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Compliant mechanisms are crucial parts in precise engineering but modeling techniques are restricted by a high complexity of
their mechanical behaviors. �erefore, this paper devotes an optimal design method for compliant mechanisms. �e integration
method is a hybridization of statistics, finite element method, artificial intelligence, and metaheuristics. In order to demonstrate
the superiority of the method, one degree of freedom is considered as a study object. Firstly, numerical datasets are achieved by the
finite element method. Subsequently, the main design parameters of the mechanism are identified via analysis of variance.
Desirability of both displacement and frequency of the mechanism is determined, and then, they are embedded inside a fuzzy logic
system to combine into a single fitness function.�en, the relationship between the fine design variables and the fitness function is
modeled using the adaptive network-based fuzzy inference system. Next, the single fitness function is maximized via moth-flame
optimization algorithm.�e optimal results determined that the frequency is 79.517Hz and displacement is 1.897mm. In terms of
determining the global optimum solution, the current method is compared with the Taguchi, desirability, and Taguchi-integrated
fuzzy methods. �e results showed that the current method is better than those methods. Additionally, the devoted method
outperforms the other metaheuristic algorithms such as TLBO, Jaya, PSOGSA, SCA, ALO, and LAPO in terms of faster
convergence. �e result of this study will be considered to apply for multiple-degrees-of-freedom compliant mechanisms in
future work.

1. Introduction

Compliant mechanisms are specific mechanical devices,
the mobility of which is inherently based on elastic energy
[1–4]. Owing to the emerging strengths, compliant
mechanisms have been receiving a great interest in in-
dustrial applications, for example, gripper [5], printing
[6], nanopositioner [7], constant force mechanism [8],
multistable equilibrium positions [9], micro-
electromechanical systems [10], precision diamond
turning [11], and energy harvesting [12]. Unlike rigid-
body mechanisms, compliant mechanisms gain the ex-
cellent benefits such as a monolithic structure, light-
weight, free friction, and free lubricant. On the other
hand, rigid-body counterparts make friction and clear-
ance thanks to kinematic joints such as revolute,

prismatic, cylindrical, and spherical bearings or gears;
meanwhile compliant mechanism gains smooth motions.
By using rigid links and kinematic joints, rigid-body
counterparts are easily analyzed through the traditional
machines and mechanism theory [13]. On the contrary,
theory for analyzing and synthesizing compliant mech-
anisms has been facing difficulties thanks to simultaneous
coupling of kinematic and mechanical behaviors. Until
now, a lot of different approaches for modeling compliant
mechanism have been suggested, for example, pseudo-
rigid-body model [14, 15], Castigliano [16], compliance
[17], beam theory [18], dynamic stiffness [19], empirical
technique [20], constraint-beam model [21], Euler-Ber-
noulli [22], and finite element method (FEM) [23]. In
comparison with the mentioned methods, FEM is a useful
tool for solving highly nonlinear problems.
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To fulfill the gap between previous studies and the
present study, an optimal design method is suggested. One-
degree-of-freedom (DOF) compliant mechanism is
employed as a study example to demonstrate the method’s
effectiveness. Regarding a fast tool servo [11], the 1-DOF
requires a large range of displacement and a highly natural
frequency. Besides, a small parasitic motion and stress are
considered as two important constraints. Nowadays, opti-
mization problem for compliant mechanisms can be clas-
sified into three main areas: topology optimization [24, 25],
shape optimization, and size optimization [22, 26, 27]. In the
present article, a multiobjective optimization (MOO) for the
1-DOF mechanism is proposed to improve its responses.
Previously, there have been a few studies to deal with the
MOO for compliant mechanisms but efficiency of tech-
niques is still a challenge [28–30].

Moreover, there have been different types of optimiza-
tion methods to deal with an optimization process. In
general, a mathematical model is created before imple-
menting a MOO problem. However, the analytical ap-
proaches have not been suitable for complex structures. In
such a circumstance, data-based approaches are promising
tools, which can predict and optimize the performances
simultaneously. In order to save manufacturing costs, this
article proposes a combination of numerical simulation,
statistical techniques, and metaheuristics in terms of a re-
liable and global solution. Several approaches can be sum-
marized as Taguchi [31], desirability [32], grey relation [33],
and Taguchi-fuzzy (TF) [34] but most of them may reach a
local solution. On the contrary, in order to achieve a global
value, surrogate model is coupled with metaheuristics. �e
surrogate models include response surface approach
[35, 36], Kriging [37], neural network [38], fuzzy [39], and
adaptive-network-based fuzzy inference system [40].
Among them, adaptive-network-based fuzzy inference
system (ANFIS) is an exact predictor. Related to meta-
heuristics, a variety of different algorithms were proposed,
such as genetic algorithm [41], particle swarm optimization
[42], and cuckoo search [43]. �ese metaheuristics require
tuned parameters, such as teaching-learning-based algo-
rithm [44], Jaya algorithm [45], and lightning attachment
procedure optimization [46]. However, these algorithms are
still limited by a low convergence speed. �en, other met-
aheuristics have been proposed to speed up the convergent
time, for example, moth-flame optimization [47], ant lion
optimizer [48], particle swarm optimization-based gravita-
tional search algorithm [49], and sine-cosine algorithm [50].
In the present article, the moth-flame optimization is chosen
for the 1-DOF mechanism due to its fast convergence.

�e present paper aims to contribute an optimal design
method for compliant mechanisms. �e method undergoes
six phases: Firstly, the nonlinear FEM is utilized to analyze the
aforementioned behaviors of the 1-DOF mechanism. Sec-
ondly, some new populations for moth-flame optimization
are discovered by investigating the sensitivity of parameters.
�irdly, real values of objective functions are converted into
the desirability to suppress influences of units. Subsequently,
fuzzy logic system is developed to bring all desirabilities into a
single fitness function. �e fitness function is defined as a

combined objective function of multiple performances of the
1-DOF mechanism. �en, the relationship among the fine
geometrical parameters and the established single fitness
function is formulated through ANFIS model. Lastly, the
single fitness function is then maximized via the moth-flame
optimization. �e remainder of this paper is organized as
follows: Section 2 presents the computational method. A
mechanical design of the 1-DOF mechanism is provided in
Section 3. Practical implications and discussion are analyzed
in Section 4. Conclusions are given in Section 5.

2. Optimal Design Method

In order to resolve a MOO for a 1-DOF mechanism, an
optimal design framework is given (see in Figure 1). �e
optimization procedure is summarized by the following
stages.

2.1. Stage 1: Initial Design. In the first stage, a draft model of
the one-DOF mechanism is created. In this study, the
computational method is offered to resolve MOO design for
the 1-DOF mechanism. Numerical examples are investi-
gated involving the usefulness of the developed computa-
tional method. �e optimization process undergoes the
following stepwise procedure.

Design Description. �e 1-DOF compliant mechanism
should achieve whole good frequency and displace-
ment. Additionally, a small stress and parasitic motion
are two constraints. In other words, a frequency aims to
increase the response of system. A large displacement is
expected to enlarge the range of positioning.
Design Variables. Geometrical parameters are identi-
fied as main design variables for 1-DOF compliant
mechanism.
Objective Functions. Two design objectives include the
frequency and the displacement.
3D Model. A 3D model is initialized, and then the
frequency, displacement, parasitic motion, and stress
are retrieved by finite element analysis (FEA)
simulations.
Numerically Experimental Design. Numerical experi-
ments are laid out by Box-Behnken design (BBD).
Numerical Dataset. Numerical datasets are retrieved
through simulations.
Investigation of Sensitivity. Sensitivity analysis of all
design variables is to identify several key parameters
directly affecting both objective functions. On the other
hand, this step determines design variables again and
eliminates some low-significance parameters through
analysis of variance (ANOVA).
Refined Design Variables. Main design variables are
determined again to prepare several new population
spaces for moth-flame optimization algorithm.
Redesigned Numerical Experiments. Numerical exper-
iments are built again based on the refined design
variables.
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Update 3D Model. 3D model is updated corresponding
to a new population. Subsequently, numerical data are
retrieved through FEA simulations.

2.2. Stage 2: Computation of Desirability Value. �e aim of
calculating the desirability is to suppress influences of dif-
ferent units among the frequency (Hz) and the displacement
(mm). �is stage undergoes some substeps as below.

