 ~(1+1)<v, <v e

t
<¢ |:T +2 J max([E < sup ||Xn (v2)||2>, [E< sup ||xn (vz)”Z))dv]
0 ~(1+1)<V, <0 0<v,<v

—are, [ max([E o E (éﬁj‘; ||Xn(v2)||2))dv,

2 <
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where ¢, = (3¢T?* 1/ (2a - 1)T? (a)). Using Holders inequality and Jensen’s inequality, we
obtain

(o pol=Dl fee-0-)
< (40(3_&:)‘2/(23;:2 @ E(j;<3 +3 Xn<v _ %)

where 3+ 3| X, (v— (I/n)|* + 31X, (v—-1) - (I/n)|* is
continuous function on [0, ¢]. By the mean value theorem of
integrals, there exists y € [0,¢] such that

J;<3+3 X,,(v—%) ‘Xn<(v—r)—%>

2
+

2\
) dv> (20)
4 (1/2)
by

1 4
x,(r-7)

4
+3 )
4
)dv Using the inequality

\/L1+L2+L3S\/M+M+\Am, (22)

4
+3

w(o-0-1)

ST(3+3 Xn<(y—r)—%)

(21)

4
+3

Ik I\ |*
- t(3 *3 X”<y _;> *3 X"((y -7 _;> ) we derive
I [E(3+3X< 1>4+3X<( ) 1) 4)(1/2)
< Ay—- Ay—1)—=
> (4a- 3)"1* (@) " 4 n
(23)
o 3! [E( +x ( 1) L (( ) 1) 2)
< A y—- Ay-1)—-— .
(40— 3) 12 () 7 4 n
Letusset vy = y — (1/n),vy = y — 17— (1/n),v; € [-1,1],
andv, € [-(1 + 7),¢], and we have
3 (3/2)CT20(— 1 5 5
]S—[E(1+ X, (v +1[X, (v )
S G ) 1%, )™ + X, (v
3312) p20-1 , ,
< 1+E| sup |X,(vs)| +E su X, (v
(4a - 3)YIT2 (a) _mfst“ )l _<1+T>§4gt” )l
(24)

; 3 (3/2)CT2(x— 1 N 3 (3/2)CT20¢— 1 oE
T (da- 3" T ) (4a- 3)Y1% ()

<Sup—(1+'r)§V4 st"Xn (V4)||2>

= ¢, +2c, max([E||d>0||2,[E< sup [1X,, (v4)||2)>,

O<v, <t
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where ¢, = (3%2¢T271/ (4a - 3) V212 (a)). and then,
If max (E[ @yl E (supy.,, < I1X,, (v)I7) = EID,|1%, we ,
obtain E <sup 1%, ) )
0<s<t
2
E( sup | X,(s
(o«gr 1%, ) CIT 2t i iczl Jt E @7
<Jy+J,+]; © ©
t
< 3[E||CI>0||2 +6T+2¢ Jo E”CDO szv +cy+ 2c2[E||CI>O||2 . ( sup ”(XnnZ)dv.
0sv, <v
2
< (3+20,T + 26 )E[@[ +e,T+c, = B By Gronwall’s inequality, we can conclude that
(25)
2
If max (BN, P, E (5P, <, 1%, ()IP) = Esupos,, -, E(()Sig 1%, )
X, (v2)|| ), we obtain
ClT TG\ (20T/1-20)) (28)
e (o .1 (e + 15 )
O<s<t
<h+J,+ 73 =B,
t
< 3[E||<I)0||2 +¢,T +2c, J E <sup0§v2§v||Xn (v2)||2)dv Letting B = max (f;, f3,), we obtain
0
2
byt 20, (Osupt IX, (v4>||2) F (“P %O ) =h 22
<v, <
) t ) where f is a positive constant. So, we have proved that the
= 3E[®o|" + 61T + ¢, + 2¢ Jo E Sup 1, (v)||" )dv sequence {X,, (t),n>1} is bounded.
<v, <V
+2¢,E (sup ||Xn (s)”z), Step 2. For 0<s<t<T and any integer n> 1, we obtain by
O<s<t

