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For systems of nonlinear equations, a modified efficient Levenberg—Marquardt method with new LM parameters was developed
by Amini et al. (2018). The convergence of the method was proved under the local error bound condition. In order to enhance this
method, using nonmonotone technique, we propose a new Levenberg-Marquardt parameter in this paper. The convergence of the
new Levenberg-Marquardt method is shown to be at least superlinear, and numerical experiments show that the new Lev-

enberg-Marquardt algorithm can solve systems of nonlinear equations effectively.

1. Introduction

Consider the system of nonlinear equations
F(x) =0, (1)

where the function F(x): R” — R™ is continuously dif-
ferentiable. In this paper, we assume that the solution set of
(1) (denoted by X*) is nonempty, with || - || referring to the 2-
norm.

Newton method is an important method to solve system
(1) in [1]. At each iteration, it uses the trial step

dy = -Ji'Fro (2)

where F (x;) = F, and J; = F' (x;) is Jacobian matrix. When
J(x) is Lipschitz continuous and nonsingular, then the
convergence of this method is quadratic at the solution.
However, trial step di may not exist and J; is singular or
near singular. Newton method may not be well defined. To
overcome this difficulty, Levenberg-Marquardt (LM)
method was created by Levenberg [2] and Marquardt [3]
which uses the trial step dj™ at each iteration, where

dM = ~ (71 + M) TEF (3)

and A, is a nonnegative constant. By introducing a non-
negative parameter A, LM method overcomes the problem
that J, is singular or near singular; furthermore, excessive
step size ||d,| is avoided. In this case, where A, =0 and
Jacobian matrix J; is nonsingular, the LM method is reduced
to Newton method.

The efficiency of the LM method is affected by the pa-
rameter A,. For example, let A, = |F (xk)llz, under the local
error bound condition, the LM method is shown to have
quadratic convergence by Yamashita and Fukushima in [4].
However, when the sequence {x;} is far away from the
set X*, ||F |l may be very big which may lead to large A,.
It will result in a smaller LM step size, further reducing
the efficiency of the algorithm. In [5], Fan used
A = ‘uk||F(xk)||‘s, § € (1,2], where g is updated with trust
region technology in each iteration, the LM method also has
quadratic convergence under some suitable conditions, and
A = wllF (xk)||6 can alleviate the effect of the initial point
being far away from the set X*.
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To avoid this trouble, Amini used
A = llFll/ (1 + [|Fill) in [6]; when the sequence {x;} is far
from the solution set and ||F; | is very large, A, is close to y,
which effectively controls the range of A;. Umar proposed
some new LM parameters A, = (IJcl/1T1%), A = (ITETcll/
||]£]k||2) in [7]. Wang used A = 7 IJEF,|* with 7, updated
by trust region techniques from iteration to iteration in [8].

Ma introduced ||J ZFkII into LM method and used a new
LM parameter A, = 0||F. || + (1 - 9)||]£Fk|| in [9], where
0<6<1. It is noticeable that A, is a convex combination of
[Fll and | ]{F |, and the quadratic convergence of this
method is proved. There are numerous other various LM
methods to solve (1); interested readers are referred to
[10-12] for related work. In order to discuss the range of
parameter A, inspired by [6, 8, 9], in this paper, we choose a
new LM parameter as follows:

I’
A= 0
: ”k( T
(4)

where A, is a convex combination of IIFkIIS/(l + ||Fk||8) and
||]£Fk||5/(1 + IIIZFkII‘;) and y, is updated with trust region
technology in each iteration.

Now, we set

e
iy ka5> §e(0,2],6¢€[0,1],
L[|

¢ (x) =IF (x)I” (5)

as the merit function for (1). We define the actual reduction
and the predicted reduction of ¢ (x) at the kth iteration as
follows:

Ared; = ||Fk||2 —|[F (i + dk)“z’ ©)

Pred, = |, - |, + Jidil, @)
where d is computed by (3). The following ratio is

_ Aredk

Tk = Predk ' (8)

Grippo applied the nonmonotone line search technique
to Newton’s method in [13]; some authors have extended the
nonmonotone techniques to trust region algorithm and
proposed a lot of effective nonmonotone trust region
methods in [14, 15]. And Amini proposed nonmonotone
line search technique for the LM method in [6]. Numerical
experiments show that the algorithm with the nonmonotone
technique is more efficient than the algorithm without the
nonmonotone technique. Inspired by these theories, we
apply a nonmonotone strategy to LM method in this paper.
Let us replace actual reduction (6) with the following actual
reduction:

Ared; = Figy —||F (x; + dk)"2> 9)
where
Fi = Ogjrgi)((k){“Fk—j“}) k=0,1,..., (10)
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n(k) = min{N,, k}, and N, is a positive integer constant.
Obviously, by this change, ||F,, || will be compared with the
max_ an(k){"Fk— jll} in each iteration, further leading to
affect the ratio. The ratio after the change is

_ Ared,
T = .
k Predk

(11)

It can be used to decide whether the trial step is accepted
and update the trust region parameter y;.

The paper is organized as follows. In Section 2, we
present a new algorithm and then prove the global con-
vergence of the new algorithm under some conditions. In
Section 3, under the local error bound condition, the
convergence of the new Levenberg-Marquardt method is
shown to be at least superlinear. In Section 4, the new al-
gorithm is an effective algorithm, which is demonstrated by
numerical results. At last, we give some conclusions in
Section 5.

2. The Efficient Algorithm and
Global Convergence

In this section, firstly, we present the new efficient LM al-
gorithm and then prove the global convergence of the new
algorithm.

When sequence {x;} is close to the solution, the steps
may be too large, so we require

ykZm, (12)

in the new algorithm, where m is a positive constant, and this
is implemented by Step 5.

Lemma 1. For all k € N, we have

JiF
Pred; > || ]ZFknminJl ]l ||||]];T]:|||| } (13)

Proof. 'This proof is directly derived from the important
theory given by Powell in [16].

From literature [6], the following lemma can be
obtained. O

Lemma 2. Suppose the sequence {x;} be generated by Al-
gorithm 1, then the sequence {F 1 converges.

Next we present some of the assumptions needed in the
following content.

Assumption 1

(a) F(x) is continuously differentiable and Lipschitz
continuous; i.e., there exists a positive constant L,
that makes

IF (y) = F ()l < Lylly — xl. (14)
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(b) J(x) is Lipschitz continuous; i.e., there exists a
positive constant L; such that

17 =Tl < Lylly = xIl. (15)

Lemma 3. If Assumption 1 holds, then we have
IF(y) = F(x) =] () (y = 0l < Lylly - xI, (16)

J(x) <L, (17)

Proof. 'The proof of (17) can be found in [17]. So, we only
prove (16). Using mean value theorem, there exists z € [x, y]
that makes

F(y) =F(x)+](x)(y - x), (18)

and hence,

F(y)-F(x)-J(x)(y—x)=J(2) =] (%) (y - x).

(19)

According to the last equation, we can obtain

IF(y) = F(x) = J(x) (y =) < [1(J (2) = T DIy = 2
<Lli(z = )MlCy = )l
<Lty - )l
(20)
So (16) is true. O

Theorem 1. Suppose that Assumption 1 is true. Then, Al-
gorithm 1 terminates in finite iterations or satisfies

liminf|; Fe|| = 0. (21)

Proof. Assume that the theorem is incorrect; then, there
exist a positive constant ¢, and a constant k, € N that makes

ViEdlz e Y=k (22)
Firstly, we prove that
klinoo”F(xl(k))“ = kh;nw||F(xk)||. (23)
Since d, is accepted by the algorithm, we have
12 K~ "F (2 + le)"2 > poPred,. (24)

This, along with (17), (22), and Lemma 1, for all k >k,
that means

Ji F
Figg ~Fral >Po||]ka“m1n{"dk“ ||||]k]k||||}
k

25)
zm%mm“@w;}
2

Replacing k with [ (k) — 1, for all sufficiently large k, there is
2 2 . €
Frag-n = [Fiol = po mm{ It Loz}’ (26)
2
From Lemma 2

dim ([Ful IRl ) =0 @

which together with the last inequality yields
. . )
k1£>noo mm{“dl(k)ln,]é}- (28)

&,/L? is a positive constant, so
lim ||d =0.
k_m" 10o-1] (29)
Using Assumption 1, the last equality implies that

Jim [F(xigo)] = Jim [F(xi60-1)] (30)
Let I(k) = I(k + N, +2). Using induction, for all j>1,
we can show that

k—00

lim “dﬁk)—j” =0 (31)