Update Numerical Data. Numerical data are retrieved
again based on the refined design variables.
Desirability Value. �e desirability was utilized as a
predictor. In this paper, the exponential type is used.
�e larger-the-better type is used for both objective
functions in this article.

�e larger-the-better type is explained as

Di � 0, F
∗ ≤BL,

Di �
F∗ − BL

BU − BL

 

r

, BL ≤F
∗ ≤BU,

Di � 1, F
∗ ≥BU,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where the desirability is denoted by Di. �e ith objective
function is denoted by F∗. BL and BU are lower range and

upper range of F∗, respectively. R is desirability function
index.

2.3. Stage 3: Modeling by the Fuzzy Logic System. �e fuzzy
logic system [51, 52] is employed to change both desir-
abilities into a single fitness function. �en, fuzzy inference
system (FIS) is then utilized to generate a multiperformance
characteristic index (MPCI) or the so-called single fitness
function. �is system is illustrated as shown in Figure 1.

2.4. Stage 4: Modeling by ANFIS. ANFIS is a popular tech-
nique by combining ANN and FIS [53]. �e purpose of
ANFIS model is to model the relations among the refined
design variables and objective functions (see Figure 1). In
this paper, datasets are divided into 70% for training and
30% for testing. Performances indexes, root mean square
error (RMSE), and correlation coefficient (R2) are utilized to
evaluate the predictor.

2.5. Stage 5: Optimization Algorithm. Moth-flame algorithm
(MFO) is mimicked by moth’s behavior [47]. As moths see
the light source, they fly in a spiral path. MFO has been
successfully applied for many engineering areas thanks to
simple usage and fast convergence rate. In this paper, MFO
is extended to reach a global optimal design for the 1-DOF
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Figure 1: Flowchart of the optimal design method for compliant mechanisms.
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mechanism. A maximum termination criterion is chosen as
105 in this study. More details of the MFO can be found in
literature [47]. A flowchart of MFO is shown in Figure 1.

3. Numerical Study

�e proposed 1-DOF mechanism is a potential positioner
for precision system. �is mechanism is expected to be used
for a fast tool servo system whose applications can be found
in the literatures [54–56]. In earlier design phase, in order to
decrease the cost of a real fabrication process, the present
study suggests a numerical optimization method for the 1-
DOF mechanism.

3.1. Design Description. Figures 2(a) and 2(b) show 2D and
3D diagrams of 1-DOF compliant mechanism. In the
middle, the mechanism is fixed holes. �e mechanism in-
cludes three flexure hinges, named as FH-1, FH-2, and FH-3.
Such FHs are connected through rigid links.�emechanism
includes an input end (input load F of 25N from an ac-
tuator) and an output is used to fix a cutting tool. �e output
displacement moves in vertical direction. At the same time,
it also moves in horizontal direction, so-called parasitic
motion. Flexure hinges with rectangular cross section permit
a large displacement but this is a monolithic structure.
Because it is subset of compliant mechanism and works in an
elastic limitation of material, its motions are largely de-
pendent on cross section of FHs; therefore, this article
optimizes geometrical parameters of FHs. Some significant
parameters of the proposed mechanism consist of dimen-
sions of FHs [T1, L1, T2, L2, T3, and L3]. Remaining pa-
rameters (L, W, and H) are assigned as constant values. �e
1-DOF mechanism is proposed for fast tool servo-assisted
diamond cutting system to produce fined microstructure
surfaces. Table 1 gives parameters of the mechanism. �is
mechanism is made by material Al 7075 with yield strength
of 503MPa.

3.2. Numerical Simulation. From Figure 2, a load of 25N is
employed to achieve the output response. Flexure hinges are
refined two times to reach a good meshing. Solid 186 type of
elements is used. �e results determined that there are 747
elements and 5208 nodes, as depicted in Figure 3(a). In order
to reach a better accuracy of simulation results, Skewness
criteria are employed. �e meshing result found that the
value of this performance metric is about 0.40684, and this
shows a good meshing quality (see Figure 3(b)).

3.3.OptimizationStatement. As discussed above, the 1-DOF
compliant mechanism is considered for translational ma-
nipulators where a high natural frequency over 70Hz, a large
displacement over 1.7mm, a minimal parasitic motion
under 0.02mm, and a good strength are required. �e
optimization statement is described.

Find x� [T1, L1, T2, L2, T3, L3]T.

Maximizef1(x), (2)

Maximixef2(x). (3)

�ey are subject to constraints:

f1(x)≥ 70Hz,

f2(x)≥ 1.7mm,

f3(x)≤ 0.02mm,

f4(x)≤
503MPa

n
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

Initial space of design variables (unit: mm) is

0.72≤T1 ≤ 1.04,

14.5≤ L1 ≤ 16.5,

0.45≤T2 ≤ 0.65,

22.5≤ L2 ≤ 27.5,

0.54≤T3 ≤ 0.78,

18≤L3 ≤ 22.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

f1 (x), f2 (x), f3 (x), and f4 (x) represent natural frequency,
displacement, parasitic error, and stress correspondingly. N
is safety factor. �e ranges of parameters are determined
based on the experiences in the field and further fabrication
capacity of devices.

4. Practical Implications and Discussion

4.1. Determination of Main Parameters. Involving whole
initial design variables, design of numerical experiments is
built by BBD technique. Table 2 gives initial design pa-
rameters and their ranges. Each experiment is implemented
by simulations. �e initial results are retrieved in Table 3.

Case study 1 focuses on the sensitivity analysis for the
natural frequency. In Table 4, the results of ANOVA de-
termined that T1 with contribution of 0.02% and L1 with
contribution of 0% and their p values are 0.567 and 0.891,
which are larger than 0.05.�e contributions of T1 and L1 are
very small, and they are therefore deleted frommodeling and
optimization process. Additionally, a matrix plot is drawn to
show effects of all parameters on the frequency. As seen in
Figure 4, it also has a similar conclusion in Table 4. To
summarize, case study 1 deals with the main design pa-
rameters, including T2, L2, T3, and L3.

Case study 2 deals with the sensitivity analysis for dis-
placement. Based on the ANOVA results in Table 5, the
parameter’s contributions T1, L1, and L3 are very small with
1.57%, 1.33%, and 1.86%, respectively.

�e results of Figure 5 also have the same conclusion in
Table 5. It means that the parameters T1, L1, and L3 should be
suppressed during modeling and optimization procedure.
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4.2. Modeling and Optimization

4.2.1. Determination of MFs Types. Table 6 assigns the fuzzy
variables for MFs. In this article, the frequency and dis-
placement desirabilities are two inputs of the FIS. �e MFs
types for two inputs and an output of the FIS system are
illustrated in Figures 6 and 7.

4.2.2. Investigation on Case Study 1. As discussed in the
previous section, overall initial design variables are limited.
�ose factors actually contribute the responses of 1-DOF
mechanism. Besides, spaces of parameters are newly ini-
tialized for the modeling and optimization process. �e
optimization formulation is stated as follows.

Find x� [T2, L2, T3, L3]T.

FH: flexure hinge
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F
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Figure 2: (a) 2D diagram and (b) 3D model (unit: mm).

Table 1: Parameters.

Symbol Value
T1 0.72mm≤T1 ≤ 1.04mm
L1 14.5mm≤L1 ≤ 16.5mm
T2 0.45mm≤T2 ≤ 0.65mm
L2 22.5≤L2 ≤ 27.5
T3 0.54mm≤T3 ≤ 0.78mm
L3 18mm≤L3 ≤ 22mm
W 10mm
H 50mm
L 120mm
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Figure 3: Simulation setup: (a) meshing process; (b) metric distribution of mesh.
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Table 2: Initial design variables and range (unit: mm).

Notation Range Level 1 Level 2 Level 3
T1 0.72≤T1 ≤ 1.04 0.72 0.88 1.04
L1 14.5≤L1 ≤ 16.5 14.5 15.5 16.5
T2 0.45≤T2 ≤ 0.65 0.45 0.55 0.65
L2 22.5≤L2 ≤ 27.5 22.5 24.5 27.5
T3 0.54≤T3 ≤ 0.78 0.54 0.66 0.78
L3 18≤L3 ≤ 22 18 20 22

Table 3: Initial results.