(16)
(26)

X, (1) - X, (s)

= ﬁ J;( (t—v)*t—(s— v)“il)f(v, Xn(v - %),Xn<(v -7) - %))dv

FL Jz (t-v*'f v X <v—%) ((v— T) ——)>d" (30)
et e -~
%J =0 (5 X, (n= ) X, =) Jaw
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By using Jensen’s inequality, Cauchy-Schwarz in-
equality, and Ito isometry, we conclude

E|X, (8) - X, (5[’

I Ry v Py e
) e[, o B R A (O R

)

el e oo - B -0
[
{

s ?a) e o (v )0 - ) aw e (31)
EJO (=)= (s-v)* ( Xn(v—%>,X <(v—r)——> 2dv
i (oc) Jt (=)™ f<VX< i) X"<(V T)">> o
T (oc)[E.[o (- —(s—»* ) (v Xn< > X <(v T) )) 2dv
gLl oo o D)
Recalling Lemma 1, we obtain
E[|X, (1) - X, ()]’
_‘“r(l(;)ﬂj [t == '] [1+X<v—;)2+ X,((V—T)—%) z]dv N
+4Cr(21(;)T) J (t—v)Z“_z[E[l ' n(v—%) 2+ X,,((V—T) —%) z]dv

=c;(J4+7s),

where ¢; = (4c(1 + T)/T* (a)). Applying Hoélder’s inequality and Step 1, we obtain
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s 4 (1/2)
Tos[[ (@0 == n ) ]
0
s 1\ 12 NE 2 (1/2)
. |:J <1 + [E'Xn<v—f> + [E‘Xn<(v—r) —7) ) dv:|
0 n n
s 1 4 (1/2) s 1 2
<[] (@] [ (1+E X, (w1~
(SR O Y N
N 2 (1/2)
+ [E( sup Xn<(u2 -7) - —) )) dv:|
0<u, <v n
1
s 3 4 E s ) (1/2)
< H (=" = (=™ dv] H (1+2p) dv]
0 0
s 4 (1/2)
<(1+ 2;;)7*(“2)“ ((£=0" = (s=0") ]
i (33)
=(1+ zﬁ)T(l/z)U (((t )22 (s - V)zafz)Z 4 (t = )22 (s — v) 22
0
(=) (=) = (s = (- ]
s (1/2)
<(1+2pT"? “ (2= 42 - (s - -8t - v)‘*“*“)dv]
0
s (1/2)
= (1+28)T™ H (66 =" =6t -n)"")av]
0
a— - _ (1/2)
~ (1/2) (t _ 5)4 3 $4o¢ 3 - o 3
= (1 +20)(6T) [ 40-3 4a-3 4da-3
a—(1/2)
am (E=9)
< (1+2p)(67) m
— C4 (t _ 5)20(—(1/2))
where ¢, = (1 +2p) (6T) "2/ (4a - 3)). where c5 = ((1+2B)/ (4a - 3)1?).
Using Holder’s inequality and Step 1 again, Then,
; W)y o 1/2) B 2
Js< “ (t- v)4“4dv] “ (1+ 2ﬁ)2dv] B, ) = X, O <+ 15)
: : <cye, (=920 pees (£ - 5)™ !
; (1/2) (b= )0 et
:(t—s)(m)(1+2ﬁ)“ (t—v)‘“"“dv] ry(t—s) ry(t—s)
s (34) (35)

-9 (1 +2p)
(4a — 3)12

— CS (t_S)Z{X—l,

where | = ¢3¢, and 7, = ¢;Cs.