For j =1, we can have from (31) that (29) is true. As-
suming that (29) is true for given j, we show that (29) holds
for given j+1. Let k be large enough such that

1(k) - (j+1)>0. Substituting k with I(k) — j—1 and us-
ing (24), we obtain
2
2
Fidw-in _"F(x?(k)—j“ 2 poPredyy 5
Similarly, we can deduce that
kh—r»noo"d;(k)*j’l =0 (33)

Therefore (31) holds. Along with Assumption 1 we imply
that

kh—r>noo"F<x7(k)—j—1> ‘ - kﬂnoo“F(xT(k)—j)”' (34)

Similarly, for any given j>1, we have lim,_
||F(x7(k)_j)|| = limy_,,[IF (x;(x))ll. On the one hand, for any

k, we have
1(k)—k-1
=x~ - ~ 35
Xprt = X7 2 dl(kH, (35)
i=

Using (31) and the fact that l(k) -1<Ny+1, we

have
kli—r>noo“xk+l ~ Ml l' =0 (36)
With Assumption 1, we conclude
kli—r>noo||F(xl(k))“ - khl>nm||F< l(k)>” kh—I>noo||F(xk)"
(37)



And then (22) is proved. By using (22) and (25), we can
deduce that

Jim [ldi] =o. (38)
Then, it follows from (3) in Algorithm 1, (17), and (22)
that
Y — 00, ask — 0o. (39)
On the other hand, by (6), (8), (17), (22), (38), and
Lemma 1, we can deduce that

_ Ared,
~ Pred,

L
Predk

s sado(jal) + olail’)
Predk (40)

MEcsnao(lad’) + of ')
PiEdmin(lee], (EF D)

- ofar)

<l+——2 1
[l

And then combined with (8) and (10), we can see that

>Fi _||Fk+1H2
- Predk (41)

- _ Ared; Fiy ~|F (v + di)[|
k Pred,, Pred,,

=}’k—>l.

Considering Algorithm 1, obviously, for all large k, there
exists a positive constant g >m such that y, <z, which
conflicts with (22) and so Theorem 1 is true. O

3. Local Convergence

Definition 1. Let N be a subset of R” that makes N N X* #+ &.
We say ||F (x)| provides a local error bounded on N for (1),
where [x; — X || = dist (xy, X*), if there exists a positive
constant C; such that

IF(x)] >C,dist(x, X"), Vxe€N. (42)

Assumption 2

(a) F(x) is continuously differentiable, and [F (x)]
provides a local error bound on subset N (x*,b) for
problem (1), where

N(x",b) ={x e R"||x - x"|<b}, 0<b<l. (43)
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(b) F(x) and ](x) are both Lipschitz continuous on
N (x*,b); that is, there exist two positive constants Ly,
L, that make

7)) =TN<Lilly —xl, Vx,y € N(x",b), (44)

IF(y) = F(ol<Lylly - xl, Vx,yeN(x",b), (45)

which implies

IF(y) = F(x) = J () (y =0l <Ly lly - I,

. (46)
Vx,y € N(x",b).

Lemma 4. Suppose that Assumption 2 is true. Then, for all
sufficiently large k, we have the following.

(1) There exists a positive constant M >m that makes

(2) A =Csllx; - xk"(s,
m(1-0).

where C; = (C‘f/2)m6+ (Cg/Z)

Proof. 'The proof process of (1) is the same as that of Lemma
3.2 in [6], so we are not going to prove it here and only give
the proof of (2).

|EWll” = FiFy = B (F (=) + T (o= %)) + Fe Vi (48)
where V, = F, — F, — ], (x, — %), obviously,

Fii (i = %) = |[Fell” = Fve (49)

We can obtain from Definition 1 and (45) and (46) that

IR EAEA ELe P A

V=l =l - Lol - =i (50

= LiLyfx - %,

> C2||xk - Ek"
Thus we obtain
VEE = e - %] (51)

Then we show the following inequalities:

||Fk||6

(52)
"]ka“ 2" "
LR

If |Fill <1, then the following holds:
1 0
Zf“xk —xk” 5 (53)

and if |F| > 1, then
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)
F 1
LA -
L+[E
Through the above two inequalities, we have
7 {1 ST
> max 7,—||xk - xk" . (55)
LR >2
Similarly, if || ]{F I <1, then the following holds
T
T T IR
LR
and if IIIZFkII > 1, we have
T 8
"]ka" 5>l (57)
LR