Trial
Parameters (unit: mm) Frequency (Hz) Displacement (mm) Parasitic motion (mm) Stress (MPa)

T1 L1 T2 L2 T3 L3 f1 (x) f2 (x) f3 (x) f4 (x)
1 0.88 15 0.55 25 0.66 20 103.9916 0.9335 0.0124 162.70
2 0.72 13.5 0.55 22.5 0.66 20 112.9361 0.7761 0.0110 131.69
3 1.04 13.5 0.55 22.5 0.66 20 112.5340 0.7787 0.0112 134.38
4 0.72 16.5 0.55 22.5 0.66 20 113.4298 0.7663 0.0106 130.98
5 1.04 16.5 0.55 22.5 0.66 20 112.3602 0.7783 0.0111 134.12
6 0.72 13.5 0.55 27.5 0.66 20 91.0306 1.2335 0.0158 151.30
7 1.04 13.5 0.55 27.5 0.66 20 90.5761 1.2475 0.0165 167.17
8 0.72 16.5 0.55 27.5 0.66 20 92.1246 1.2013 0.0157 159.17
9 1.04 16.5 0.55 27.5 0.66 20 91.8895 1.1985 0.0157 159.29
10 0.88 13.5 0.45 25 0.54 20 87.7464 1.2845 0.0130 152.76
11 0.88 16.5 0.45 25 0.54 20 85.4190 1.3601 0.0139 151.35
12 0.88 13.5 0.65 25 0.54 20 101.8192 0.8786 0.0102 108.25
13 0.88 16.5 0.65 25 0.54 20 101.1571 0.8922 0.0103 106.90
14 0.88 13.5 0.45 25 0.78 20 102.5691 0.9977 0.0128 151.42
15 0.88 16.5 0.45 25 0.78 20 100.4735 1.0362 0.0130 154.94
16 0.88 13.5 0.65 25 0.78 20 127.6535 0.6216 0.0104 107.23
17 0.88 16.5 0.65 25 0.78 20 129.2442 0.6042 0.0101 106.92
18 0.88 15 0.45 22.5 0.66 18 103.2041 0.9834 0.0155 152.76
19 0.88 15 0.65 22.5 0.66 18 136.8287 0.5197 0.0082 93.28
20 0.88 15 0.45 27.5 0.66 18 76.0515 1.7637 0.0210 225.27
21 0.88 15 0.65 27.5 0.66 18 112.5988 0.7996 0.0117 109.54
22 0.88 15 0.45 22.5 0.66 22 94.8556 1.1217 0.0155 152.93
23 0.88 15 0.65 22.5 0.66 22 117.4083 0.6527 0.0080 87.21
24 0.88 15 0.45 27.5 0.66 22 72.7104 1.9120 0.0210 227.36
25 0.88 15 0.65 27.5 0.66 22 102.5106 0.9322 0.0119 109.20
26 0.72 15 0.55 22.5 0.54 20 98.0539 0.9619 0.0110 130.67
27 1.04 15 0.55 22.5 0.54 20 98.0751 0.9551 0.0109 132.22
28 0.72 15 0.55 27.5 0.54 20 85.1501 1.3671 0.0153 157.48
29 1.04 15 0.55 27.5 0.54 20 85.2019 1.3584 0.0156 157.87
30 0.72 15 0.55 22.5 0.78 20 123.7692 0.6668 0.0106 134.85
31 1.04 15 0.55 22.5 0.78 20 122.5388 0.6766 0.0106 136.39
32 0.72 15 0.55 27.5 0.78 20 96.0811 1.1188 0.0157 160.43
33 1.04 15 0.55 27.5 0.78 20 94.7834 1.1495 0.0161 170.74
34 0.88 13.5 0.55 25 0.54 18 98.0678 1.0340 0.0130 168.07
35 0.88 16.5 0.55 25 0.54 18 97.2716 1.0484 0.0128 155.91
36 0.88 13.5 0.55 25 0.78 18 112.3299 0.8237 0.0129 166.04
37 0.88 16.5 0.55 25 0.78 18 103.9916 0.8218 0.0127 164.79
38 0.88 13.5 0.55 25 0.54 22 112.9361 1.2757 0.0127 165.29
39 0.88 16.5 0.55 25 0.54 22 112.5340 1.2779 0.0139 150.35
40 0.88 13.5 0.55 25 0.78 22 113.4298 0.9178 0.0135 159.05
41 0.88 16.5 0.55 25 0.78 22 112.3602 0.9198 0.0130 166.97
42 0.72 15 0.45 25 0.66 18 91.0306 1.0412 0.0130 152.59
43 1.04 15 0.45 25 0.66 18 90.5761 1.0872 0.0133 149.97
44 0.72 15 0.65 25 0.66 18 92.1246 0.6397 0.0102 106.64
45 1.04 15 0.65 25 0.66 18 91.8895 0.6404 0.0102 106.75
46 0.72 15 0.45 25 0.66 22 87.7464 1.2074 0.0135 155.46
47 1.04 15 0.45 25 0.66 22 85.4190 1.2152 0.0134 151.53
48 0.72 15 0.65 25 0.66 22 101.8192 0.7750 0.0102 107.25
49 1.04 15 0.65 25 0.66 22 111.3604 0.7615 0.0100 106.38
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Table 4: �e frequency’s ANOVA.

Source Df Seq SS Contribution Adj SS Adj MS F value p value
Model 27 9662.88 98.63 9662.88 357.88 55.89 ≤0.001
Linear 6 9110.08 92.99 9110.08 1518.35 237.10 ≤0.001
T1 1 2.16 0.02 2.16 2.16 0.34 0.567
L1 1 0.12 0.00 0.12 0.12 0.02 0.891
T2 1 3680.14 37.56 3680.14 3680.14 574.67 ≤0.001
L2 1 2715.44 27.72 2715.44 2715.44 424.03 ≤0.001
T3 1 2085.91 21.29 2085.91 2085.91 325.72 ≤0.001
L3 1 626.31 6.39 626.31 626.31 97.80 ≤0.001
Square 6 250.43 2.56 250.43 41.74 6.52 0.001
T1∗T1 1 7.11 0.07 12.26 12.26 1.91 0.181
L1∗ L1 1 4.49 0.05 0.40 0.40 0.06 0.804
T2∗T2 1 186.44 1.90 39.17 39.17 6.12 0.022
L2∗ L2 1 30.95 0.32 51.60 51.60 8.06 0.010
T3∗T3 1 8.50 0.09 19.64 19.64 3.07 0.095
L3∗ L3 1 12.95 0.13 12.95 12.95 2.02 0.170
2-Way interaction 15 302.36 3.09 302.36 20.16 3.15 0.008
T1∗ L1 1 0.03 0.00 0.03 0.03 0.00 0.951
T1∗T2 1 1.29 0.01 1.29 1.29 0.20 0.658
T1∗ L2 1 0.03 0.00 0.03 0.03 0.01 0.942
T1∗T3 1 0.85 0.01 0.85 0.85 0.13 0.720
T1∗ L3 1 1.07 0.01 1.07 1.07 0.17 0.687
L1∗T2 1 3.58 0.04 3.58 3.58 0.56 0.463
L1∗ L2 1 0.54 0.01 0.54 0.54 0.09 0.773
L1∗T3 1 0.65 0.01 0.65 0.65 0.10 0.754
L1∗ L3 1 0.03 0.00 0.03 0.03 0.00 0.950
T2∗ L2 1 12.93 0.13 12.93 12.93 2.02 0.170
T2∗T3 1 72.27 0.74 72.27 72.27 11.28 0.003
T2∗ L3 1 59.82 0.61 59.82 59.82 9.34 0.006
L2∗T3 1 110.01 1.12 110.01 110.01 17.18 ≤0.001
L2∗ L3 1 25.70 0.26 25.70 25.70 4.01 0.058
T3∗ L3 1 13.58 0.14 13.58 13.58 2.12 0.160
Error 21 134.48 1.37 134.48 6.40
Total 48 9797.36 100.00
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Figure 4: Sensitivity plot of the frequency.
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Table 5: �e displacement’s ANOVA.