Step 3. We claim that {X,, (¢),n>1} is a Cauchy sequence.
For integer m >n> 1, one can obtain



10 Mathematical Problems in Engineering

0505 [ oD (-9 -2)
A -l
i o oo D fo-0-2)
senle

By Jensen’s inequality, Holder’s inequality, and Ito
isometry, we can obtain

(36)

(v— T)“))]dW(v)

[E(Osup “Xm (s) - X, (s)”z)

2l 2o 2)
S oo

el e oo Do)
o D)oo

2 L oo Do)
SR o ()

[ MR R )

I () Jo

o200

(37)

<
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By applying Jensen’s inequality and Hypothesis 2, we
obtain

2a-1 "
el [ G G R R E)

)
Ael-pe-n-2)
S X (v =) (0= 0= ) e
fonlo-3pele--2)
St
S ")
S X (v =) (0= - 2) iy
<2, J;G(V,E
o2 2o
e
! 2>dv’

-2 -5 (o0

t
S2c6J E
0

2

%) =52
s

E
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where ¢ = (272 1/ (2a — 1)T? (a)). Using Jensen’s inequality and Hypothesis 2 again, we
acquire

tesgety [ 0= Yl ) (-0 -2)
oo
o2l 2)

Aoy noa-D)r

- 4 supogv;zz E;)— v J; E lg(v, Xm<v - %), Xm<(v -7)— %))
Al ulo-a-
+4sup0<vlf2t:x)_ e J;[El.‘J(V’Xn(V—%),Xn((V—T) —%))
Aono-nfo-n-Hra

<4$u'pO$v<t(t_V)Z“_2 JtG v [E‘X (V—i> -X (V—i>
= > m m n m

I’ (a) 0
Xm<(v _1)- %) - Xn<(v - %) Z)dv
X(r= ) =50

_ 20—2 t
+4sup09<t(t V) J G(V,[E‘
2
)dv.

(39)

2

>

i

2

>

I’ () 0

wfo-n-2) (o0}

i
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In terms of Step 2, we can conclude that

[E( sup [[X,, () - Xn(s)||2>

O<s<t

<J,+]g

(2o 2t [ i (v 1) -5 (o)
efrais-n-2) (-0 -2)
ofu
%0201

+ (2c6 o “Posvet (t- V)Z‘H) J
I ()

i

< (2c6 +

0

[E< sup ||Xm(u4)—Xn(u4)||2>)dv

1 1 2a—-(3/2) 1 1 2a—-1
G(v,rl(———> +r2<———> ,
n m n m

O<uy <v

+| 2¢4 +
( ° I’ ()
1

1 2a—-(3/2)
TE
n m

Let
Y() = lim [E<sup ||Xm(s)—Xn(s)||2>. (41)
mn—"=00 0<s<t
Then,
4supye, o (=) %\ (f
Y () < <2c6 + =re ) JO G, Y (v)dv.

(42)

t

0

4 SUP(<y<t (t B V)Za_2> Jt

0

13

2

>

z)dv
%(r=) = %(=3)
2>dv

2

>

O0<us <v

2a-2
45uP05vr<2tE(tx)_ v) )rG<v,[E< sup ||Xm(u3)—Xn(u3)||2>, (40)

7 )JG(V,[E( sup |X,, () —X,,(u)"z))dv
0<u<v
0
. _ t 11,2062 1 1721
() )lG(V’”(T%) ”2(2_E> )dv'

Thus, by Hypothesis 2, we have

Y () = m)lig@[E(supOSsg“Xm (s) - Xn(s)”Z) —0, (43)

indicating that {X,, (t),n>1} is a Cauchy sequence. The
Borel-Cantelli lemma makes clear, as n — 00, X,, () — X
(t),t € [0, T] holds uniformly. So, if we take the limit of both
sides of (16), we get that X (t) is a solution to (1), with the
property
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[E<sup ||X(s)||2)<oo, 0<t<T. (44)
0<s<t

Now, we have proved the existence. The uniqueness of
the solutions can be proved in the same way as Step 3. When
t € [-1,0], X (t) = O (), obviously, there is a unique solu-
tion to FSDEs. The proof is complete.

Remark 2. If G(t,U,V) =a(U +V), a is a constant, then
Hypothesis 2 and Hypothesis 3 are equivalent to Hypothesis
1. Therefore, under Hypothesis 1 and some proper conditions,
there will exist a unique solution X (t) to FSDEs (1).