Source Df Seq SS Contribution (%) Adj SS Adj MS F value p value
Model 27 5.82988 83.26 5.82988 0.21592 3.87 0.001
Linear 6 4.59442 65.61 4.59442 0.76574 13.72 ≤0.001
T1 1 0.10993 1.57 0.10993 0.10993 1.97 0.175
L1 1 0.09339 1.33 0.09339 0.09339 1.67 0.210
T2 1 1.64995 23.56 1.64995 1.64995 29.56 ≤0.001
L2 1 2.14644 30.65 2.14644 2.14644 38.45 ≤0.001
T3 1 0.46472 6.64 0.46472 0.46472 8.33 0.009
L3 1 0.12999 1.86 0.12999 0.12999 2.33 0.142
Square 6 0.39032 5.57 0.39032 0.06505 1.17 0.361
T1∗T1 1 0.11508 1.64 0.04557 0.04557 0.82 0.376
L1∗ L1 1 0.17138 2.45 0.05944 0.05944 1.06 0.314
T2∗T2 1 0.02833 0.40 0.00082 0.00082 0.01 0.905
L2∗ L2 1 0.00016 0.00 0.02704 0.02704 0.48 0.494
T3∗T3 1 0.05103 0.73 0.07537 0.07537 1.35 0.258
L3∗ L3 1 0.02435 0.35 0.02435 0.02435 0.44 0.516
2-Way interaction 15 0.84514 12.07 0.84514 0.05634 1.01 0.482
T1∗ L1 1 0.29077 4.15 0.29077 0.29077 5.21 0.033
T1∗T2 1 0.00055 0.01 0.00055 0.00055 0.01 0.922
T1∗ L2 1 0.14384 2.05 0.14384 0.14384 2.58 0.123
T1∗T3 1 0.00039 0.01 0.00039 0.00039 0.01 0.934
T1∗ L3 1 0.00034 0.00 0.00034 0.00034 0.01 0.938
L1∗T2 1 0.00173 0.02 0.00173 0.00173 0.03 0.862
L1∗ L2 1 0.26707 3.81 0.26707 0.26707 4.78 0.040
L1∗T3 1 0.00045 0.01 0.00045 0.00045 0.01 0.929
L1∗ L3 1 0.00001 0.00 0.00001 0.00001 0.00 0.990
T2∗ L2 1 0.12778 1.82 0.12778 0.12778 2.29 0.145
T2∗T3 1 0.00054 0.01 0.00054 0.00054 0.01 0.923
T2∗ L3 1 0.00022 0.00 0.00022 0.00022 0.00 0.951
L2∗T3 1 0.00170 0.02 0.00170 0.00170 0.03 0.863
L2∗ L3 1 0.00001 0.00 0.00001 0.00001 0.00 0.989
T3∗ L3 1 0.00974 0.14 0.00974 0.00974 0.17 0.680
Error 21 1.17221 16.74 1.17221 0.05582
Total 48 7.00209 100.00
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Figure 5: Sensitivity plot of the displacement.

Table 6: Proposed fuzzy variables.
Abbreviation SS RS S SA A AL NL L SL
Fuzzy variable So small Relatively small Small Small average Average Average large Near large Large So large
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Maximizef(x)case1, (6)

s.t.

f1(x)≥ 70Hz,

f2(x)≥ 1.7mm,

f3(x)≤ 0.02mm,

f4(x)≤
503MPa

n
,

0.45mm≤T2 ≤ 0.65mm,

22.5mm≤ L2 ≤ 27.5mm,

0.54mm≤T3 ≤ 0.78mm,

18mm≤L3 ≤ 22mm.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

f (x) is a single fitness function. Table 7 shows the results
for case study 1. Table 8 presents the MFs variables for the
fuzzy if-then rules in modeling both objective functions into
a single objective function.

Relationship plot of the output versus inputs in the FIS
modeling is illustrated in Figure 8. Figure 9 gives the fuzzy if-
then rules.

Figure 9 illustrates the fuzzy rules. When D1 value is
input into the left column and D2 value is input into the
middle column, the output of FIS is found in the right
column of Figure 9, respectively. Table 9 gives the results of
the output of FIS.

Next, ANFIS modeling is built based on Tables 7 and 9 in
MATLAB R2019b. In the developed model, there are nodes
of 193, linear parameters of 405, nonlinear parameters of 36,
total parameters of 441, training data of 17, testing data of 8,
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Figure 6: MFs types: (a) the frequency and (b) the displacement.
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Figure 7: MFs type for the output of FIS system.
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and fuzzy if-then rules of 81. �e built ANFIS model has
relatively good performance indexes with R2 of 0.963 and
RMSE of 0.035.

In this study, two objective functions are combined into
a single objective function by using the FIS.�e output of the
FIS is the single objective function, which can be optimized
by many methods. �en, the displacement and frequency

Table 7: Case study 1: simulated results.

Trial
Refined parameters (unit: mm) Frequency Displacement Parasitic motion Stress

T2 L2 T3 L3 f1 (x) (Hz) f2 (x) (mm) f3 (x) (mm) f4 (x) (MPa)
1 0.55 25 0.66 20 104.0482 0.9336 0.0124 162.7355
2 0.45 22.5 0.66 20 99.3184 1.0459 0.0155 153.0472
3 0.65 22.5 0.66 20 127.1888 0.5806 0.0081 92.9516
4 0.45 27.5 0.66 20 74.1823 1.8419 0.0211 227.1803
5 0.65 27.5 0.66 20 107.0481 0.8742 0.0120 117.8249
6 0.55 25 0.54 18 98.7476 1.0189 0.0127 165.1369
7 0.55 25 0.78 18 112.5295 0.8221 0.0127 164.9785
8 0.55 25 0.54 22 85.9801 1.2611 0.0132 158.4125
9 0.55 25 0.78 22 105.5051 0.9183 0.0129 164.3392
10 0.45 25 0.66 18 100.1899 1.0411 0.0130 152.5881
11 0.65 25 0.66 18 124.0486 0.6519 0.0100 107.2939
12 0.45 25 0.66 22 91.6971 1.2088 0.0136 155.6330
13 0.65 25 0.66 22 111.4232 0.7671 0.0102 105.6065
14 0.55 22.5 0.54 20 98.0046 0.9620 0.0110 130.6791
15 0.55 27.5 0.54 20 85.3761 1.3584 0.0155 158.0305
16 0.55 22.5 0.78 20 123.7160 0.6666 0.0106 134.8080
17 0.55 27.5 0.78 20 96.1152 1.1131 0.0157 159.7465
18 0.45 25 0.54 20 88.2632 1.2665 0.0129 152.1337
19 0.65 25 0.54 20 101.8941 0.8819 0.0102 109.0929
20 0.45 25 0.78 20 102.2331 1.0051 0.0130 150.8916
21 0.65 25 0.78 20 128.5677 0.6122 0.0100 105.7656
22 0.55 22.5 0.66 18 121.7163 0.6803 0.0111 135.3569
23 0.55 27.5 0.66 18 94.8892 1.1449 0.0156 161.3298
24 0.55 22.5 0.66 22 106.9204 0.8358 0.0106 134.3837
25 0.55 27.5 0.66 22 87.8279 1.3095 0.0161 150.2442

Table 8: Proposed fuzzy if-then rules.

Trial D1 of f1 (x) D2 of f2 (x) Output
1 S SS SS
2 A SS RS
3 L SS S
4 S RS SS
5 A RS S
6 L RS SA
7 S S S
8 A S SA
9 L S AL
10 S SA S
11 A SA SA
12 L SA A
13 S A SA
14 A A A
15 L A AL
16 S AL SA
17 A AL A
18 L AL AL
19 S NL AL
20 A NL AL
21 L NL L
22 S L AL
23 A L L
24 L L NL
25 S SL AL
26 A SL L
27 L SL SL
D1 and D2 are desirabilities of frequency and displacement,
respectively
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Figure 8: Relationship plot in the FIS modeling.
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Figure 9: Illustration of the fuzzy if-then rules in the FIS modeling.

Table 9: Case study 1: output of FIS.

Trial D1 of f1 (x) D2 of f2 (x) Output
1 0.549153709 0.279844008 0.375
2 0.545631181 0.271824854 0.375
3 0.94187745 0.069056252 0.319
4 0.096943974 0.850288316 0.625
5 0.585043702 0.249264885 0.375
6 0.472916027 0.311560512 0.375
7 0.758444845 0.156517523 0.398
8 0.227762156 0.493821918 0.425
9 0.618891448 0.223017636 0.352
10 0.442532311 0.413803418 0.412
11 0.922698148 0.032683298 0.279
12 0.288171515 0.558960074 0.459
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can be predicted based on the optimal design variables.
Specifically, Taguchi can optimize the single fitness function
but may trap a local optimum value; meanwhile MFO al-
gorithm can search a global optimum value. Hence, the
optimal values from the Taguchi are compared with those
found by the proposed method’s framework. �e purpose of
this comparison is to clearly demonstrate the usefulness of
the devoted method in searching the global solution.

In Table 10, the optimal parameters by the TF include
T2 � 0.45mm, L2 � 27.5mm, T3 � 0.54mm, and L3 � 20mm.
�e results of TF show the frequency, displacement, parasitic
error, and stress are approximately 75.871Hz and 1.776mm,
0.019mm, and 212.114MPa, respectively. However, those
optimal values can trap local optimum solutions. To find a
global optimum solution, moth-flame optimization algo-
rithm is adopted. �e results of the hybrid computational
method determine T2 � 0.45mm, L2 � 27.5mm,
T3 � 0.78mm, and L3 �18mm (Table 10). �e frequency,
displacement, parasitic error, and stress are about 85.174Hz
and 2.447mm, 0.016mm, and 145.982MPa, respectively.
Furthermore, the MPCI in the hybrid computational
method is better than that in TF. It means that the hybrid
computational method outperformed the TF.

4.2.3. Investigation on Case Study 2. Initialized from Table 5
and Figure 7, the space of design parameters is also limited to
generate a new population for the modeling and optimization
procedure. �e optimization formulation is stated as follows.

Search x� [T2, L2, T3,]T.

Maximizef(x)case 2, (8)

s.t.

f1(x)≥ 1.7Hz,

f2(x)≥ 1.7mm,

f3(x)≤ 0.02mm,

f4(x)≤
503MPa

n
,

0.45mm≤T2 ≤ 0.65mm,

22.5mm≤ L2 ≤ 27.5mm,

0.54mm≤T3 ≤ 0.78mm.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

Table 11 gives the results of 13 numerical experiments,
including the frequency, the displacement, the parasitic
motion, and stress. �e desirabilities are calculated
(Table 12).

Subsequently, the fuzzy if-then rules are built based on
Table 8, and the output of FIS system is given in Table 12.

In this ANFIS model, there are nodes of 34, linear pa-
rameters of 32, nonlinear parameters of 18, total parameters
of 50, training data of 9, testing data of 4, and fuzzy if-then
rules of 8. �e developed ANFIS modeling achieves rela-
tively good performance indexes with R2 of 0.954 and RMSE
of 0.012.

Using TF, the optimal parameters are T2 � 0.45mm,
L2 � 27.5mm, and T3 � 0.66mm (Table 13). �e frequency,
displacement, parasitic error, and stress are about 79.460Hz,
1.637mm, 0.018mm, and 198.015MPa, respectively. �e
safety factor is determined to be about 2.54. �e optimal
solutions are local solutions.

In Table 13, using the hybrid computational method, the
optimal parameters are T2 � 0.45mm, L2 � 27.5mm, and
T3 � 0.69mm. �e optimal frequency, displacement, para-
sitic error, equivalent stress, and safety factor are 76.743Hz,
1.700mm, 0.019mm, 236.027MPa, and 2.131, respectively.
It is noted that the MPCI in the hybrid computational
method is also better than that in the TF.

4.3. Discussion. In the previous sections, the sensitivity of
factors on the output responses is analyzed to redetermine
the main geometrical parameters. �ose parameters con-
tribute directly the frequency, displacement, parasitic mo-
tion, and stress of 1-DOF mechanism. Two numerical
examples are studied. In order to calculate an error among
the predicted value (Rp) and simulation (Rs), the error (E) is
calculated as

E(%) �
Rp − Rs

Rs

− 1 ∗ 100. (10)

A comparison with case 1 is performed. Using the
computational method, the error is around 7% for case study
1 and 3.8% for case 2. On the contrary, using TF, the error is
23% for case 1 and 14.7% for case 2 (Table 14). Additionally,
the computational methodology can reach a global solution.

Table 9: Continued.

Trial D1 of f1 (x) D2 of f2 (x) Output
13 0.692351675 0.13628816 0.281
14 0.438830692 0.297635129 0.375
15 0.17371882 0.657096979 0.45
16 0.914808353 0.064837296 0.315
17 0.37439927 0.46404754 0.466
18 0.221158841 0.613630915 0.422
19 0.546539128 0.215051828 0.343
20 0.442695186 0.404024209 0.4
21 1 0 0.25
22 0.841975976 0.098401988 0.335
23 0.368106025 0.474134093 0.478
24 0.578512868 0.219178805 0.348
25 0.246861864 0.602118795 0.436
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Table 10: Case study 1: the optimal results.

Method Optimal parameters
Optimal results

MPCI f1 (x) (HZ) f2 (x) (mm) f3 (x) (mm) f4 (x) (MPa) n-safety factor

TF

T2 � 0.45

0.628 75.8711 1.77636 0.0198 212.114 2.731L2 � 27.5
T3 � 0.54
L3 � 20

�e current method

T2 � 0.45

0.848 85.1749 2.4472 0.0160 145.982 3.468L2 � 27.5
T3 � 07.8
L3 �18

Table 11: Case study 2: simulated results.

Trial
Refined variables (unit: mm) Frequency Displacement Parasitic Stress
T2 L2 T3 f1 (x) (Hz) f2 (x) (mm) f3 (x) (mm) f4 (x) (MPa)

1 0.55 25 0.66 104.0482 0.9336 0.0124 162.7355
2 0.45 22.5 0.66 99.31841 1.0459 0.0155 153.0472
3 0.65 22.5 0.66 127.1888 0.5806 0.0081 92.95158
4 0.45 27.5 0.66 74.18228 1.8419 0.0211 227.1803
5 0.65 27.5 0.66 107.0481 0.8742 0.0120 117.8249
6 0.45 25 0.54 88.26316 1.2665 0.0129 152.1337
7 0.65 25 0.54 101.8941 0.8819 0.0102 109.0929
8 0.45 25 0.78 102.2331 1.0051 0.0130 150.8916
9 0.65 25 0.78 128.5677 0.6122 0.0100 105.7656
10 0.55 22.5 0.54 98.00464 0.9620 0.0110 130.6791
11 0.55 27.5 0.54 85.37607 1.3584 0.0155 158.0305
12 0.55 22.5 0.78 123.716 0.6666 0.0106 134.808
13 0.55 27.5 0.78 96.11523 1.1131 0.0157 159.7465

Table 12: Case study 2: results of the output of FIS system.

Trial D1 of f1 (x) D2 of f2 (x) Output
1 0.549153709 0.279844008 0.375
2 0.498323931 0.328431242 0.375
3 0.915304881 0.089411622 0.342
4 0.059341072 0.910588378 0.625
5 0.56817548 0.273313929 0.375
6 0.220806827 0.60972779 0.421
7 0.566921796 0.174897685 0.299
8 0.458401921 0.400613918 0.395
9 1 0 0.25
10 0.439992178 0.276996376 0.375
11 0.184584653 0.640151901 0.409
12 0.932028588 0.044691377 0.294
13 0.401323853 0.447595295 0.448

Table 13: Case study 2: the optimal results.

Method Optimal
parameters (mm)

Optimal results

MPCI Frequency
f1 (x) (HZ)

Displacement
f2 (x) (mm)

Parasitic
f3 (x) (mm)

Stress
f4 (x) (MPa) n-safety factor

TF
T2 � 0.45

0.5568 79.4601 1.6371 0.0184 198.015 2.540L2 � 27.5
T3 � 0.66

Computational method
T2 � 0.45

0.6402 76.7435 1.7002 0.0197 236.027 2.131L2 � 27.5
T3 � 0.69
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It can infer that the proposed computational scheme is
greater than TF. Besides, case 1 is adopted as an optimal
candidate thanks to its highest MPCI value of 0.848.