4. Ulam-Hyers Stability Analysis of FSDEs

We are going to research the solution X (t),t € [0,T] of
system (1) is Ulam-Hyers stable and prove the stability
theory of solutions to FSDEs (1) with Lipschitz and
non-Lipschitz coeflicients in this section.

Z(t)-X(t)

T Jo

b JO =) (g ZW), Z(v =) = g(n Z(¥), Z (v 1))AW (¥)

I'(a)

1 f a—1
o JO (t = 1) h (v)dv,

and then using Jensen’s inequality, we obtain

[E( sup [|Z (t) - X(t)||2>

0<t<T

3
< E( su
2 () (0<th

—fv, X(v), X (v=1)))dv] *)

3
+ = [E( sup
I () \ox<rllJo

Mathematical Problems in Engineering

Theorem 2. Assume that Hypothesis 1 holds and
1212720 (2) ¢ (40— 3)VPT2 (), (3/4) < a < 1. The FSDE (1)
is Ulam-Hyers which is stable at [0,T].

Proof. From Definition 3 and Remark 1, we know

Z(t) = Dy + ﬁ j; =9 (mZ (W), Z (v - D)dv

+ﬁ J o (=g Z (), Z(v = 1)dW (v)

t

1 a—1
+@J- (t =) "h(v)dv.

0
(45)

According to Definition 3 and equation (45), we have

! J =) (f, (W, Z(r=1) - f(n, X(¥), X (v—1))dv

(46)

t
jo =V (FMZWZ(v— 1)

J (t =V (g Z(W), Z(v 1))

—g(n, X (¥), X (v - 1))dW (v)] *)

3
+2[E< Sup
I“ () \ostsrllJo

r (t = v)* h(v)dv

2
)=11+Iz+13.
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Now, we use Holder’s inequality and Hypothesis 1, and
one can obtain

I. < 3 ! 20-2
1< sup | (t—v)™" “dv

I (a) \ost<r J 0

T
E JO If (nZO), Z(v=1) - f (1, X(v), X (v=D)l’dv

312 201 T i
SmEjo UZ ) - XD 1Z(v - 1)+ X (v— D)
(48)
62T 1 TEZ X + ElZ X g
eI | E120)- X0 +E1Z0- 1) - X0 - D)
T
= b, 7! JO E(1Z(v) - X(WI*)dv
+b, 77! JZ [E(IIZ(v -7)-X(v- T)||2)dv,
where b, = (612/ (2a — )I2 (a)). Then, by Ito isometry and Holder’s inequality, we obtain
! 2
L<—— [E‘J (T -v)* 1 (G ZW),Z(v-1)—g(»,X(¥),X(v-1))dW (v)
() [ Jo
! 1
[E(JO [(T-v""(gwZ), Z(v-1) - g X, X(v-1))| dv)
3 T s (1/2)
SI‘z(oc)(J’o (T=v dv)
(49)

T (1/2)
[E(jo lg(v,Z(v), Z(v-1)) —g(v, X (v), X (v - T))II4dV)

3,1«20(7(3/2) (172)

= 1/2) 2
(4o — 3) V1% ()

T
E(IO lg(v, Z(v), Z(v = 1)) = g (v, X (v), X (v - T))II4dV>

T (1/2)
- szZ““’Z’fE(L lg(v, Z(V), Z(v=1)) = g (v, X (v), X (v - T))||4dv) ,

T
where b, = (3/ (4a — 3)V2T? (a)). Since [g (v, Z(v), Z (v— JO lg(v, ZW), Z(v=1)) = g(», X (v), X (v = 7)|*dv

7)) - g(», X(¥),X(v-1))|* is a continuous function on o ~ IR R 4
[0,T], according to the mean value theorem of integrals, =Tlg(»Z(3),Z(y-1)-g3 X, X -l
there exists y € [0,T], such that (50)
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By Hypothesis 1 and Jensen’s inequality, we obtain