Figures 10(a) and 10(b) illustrate the deformation and
stress distributions of the mechanism, respectively.

4.4. Comparisons among Different Methods. �e previous
section shows that the computational method outperforms
the TF in searching a global optimal solution of the 1-DOF
mechanism. �e comparison of the behaviors of the sug-
gested method with other algorithms includes ANFIS-
teaching-learning-based algorithm (ANFIS-coupled TLBO)
[44] and ANFIS-Jaya [45]. Nonparameter statistical inves-
tigations are performed and involved in resolving case 1. In
Table 15, the MPCI is almost the same for three methods.
However, the output responses of the mechanism from the
suggested method are better than those from the other
algorithms.

Two nonparameter statistical techniques [57] are
employed to determine the behaviors of three methods. Each
method has 60 runs. As given in Table 16, it is inferred that
the suggested computational method is superior to other
methods.

In Table 17, the results of Friedman tests also prove that
the computational method outperformed the others.

In order to compare the convergence speed among
different algorithms in the literature, the proposed method
(a hybridization of desirability, fuzzy, and ANFIS-based
MFO) is compared with the ant lion optimizer (ALO) [48],
particle swarm optimization-based gravitational search al-
gorithm (PSOGSA) [49], and sine-cosine algorithm (SCA)
[50]. A maximum iteration of 10000 and initial population
of 20 are used for all algorithms. �e results found that the
current method in this study has faster convergence than
others because the devoted method only needs a compu-
tation time of 559.78 s, as given in Table 18.

Additionally, the superiority of the current method in
this paper is also compared with the Taguchi, the desirability,
and Taguchi-fuzzy methods. It is remarked that the Taguchi
method is able to search the optimal solution for each re-
sponse (single optimization problem), while the others are
used to solve theMOOproblems for case study 1. Datasets in
Table 7 are used for the Taguchi, Taguchi-fuzzy, and de-
sirability methods. �e results are summarized in Table 19.

From the results of Table 19, it can be revealed that, for
optimization of a single response, the Taguchi method is a

more suitable tool. By using the Taguchi, the optimal pa-
rameters are found with respect to each response but it only
finds the optimum value for a single cost function, as shown
in Table 19. By using the Taguchi-fuzzy method, the results
searched the optimal sets of parameters for MOO but this
approach is based on the Taguchi reasoning.�is means that
the optimal solutions can be also local values. Besides, using
the desirability, the results found the optimal parameters for
the MOO but this technique is based on the prediction
precision of the mathematical models. Lastly, the current
method (a hybridization of desirability, fuzzy, and ANFIS-
based MFO methods) is a reliable technique that is superior
to others because it can search the global solution for the 1-
DOF mechanism.

Strengths of the proposed method’s framework can be
listed as follows:

(i) �e behaviors of the 1-DOF mechanism are easily
analyzed by linear/nonlinear FEM

(ii) Influence of the units of performances on the finally
optimal solution can be ignored via the desirability
method

(iii) �e multiple design targets are easily converted into
a single cost function through the FIS

(iv) �e unknown relation among the design variables
and the single cost function can be precisely ap-
proximated by ANFIS

(v) �e global optimum solution of the 1-DOF
mechanism can be achieved via the ANFIS-based
MFO

However, this study still has drawbacks, including the
computational principle and adaptive process. �e
computational principle requires a variety of different
methods from statistics, numerical method, intelligent
method, and metaheuristics. Besides, the adaptive process
needs an adaptive update of new design variables and
performances have not been studied yet. Finally, the
computational methods have not been automatically
connected.

At last, limitations of the present design framework
concentrate on time and computational complexity as well
as efficiency. �is method needs a long period of computing
time for each method. �e computational complexity is
mainly dependent on computer ability and experiences in
the field. For a complex mechanism, the FEM and working
time of computer are restricted.

Table 14: Comparison results of two cases.

Case study Parameters (mm)
Optimal responses

f1 (x) (Hz) f2 (x) (mm) f3 (x) (mm) f4 (x) (MPa) n MPCI

Case 1 �e current method

T2 � 0.45

0.848L2 � 27.5 Rp � 79.5179 Rp � 1.8977 Rp � 0.0224 Rp � 210.382 Rp � 2.390
T3 � 0.78 Rs � 76.062 Rs � 1.7611 Rs � 0.0216 Rs � 223.38 Rs � 2.155
L3 �18 E� 4.54% E� 7.75% E� 3.70% E� 5.81% E� 1.09%

Case 2 �e current method
T2 � 0.45 Rp � 76.7435 Rp � 1.8266 Rp � 0.0211 Rp � 236.027 Rp � 2.131

0.640L2 � 27.5 Rs � 74.205 Rs � 1.8350 Rs � 0.0214 Rs � 227.210 Rs � 2.213
T3 � 0.69 E� 3.42% E� 0.45% E� 1.40% E� 3.88% E� 3.70%
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Figure 10: Simulations for case 1: (a) deformation and (b) stress distribution.

Table 15: Comparison among different methods.

Approaches f1 (x) (Hz) f2 (x) (mm) MPCI
ANFIS-Jaya (T2 � 0.45mm, L2 � 27.49mm, T3 � 0.77mm, L3 �18mm) 76.880 1.719 0.848
ANFIS-TLBO (T2 � 0.45mm, L2 � 27.45mm, T3 � 0.78mm, L3 �18mm) 76.376 1.746 0.848
�e current method (T2 � 0.45mm, L2 � 27.5mm, T3 � 0.78mm, L3 �18mm) 79.517 1.897 0.848

Table 16: Results of Wilcoxon tests.
Frequency

�e current method and ANFIS-coupled Jaya
Wilcoxon index p value Difference
0 ≤0.001 −2.6379

�e current method and ANFIS-coupled TLBO
Wilcoxon index p value Difference
0 ≤0.001 −3.1419
Displacement

�e current method and ANFIS-coupled Jaya
Wilcoxon index p value Difference
0 ≤0.001 −0.1786

�e current method versus ANFIS-coupled TLBO
Wilcoxon index p value Difference
0 ≤0.001 −0.1513

Table 17: Results of Friedman tests.
Frequency
Method Average Rank
ANFIS-coupled Jaya 76.8800 60
ANFIS-coupled TLBO 76.3760 180
�e current method 79.5179 120
Overall 77.5913
p value ≤0.001
Displacement
Method Average Rank
ANFIS-coupled Jaya 1.71910 60
ANFIS-coupled TLBO 1.74640 180
�e current method 1.89770 120
Overall 1.78773
p value ≤0.001
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5. Conclusions

�is paper proposed the computational method and its
application in design optimization of compliant mecha-
nisms.�e 1-DOF compliant mechanism is used as the study
object. �e suggested method is a hybridization of statistics,
FEM, artificial intelligence, and metaheuristics. �e use-
fulness of the suggested method is tested through the nu-
merical examples and statistical comparisons. An initial 3D
model in FEM is designed, and the numerical datasets are
retrieved by FEA. ANOVA is used to redetermine two fine
spaces of parameters, so-called populations in MFO. Based
on the refined datasets, the desirabilities of the frequency
and displacement are brought into the FIS system where two
objective functions become a single objective function
through establishment of the fuzzy if-then rules. ANFIS is
then established as predictor involving the refined param-
eters and the output of FIS. In order to reach a global
optimization, MFO algorithm is utilized to deal with the
output of FIS. �e results found that the frequency is
79.517Hz and displacement is 1.897mm for the 1-DOF
mechanism. �e devoted method is better than the Taguchi,
Taguchi-integrated fuzzy, and desirability methods because
it can search a global solution.

In finding the global optimum solution, the suggested
method is a better technique in comparison with the
Taguchi, desirability, and Taguchi-integrated fuzzy methods.
Besides, the devoted method outperforms the other meta-
heuristic algorithms such as TLBO and Jaya in terms of

better performances. Also, the devoted method is superior to
PSOGSA, SCA, ALO, and LAPO in terms of faster
convergence.

In future work, experiments are carried out to verify the
optimized results. �e current method will be extended to
optimization problems with multiple constraints. Besides,
the proposed method will be also considered to apply for
multi-DOF compliant mechanisms.

Data Availability

�e data used to support the findings of this study are in-
cluded within the article.