L<b,T* "E|g((3,2(5), Z(5-1) - g3 X, X(F - D)’

(51)
<26, 7 "P(EIZ(3) - XD +EIZ (G- 1) - X (7 - DI).
Finally, we use Cauchy-Schwarz inequality and Remark  where by = (3/(2a — 1)I? (a)).
1 to yield Hence, we obtain
3 ‘ 2a-2 ' 2 >]
I;<—=—E]| su J t—v dv-J h(v)|°dv
< [Ogg( 0( ) 0|| QI
3T2a—1 T
372(1 E( sup ||h(v)||2>>dv
Qa—-1DI"(x) \Jo \o<w<r
377
S5
2a—-1I'" («)
= b, T,
(52)
[E< sup [|Z(t) - X(t)llz)
0<t<T
T T
< bsz‘H(J E(1Z(v) - X(WI*)dv + j E(IZ(v—1) - X (v- T)||2)dv>
0 0
+ 200, T " (EIZ(3) - XG)IP +EIZ (G - 1) - X (7 - DIP) + by T
T
<b, 7! j [E( sup | Z(s;) - X(sl)"z)dv
0 0<s) <v (53)
T
+b, 7! J [E( sup |Z(s; - 1) - X(s; - T)||2)dv
0 0<s, <v
+212b2T2“‘(”2)[E< sup [|Z(3) —X(j/l)||2>
0<y, <y
+ leszz“(m)[E< sup |Z(3,-1)-X(3, - T)||2> + by T
0<y, <y
Different from the approach of dealing with the delay in Hence,

[18, 39, 40], we obtain T T
V(T)SblTZ“I(J. V (v)dv + J V(V—T)dv)
V(T) = [E( sup | Z(t) - X(t)llz), 0 0

ost<T + 286,72 (V (3) + V(5 - 1)) + by T

[E( sup ||Z(t) - X(t)||2> =0, (56)

—7<t<0

(54) Let us set U(T) = sup V(6), then V(v) <U(v), and
V(v -1)<U(v). Thus,0%[-%T]

and then, we acquire T
V(T) < 2b, T j UW)dv + 426,7% VDU (5) + b, T,
2 0

E( sup |Z(s;—1) - X(s; - 7)| ) =V(v-1). (55) (57)

0<s; <v
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For VO € [0,T], we obtain

0
V(6) < 2b, 6% JO U W)dv + 45,6 VDU (5) + b,6%

T
<2b, 7! J U (m)dv + 426, 7" VIU (5) + by T,
0
(58)
Then, we can obtain

U(T)= sup V(0)
Oe[-1,T]

Smax{ sup V(0), sup V(Q)}

0e[-7,0] 0¢[0,T]

T
<2b, 7! j U (v)dv + 426, T DU (T) + b, T,
0

(59)
Then,
2b, 7! T b, T*"
v 4Pp, 7> J A APp, >
(60)
Using Gronwall’s inequality, we obtain
U(T) < b, T*% (26,72 /1- 420, T202) (61)

|- 412b2T2‘H”2)e

3
SZ—[E<sup

I"(a) \ostsril)o

3

+2[E<sup

I“ () \ost<rliJo

L2 [E(s r (t—v)* h(v)dv

- a _

I (o) 0gtng 0
=1, +1,+1;

Taking inequality (48) and Hypothesis 2 into account to

achieve,

3T2(x— 1

L= (20 — DI (a)

j (t—v)*! (fnZW,Zv-1) - f(r,X(v),X(v-1)))dv

t
I =" G ZW, Z(v=1) = g(n, X (v), X (v = 1))dW (v)

17
Therefore,
b, T*%
E\ sup [Z(t) - X(t)||2> <
(OStST 1- 412b2T2a_(1/2) (62)
. e(ZbITZ“/l—412b2T2‘H“2))’
consequently,  Ve>0;  there exists &= (bsT*/
1- 4lzb2T2"" (1/2))6(2b1T2“/1—4lzb2T2"‘“”2))’ such that
[E( sup || Z (t) - X(t)||2> <éd. (63)
0<t<T

Therefore, this theorem is proved.

Theorem 3. Assume that Hypothesis 2 and Hypothesis 3 hold,
6k~ (172 < (40— 3) V212 (a0), k = max{sup,, b (1),
SUPg<rq ()}, and there exists a constant <y satisfying
(3(4a-3)"PT*+32a-1) T 2/2a-1)  (4a-
3) W12 (@) -6 (2a— KT VD)sup,_, ra(t)<ye, (3/4)<
a<1. The FSDE (1) is Ulam-Hyers which is stable at [0,T].

Proof. From inequality (48), we obtain

)

2) (64)

T
E(JO If (v Z(), Z(v=1)) = f (v, X (v), X (v - T))IIZdV>

(65)

T
<b, %! JO EG(n1Z() - XWI1Z(v=1) - X (v-1)I7)dv,

where b, = (3/(2a — 1)I? (a)).
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By inequalities (50)-(52) and Hypothesis 2, one can
obtain

L<b, 7" "Elg(3,2(3). 2 -1) - g3 X, X G- I’

(66)
<b,T* "PEG(3,1Z2(3) - XPILNZ (5 - 1) - X (G - D).
Using Hypothesis 3, it is immediate to obtain
I, +1,
T
<b, 7! J EG(n,Z(n) - XWI%1Z(v=1) - X (v-1)|*)dv
0
+b, T EG(31Z() - XGINZ (G - 1) - X (7 - DI
T
<b, 7! J E(a() +bMIZ) = XWIP +qWIZ (v - 1) - X (v=)I*)dv
21x—(01/2) -~ ~ -~ ~\112 -~ -~ -~ 2 (67)
+b,T E(a(®) +bMIZG) - X@IP+aDNZG-1)-XG-0I)
< (b4T2“ + szZ“_(”z)) sup a(v)
0<v<T
- T
+ b kT J (EIZ() - XWIP+EIZ(v-1) - X (v=D)*)dv
0
+ b,k (ENZ () - X+ EIZ(G - 1) - X (G - DIP).
Now, through inequality (52), we have Indeed, we can conclude that
20 _ T T
EEL (68) V(T) < b4kT2""1<J V (v)dv + J V- T)dv)
0 0
Then, ~
+b kTP (V(5) + V(5 - 1))
2
[E(OSS?SPT 1Z(t) - X @)l ) (b, T + bZTZ“_(I/Z))SupOSVSTa(V) b T,
< (b, + 5,77 " )sup,_,ra (v) (71)
T .
Trr2a—1 3 2 Letting U (T) = supge(_, )V (0), then V (v)<U (v) and
+bakT Jo E(éﬁfivuz(sl) Xl )dv V(v-1)<U(®). Thus,
+ b, k! J' [E( sup |Z(s; —7) - X (s, - T)||2>dv V(T) <2b k1> J U +2b,kT** U (3)
0 0<s, <v 0
_ +(b, T + b, 7?12 supo-,<ra(v) + b T,
+ bszZ{x—(l/Z)lE< sup ”Z(52) _ X(52)||2> ( 4 2 ) 0<v<T 3 (72)
0<s, S;

o (112 5 For V0 € [0, T], we get that
+ b, kT YPE( sup | Z (s, — 1) = X (s, — 7)| o
0ss: <3 VO <2, [ Uy + 26,5600 5)
+ by T, 0
(69) + (5367 + b, 07 Ysupy_,ga (v) + by
o~ T —_~
Let us set V(T)=FE(supyeerlZ () - X(®)I°) and <2b, kT J U (v)dv + 2b,kT** MU (T)
E( sup suplZ(t) - X (®)|?) = 0, we can obtain 0

st ) +(b4T2“ + szza_(l/z))supOSVSTa (v) + by T,
[E( sup [ Z(s;—7) - X(s,-7)| ) =V(-1). (70) (73)

0<s) <v
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Moreover, we have
U(T) = supge(_.1V (6)

< max{supeE 4 (0), supg. o1V (9)}
—_~ T —~
< 2b, KT J U (v)dv + 26, KTy (T)
0

+ (b4T2“ + szzaf(”z))supOSVgTa v) + b3T2“£.
(74)
Furthermore,
2!