Conflicts of Interest

�e authors declare that they have no conflicts of interest.

Acknowledgments

�is research was funded by the Vietnam National Foun-
dation for Science and Technology Development
(NAFOSTED) under Grant no. 107.01–2019.14.

References

[1] D. N. Nguyen, T. Dao, N. Le Chau, and V. A. Dang, Hybrid
Approach of Finite Element Method , Kigring Metamodel, and
Multiobjective Genetic Algorithm for Computational Optimi-
zation of a Flexure Elbow Joint for Upper-Limb Assistive

Table 19: Comparison among the current method, Taguchi method, and Taguchi-fuzzy method.

Method Optimal results

Taguchi (single optimization)
Parameters (mm)

T2 � 0.65 T2 � 0.45 T2 � 0.65 T2 � 0.65
L2 � 22.5 L2 � 27.5 L2 � 22.5 L2 � 22.5
T3 � 0.78 T3 � 0.54 T3 � 0.78 T3 � 0.66
L3 �18 L3 � 22 L3 �18 L3 � 20

Response f1 (x) (Hz) f2 (x) (mm) f3 (x) (mm) f4 (x) (MPa)
Value 139.474 1.760 0.008 90.405

Taguchi-fuzzy (MOO)
Parameters (mm) T2 � 0.45, L2 � 27.5, T3 � 0.54, L3 � 20

Response f1 (x) (Hz) f2 (x) (mm) f3 (x) (mm) f4 (x) (MPa)
Value 75.871 1.776 0.019 212.114

Desirability (MOO)
Parameters (mm) T2 � 0.65, L2 � 22.5, T3 � 0.54, L3 � 21.27

Response f1 (x) (Hz) f2 (x) (mm) f3 (x) (mm) f4 (x) (MPa)
Value 106.841 0.930 0.011 120.090

�e current method (MOO)
Parameters (mm) T2 � 0.45, L2 � 27.5, T3 � 0.78, L3 �18

Response f1 (x) (Hz) f2 (x) (mm) f3 (x) (mm) f4 (x) (MPa)
Value 79.517 1.897 0.022 210.382

Table 18: Statistical results for comparison among metaheuristic methods.

Method
Results

Time (s)
Frequency (Hz) Displacement (mm)

ANFIS-coupled PSOGSA 79.421 1.892 616.038
ANFIS-coupled SCA 79.426 1.895 599.544
ANFIS-coupled ALO 79.425 1.893 623.20
ANFIS-coupled LAPO 79.517 1.897 2707.75
�e current method 79.517 1.897 559.78

16 Mathematical Problems in Engineering



Device, Springer, Berlin, Germany, 2019, https://www.
springer.com/engineering/electronics/j.

[2] M. Ling, S. Chen, Q. Li, and G. Tian, “Dynamic stiffness
matrix for free vibration analysis of flexure hinges based on
non-uniform Timoshenko beam,” Journal of Sound and Vi-
bration, vol. 437, pp. 40–52, 2018.

[3] S.-C. Huang and T.-P. Dao, “Multi-objective optimal design
of a 2-DOF flexure-based mechanism using hybrid approach
of grey-taguchi coupled response surface methodology and
entropy measurement,” Arabian Journal for Science and
Engineering, vol. 41, 2016.

[4] M. Ling, J. Cao, Z. Jiang, and Q. Li, “Development of a
multistage compliant mechanism with new boundary con-
straint,” Review of Scientific Instruments, vol. 89, 2018.

[5] R. K. Jain, S. Majumder, B. Ghosh, and S. Saha, “Design and
manufacturing of mobile micro manipulation system with a
compliant piezoelectric actuator based micro gripper,”
Journal of Manufacturing Systems, vol. 35, pp. 76–91, 2015.

[6] X. Zhou, H. Xu, J. Cheng, N. Zhao, and S. C. Chen, “Flexure-
based Roll-to-roll Platform: a practical solution for realizing
large-area microcontact printing,” Scientific Reports, vol. 5,
pp. 1–10, 2015.

[7] S. Polit and J. Dong, “Development of a high-bandwidth XY
nanopositioning stage for high-rate micro-/nano-
manufacturing,” Institute of Electrical and Electronics Engi-
neers/American Society of Mechanical Engineers Transactions
on Mechatronics, vol. 16, no. 4, pp. 724–733, 2011.

[8] P. Wang and Q. Xu, “Design and modeling of constant-force
mechanisms: a survey,” Mechanism and Machine $eory,
vol. 119, pp. 1–21, 2018.

[9] Y. S. Oh and S. Kota, “Synthesis of multistable equilibrium
compliant mechanisms using combinations of bistable
Mechanisms,” Journal of Mechanical Design, vol. 131,
pp. 0210021–02100211, 2009.

[10] S. Kota, J. Joo, Z. Li, S. M. Rodgers, and J. Sniegowski, “Design
of compliant mechanisms: applications to MEMS, analog
integr,” Analog Integrated Circuits and Signal Processing,
vol. 29, no. 1/2, pp. 7–15, 2001.

[11] S. Rakuff and J. F. Cuttino, “Design and testing of a long-
range, precision fast tool servo system for diamond turning,”
Precision Engineering, vol. 33, no. 1, pp. 18–25, 2009.

[12] J. Granstrom, J. Feenstra, H. A. Sodano, and K. Farinholt,
“Energy harvesting from a backpack instrumented with pi-
ezoelectric shoulder straps,” Smart Materials and Structures,
vol. 16, no. 5, pp. 1810–1820, 2007.

[13] J. J. Uicker, G. R. Pennock, J. E. Shigley, and J. M. McCarthy,
“�eory of machines and mechanisms,” $e Journal of Me-
chanical Design, vol. 125, no. 3, p. 650, 2003.

[14] A. Midha, L. L. Howell, and T. W. Norton, “Limit positions of
compliant mechanisms using the pseudo-rigid-body model
concept,” Mechanism and Machine $eory, vol. 35, no. 1,
pp. 99–115, 2000.

[15] L. L. Howell, Compliant Mechanisms, John Wiley & Sons,
Hoboken, NJ, USA, 2011.

[16] N. Lobontiu, Nicolae Lobontiu-Compliant Mechanisms_ De-
sign of Flexure Hinges, CRC Press, Boca Raton, FL, USA, 2002.

[17] Y. Koseki, T. Tanikawa, N. Koyachi, and T. Arai, “Kinematic
analysis of a translational 3-d.o.f. micro-parallel mechanism
using the matrix method,” Advanced Robotics, vol. 16, no. 3,
pp. 251–264, 2002.

[18] M. Ling, J. Cao, Z. Jiang, and J. Lin, “�eoretical modeling of
attenuated displacement amplification for multistage com-
pliant mechanism and its application,” Sensors and Actuators
A: Physical, vol. 249, pp. 15–22, 2016.

[19] M. Ling, J. Cao, and N. Pehrson, “Kinetostatic and dynamic
analyses of planar compliant mechanisms via a two-port
dynamic stiffness model,” Precision Engineering, vol. 57,
pp. 149–161, 2019.

[20] S. T. Smith, D. G. Chetwynd, and D. K. Bowen, “Design and
assessment of monolithic high precision translation mecha-
nisms,” Journal of Physics E, vol. 20, no. 8, pp. 977–983, 1987.

[21] S. Awtar and S. Sen, “A generalized constraint model for two-
dimensional beam flexures: nonlinear load-displacement
formulation,” Journal of Mechanical Design Transmission
ASME, vol. 132, pp. 0810081–08100811, 2010.

[22] Q. Xu and Y. Li, “Analytical modeling, optimization and
testing of a compound bridge-type compliant displacement
amplifier,” Mechanism and Machine $eory, vol. 46, no. 2,
pp. 183–200, 2011.

[23] W.-L. Zhu, Z. Zhu, P. Guo, and B.-F. Ju, “A novel hybrid
actuation mechanism based XY nanopositioning stage with
totally decoupled kinematics,”Mechanical Systems and Signal
Processing, vol. 99, pp. 747–759, 2018.

[24] B. Zhu, X. Zhang, and N. Wang, “Topology optimization of
hinge-free compliant mechanisms with multiple outputs
using level set method,” Structural and Multidisciplinary
Optimization, vol. 47, no. 5, pp. 659–672, 2013.