U= 2b,kT** )

T
j U (v)dv
0
b T20¢ +b T2a—(1/2)
+ 4 ~2
1 - 2b k> 12

b, T*%
1 - 2b, kT2 V2
(75)

sup a(v) +
0<v<T

[E(SupOstsT”Z(t) - X(t)||2)

sup a(v) +
0<v<T

b T20c +b T20¢—(1/2)
<2 02
( 1 - 2b k>

S<y+

which implies that there exists & = (y + (byT?%/1 - 2b,k

T20- (12))) QAT 1-26,KT ) o ) e s ) satisfying

E(supoererlZ (£) - X (01 ) <.

bSTZ(x
1 - 2b, kT2

(78)

This completes the proof.

19

In view of Gronwall’s inequality, we get that

b4T2(X + szZOC—(l/Z) b3T2¢X8
0n)s (B s ey
1 - 2b,kT 0<v<T 1-2b,kT
. o (kT2 12 T2 1)
(76)
Therefore,
by T*e (2b,KT>/1-2b,kT?112))
1 - 2b, k> 1 (77)

2b, kT2 /12, KT20A12)
)se ( 4 2 ),

5. Examples

Example 1. Consider the Ulam-Hyers stability and exis-
tence and uniqueness of the solution to the following
equation:

1 2
CD(()i}/S)X(t) = EsinX(t) + EcosX(t -7)

I'(1/2)
24m

where « = (4/5), t € [0,8], and uniformly continuous
functions

cos® X(t) +

79
In(3/2) 79)

4
e

dw (t)

X(t-1) r
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[, X@),X(t-1)= %sinX(t) +2£3cosX(t -1),

g(t, X (£), X (t - 1)) = 0 X (1) + 2B (1 o,

T(1/2)
C
24m

(80)

If . Z@), Z(t-1) -

1 2
H—st(t)+—cosZ(t—T)——Ssz(t)——3cosX(t—T)

J(&X(0), X(t -7

Mathematical Problems in Engineering

Due to

1 2
Sl—sllsinZ(t) —sin X (1) +§"COSZ(1' - 7)—cos X (t - 1)

ll Z(t)+X(t) sin Z(t)-X(t
2

Z(t-1)-

X(t—‘r)||

2“ L Zt-T)+ X(t-1) |
—|—2sin 5 sin

2 I

L Z(t-1) - X(t-1)|

1 CZ(t) - X(t)
~15 2
] e 1 |

1 2
SEIIZ(t) - Xl +EIIZ(t— 7) - X(t -7l

(81)
S% (IZ (&) = X O +1Z (- 7) - X (& - 7)),
lg(t, Z(t), Z(t - 1)) — g (t, X (£), X (t — 7))
=“r(1/2)cos22(t) ln(3/2)Z( - r(1/2) cos’ X () - ln(3/2)X(t B )ll
e’ e’

Sr(ua"amzZ(ﬂ—-asz(ﬂ” ln(3/2)||Z(t— 7) - X (-1l

24w

F(l/ ) [[{cos Z (t) + cos X (t)][cos Z (t) — cos X (t)]]| + ln(3£2) |zt -1)-X(t-1)

e

< ri;f) [lcos Z () — cos X ()| + 1n(3/2) 1Z(t-1)-X(@t-7)

S% (Z ) - XOI+12 (¢ -1) -

f{t,X(#),X(t-1)and g (t, X (t), X (t — ) satisfy Hypothesis
1, 3027201230252 % (2/23)* x55/9 2 0.09< (a— (3/
4)) V212 (q) = [(1/20)x T2 (3/4)~0.30 and 12272 (112)
=12 x(2/23)*x (5) 119 20.54< (4a-3) V2 T2 (a)=+/(1/5)[2
(4/5)=0.60. Therefore, according to Remark 2 and Theorem 2,
we can see that there is a unique solution to equation (80) and
the solution is Ulam-Hyers stable.