[25] Q. Chen, X. Zhang, H. Zhang, B. Zhu, and B. Chen, “Topology
optimization of bistable mechanisms with maximized dif-
ferences between switching forces in forward and backward
direction,” Mechanism and Machine $eory, vol. 139,
pp. 131–143, 2019.

[26] N. Wang, Z. Zhang, X. Zhang, and C. Cui, “Optimization of a
2-DOF micro-positioning stage using corrugated flexure
units,”Mechanism andMachine$eory, vol. 121, pp. 683–696,
2018.

[27] M. Liu, X. Zhang, and S. Fatikow, “Design and analysis of a
high-accuracy flexure hinge,” Review of Scientific Instruments,
vol. 87, 2016.

[28] T.-P. Dao and S.-C. Huang, “Design and multi-objective
optimization for a broad self-amplified 2-DOF monolithic
mechanism,” S�adhan�a, vol. 42, no. 9, pp. 1527–1542, 2017.

[29] K.-B. Choi and C. S. Han, “Optimal design of a compliant
mechanism with circular notch flexure hinges,” Proceedings of
the Institution of Mechanical Engineers, Part C: Journal of
Mechanical Engineering Science, vol. 221, no. 3, pp. 385–392,
2007.

[30] G. G. Fossati, L. F. F. Miguel, and W. J. P. Casas, “Multi-
objective optimization of the suspension system parameters of
a full vehicle model,” Optimization and Engineering, vol. 20,
no. 1, pp. 151–177, 2019.

[31] C. Butler, “A primer on the Taguchi method,” Computer
Integrated Manufacturing Systems, vol. 5, no. 3, p. 246, 1992.

[32] N. R. Costa, J. Lourenço, and Z. L. Pereira, “Desirability
function approach: a review and performance evaluation in
adverse conditions,” Chemometrics and Intelligent Laboratory
Systems, vol. 107, no. 2, pp. 234–244, 2011.

[33] S.-C. Huang and T.-P. Dao, “Multi-objective optimal design
of a 2-DOF flexure-based mechanism using hybrid approach
of grey-taguchi coupled response surface methodology and
entropy measurement,” Arabian Journal for Science and
Engineering, vol. 41, no. 12, pp. 5215–5231, 2016.

[34] T.-P. Dao, “Multiresponse optimization of a compliant
guiding mechanism using hybrid taguchi-grey based fuzzy
logic approach,” Mathematical Problems in Engineering,
vol. 2016, Article ID 5386893, 17 pages, 2016.

[35] M. V. Arasu, S. Arokiyaraj, P. Viayaraghavan et al., “One step
green synthesis of larvicidal, and azo dye degrading

Mathematical Problems in Engineering 17

https://www.springer.com/engineering/electronics/j
https://www.springer.com/engineering/electronics/j


antibacterial nanoparticles by response surface methodology,”
Journal of Photochemistry and Photobiology B: Biology,
vol. 190, pp. 154–162, 2019.

[36] K. J. Kim andD. K. J. Lin, “Optimization ofmultiple responses
considering both location and dispersion effects,” European
Journal of Operational Research, vol. 169, no. 1, pp. 133–145,
2006.

[37] P. Jiang, C. Wang, Q. Zhou, X. Shao, L. Shu, and X. Li,
“Optimization of laser welding process parameters of stainless
steel 316L using FEM, Kriging and NSGA-II,” Advances in
Engineering Software, vol. 99, pp. 147–160, 2016.

[38] D. Singh, V. Kumar, Vaishali, and M. Kaur, “Classification of
COVID-19 patients from chest CT images using multi-ob-
jective differential evolution–based convolutional neural
networks,” European Journal of Clinical Microbiology & In-
fectious Diseases, vol. 39, no. 7, pp. 1379–1389, 2020.

[39] R. Rathi, C. Prakash, S. Singh, G. Krolczyk, and C. I. Pruncu,
“Measurement and analysis of wind energy potential using
fuzzy based hybrid madm approach,” Energy Reports, vol. 6,
pp. 228–237, 2020.

[40] H. S. Pannu, D. Singh, and A. K. Malhi, “Multi-objective
particle swarm optimization-based adaptive neuro-fuzzy in-
ference system for benzene monitoring,” Neural Computing
and Applications, vol. 31, no. 7, pp. 2195–2205, 2019.

[41] M. Keshtiara, S. Golabi, and R. Tarkesh Esfahani, “Multi-
objective optimization of stainless steel 304 tube laser forming
process using GA,” Engineering Computations, vol. 37, 2019.

[42] S. Chatterjee, S. Sarkar, S. Hore, N. Dey, A. S. Ashour, and
V. E. Balas, “Particle swarm optimization trained neural
network for structural failure prediction of multistoried RC
buildings,” Neural Computing and Applications, vol. 28,
pp. 2005–2016, 2017.

[43] T.-P. Dao, S.-C. Huang, and P. T. �ang, “Hybrid Taguchi-
cuckoo search algorithm for optimization of a compliant
focus positioning platform,” Applied Soft Computing-Journal,
vol. 57, 2017.

[44] R. V. Rao, V. J. Savsani, and D. P. Vakharia, “Teaching-
learning-based optimization: a novel method for constrained
mechanical design optimization problems,” Computer-Aided
Design, vol. 43, no. 3, pp. 303–315, 2011.

[45] R. V. Rao, H. S. Keesari, P. Oclon, and J. Taler, “An adaptive
multi-team perturbation-guiding Jaya algorithm for optimi-
zation and its applications,” Engineering Computations,
vol. 36, no. 1, pp. 391–419, 2019.

[46] A. F. Nematollahi, A. Rahiminejad, and B. Vahidi, “A novel
physical based meta-heuristic optimization method known as
Lightning Attachment Procedure Optimization,” Applied Soft
Computing, vol. 59, pp. 596–621, 2017.

[47] S. Mirjalili, “Moth-flame optimization algorithm: a novel
nature-inspired heuristic paradigm,” Knowledge-Based Sys-
tem, vol. 89, pp. 228–249, 2015.

[48] S. Mirjalili, “�e ant lion optimizer,” Advances in Engineering
Software, vol. 83, 2015.

[49] S. Mirjalili and S. Z. M. Hashim, “A new hybrid PSOGSA
algorithm for function optimization,” in Proceedings ICCIA
2010-2010 International Conference on Computer and Infor-
mation Application, Tianjin, China, July 2010.

[50] S. Mirjalili, “SCA: A sine cosine algorithm for solving opti-
mization problems,” Knowledge-Based System, vol. 96, 2016.

[51] M. A. Dı́az-Cortés, E. Cuevas, J. Gálvez, and O. Camarena, “A
new metaheuristic optimization methodology based on fuzzy
logic,” Applied Soft Computing, vol. 61, pp. 549–569, 2017.

[52] N. Le Chau, N. T. Tran, and T. P. Dao, “A multi-response
optimal design of bistable compliant mechanism using

efficient approach of desirability, fuzzy logic, ANFIS and
LAPO algorithm,” Applied Soft Computing-Journal, vol. 94,
2020.

[53] J. Zhou, C. Li, C. A. Arslan, M. Hasanipanah, and
H. Bakhshandeh Amnieh, “Performance evaluation of hybrid
FFA-ANFIS and GA-ANFIS models to predict particle size
distribution of a muck-pile after blasting,” Engineering
Computations, vol. 37, 2019.

[54] Q. Liu, X. Zhou, P. Xu, Q. Zou, and C. Lin, “A flexure-Based
long-Stroke fast tool servo for diamond turning,” $e In-
ternational Journal of Advanced Manufacturing Technology,
vol. 59, 2012.

[55] Z. Zhu, X. Zhou, Q. Liu, and S. Zhao, “Multi-objective op-
timum design of fast tool servo based on improved differential
evolution algorithm,” Journal of Mechanical Science and
Technology, 2011.

[56] W. Le Zhu, X. Yang, F. Duan, Z. Zhu, and B. F. Ju, “Design
and adaptive terminal sliding mode control of a fast tool servo
system for diamondmachining of freeform surfaces,” Institute
of Electrical and Electronics Engineers Transactions on In-
dustrial Electronics, 2019.
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