X (-1,

Now, a numerical simulation will be carried out to find
the solution of (79) is Ulam-Hyers stable, and we can see it
in Figure 1.

Example 2. Consider the Ulam-Hyers stability of the fol-
lowing especial FSDEs with time delays:
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2.0
1.5
1.0
0.5
0.0
0 2 4 6 8
t
s X(1)
— Z(®
—— Er

FiGure 1: X (0) = 1, h(t) = \/e, E(sup %) = E (sup IVE I?) = & e = 0.001.
0<t<8

0<t<8

12 {

10 {

w1 4

0 1 2 3 4
. X(b)
— Z (1
— Er
FIGURE 2: X (0) = 3,n = 12, = (v/2/9), h(t) = (\f€ /2), E (sup |h(t)|*) = E(sup [|ve /2]*) = (/4) <&, & = 0.007.
0st<2

0<t<2

1 G 1 dw (t)
(t—1)+ ;X(t)-'—ZSlnX(t—T) m

1
“DEOX (1) ==X () + , (82)
n

£
—X
V2

where a = (5/6),t € [0,2],n>10, f (t, X (t), X (t — 1)) = (1/ (t) + (82/4)sin(1/X (t — 1)) are measurable continuous
mX(t)+eX(t-1), and g(t X (), X(t-1) = (/n*)X functions, € is an arbitrary number, and 0 <z < (v/2/8).
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ILf (£, Z(t), Z (t — 7)) = f (£, X (£), X (t - D)

+lg (&, Z (1), Z(t - 1)) = g (£, X (£), X (¢ = D)

1 € 1 €
=H;Z(t)+—2Z(t—T)—EX(t) -~ X0

\/_

& 1 1

g
+ ~sin—————X
4st(t—T) n?

1
;Z(t)+

4 2 =2 ,
S;"Z(f)—x(ﬂ” +EZE-1)-XU-DI" +—=

VR T

2

)
si

2

1
| (83)

. |
sz(t — T)|

sin

8 Z(t-1)

= %”Z(t) “XOIP+F1Z¢-1) - X(t -1

7 (/z(t-1)+(/X(t-7) . (1/Z(t-71)-1/X(t- T))||2
+ —||2 cos sin
8 2 2 I
T o4 ) 2
s5+;IIZ(t) - XOI"+&N2(t-7) - X (-7
=G(L1Z(1) - XOILIZ(E - 1) - Xt - DIP),
obviously, G(t,[|Z(t) - X(t)IIz, \Z(t-71)-X(t- T)IIZ) is Data Availability

nondecreasing, continuous, and concave function and k=
max{supy,rb (t),supgrq ()} =max ((4/n*),2%) = (2/50),
6k T2* (112 ~0.54< (4a—3) VT2 (a) ~0.57. From the ar-
bitrariness of & we know G(#,0,0)=0. And, Ve>0, Jy=
(1/5€)>0, such that (3(4a—3)V2PT2 1+ 3(2a—1)T20 (12}
(2a-1)(4a-3)"T2 () -6 (2a—1kT> V2. supy_, r
a(t)<0.20 = (1/5¢)e = ye. That satisfies all the conditions of
Theorem 2. Therefore, we can conclude that system (82) is
Ulam-Hyers stable on [0, 2].

Next, we will use a numerical simulation to verify the
solution of (82) is Ulam-Hyers stable, and we can see it in
Figure 2.

6. Conclusion

In this work, the objective is to research the existence and
uniqueness of FSDEs with time delays using the novel
Caratheodory approximation and the weaker non-Lipschitz
condition. Furthermore, different assumptions are used to
prove the Ulam-Hyers stability of the solutions. Finally, we
present two examples to test the validity of the proposed
theory. Our future work will focus on exploring
Ulam-Hyers stability of various types of fractional differ-
ential equations with weaker conditions, and the explored
conditions can be applied to a wider range of differential
equations.
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