Hence, we obtain

PiEd
L+

max{l T } (58)

From Algorithm 1, (52), and (58), we have

8
JiF
Ak_ﬂk< R _9) |Ika|| 6)
T L+
c? c
>l mlx - %+ 2m (1= Ol - %] = Cslx - =],

(59)

where C; = (C2/2)m0 + (C3/2)m (1 - 6). So when ||x; — %,
is sufficiently small,

/\k2C3“xk —Ek"B. (6(|):|)

Lemma 5. Suppose that Assumption 2 is true, for all suffi-
ciently large k. ||d, || computed by (3) satisfies

i < O(flxic = %il))- (61)

Proof. It weset ¢ (d) = |F) + /'kalll2 + AkIIdIIZ, then we have
from (3) that d; is a minimizer of ¢ (d), so it follows from
Algorithm 1, (12), (45), (46), and ||F (x,)] = 0 that

1
e (RO SOV PN

1 2 5
s ||Fk+]k(xk—fk)" +/\k”xk—§k"
Cs “xk - ?k”‘S < )
bl ey
Gilx- ®
= O | ="
(62)
So there is
leill < O(Jlxe — xl])- (63)

Lemma 6. Suppose that Assumption 2 is true, for all suffi-
ciently large k. So, we have

M <Collxe - x| (64)

Proof. Firstly, we deal with these two equations:

EL

L+[F

7 Fll < Il < LaflF (i)

s R < -

- F(x)| < Lol — %

(65)
On the other hand,
ViFd’ :
AR < -xm ] (6)
L+ Fe
We conclude
B
JiF
wen(ol g VL)
L+[F kll L[ E
(67)

<M - %] + (1= 01| - %)

<Cylx -z,

where C, = MOLS + M (1 - O)LILS.



Without loss of generality, for all X € N (x*,b)n X",
suppose that rank (J (X)) = r, and we prove the local con-
vergence of Algorithm 1 by singular value decomposition
(SVD) of J (%).

_ >
i@-o o) vl e

where X, = diag(G),...,0,) with 7,25,>--->7,>0,
rank(Z,) =7, U = [U,U,], and V = [V, V,]. And assume
the SVD of J(x) are as follows:

T
21 1

1
J(x) =UZV' =[U,,U, U] s, vT
v

2
ool @

3
=U,Z, V| +U,3,V7,

where U = [U,,U,,U;] and V = [V,V,,V;] are two or-
thogonal matrixes. ¥, = diag(o,,0,,...,0,),0,20,> -+ >
0,>0, and X, =diag(0,,1,0,.2,...50,14), 0,120,
> 20,,>0.

Since J(x) is Lipschitz continuous, by the theory of
matrix perturbation [18], we have

”diag (2, -2, 2, 0)" < "]k - 7k" = L1"xk B Ek"' (70)

So there is
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120 = 2] < L o = %)
122l <17k = Tidl < Lo = =)

Since {x; } converges to the set X*, then we have L, [|(x; —
xX,)ll < (0,/2) hold for all sufficiently large k. So combined
with (71), there is

(71)

] —

2
— 5 <= 72
5, - Lt~ "o, 7

O

Lemma 7. Suppose Assumption 2 holds; for all sufficiently
large k, we have

(1) 1UUTFll <O (llxy = %)
(2) |UUTFll <O (Il = i)

Proof. The proof process is similar to Lemma 7 in [9], so we
omit it here. O

Theorem 2. Under Assumption 2, let {x;} be a sequence
generated by Algorithm 1 with trust region technique. If
8 € (0, 1), then {x;} converges superlinearly to the solution. If
8 € [1,2], then sequence {x,} converges quadratically to the
solution.

Proof. Using (3) and (69), we obtain

di = V(22 4+ L) B UTE, - V(224 00) LU,

—1 -1
Fi+ Jydy = F U S (3T + M) S UF - U5 (25 + M) ZULFy (73)

= MUL(22 + 40) UTE + LUL(22 + 40) ULE.

From (47), (71), Definition 1, and Lemma 5, we have
|Fi + Tidi| < AJU, UL Ei| + U203 Fi|
<yl = 5] O(xe - %l + O~ =)
<Clw - %]+ O - %)
<O(|xe =x]**) + O e~ %[ ).
(74)

From (44), (46), (74), Definition 1, and Lemma 5, we
conclude that

C1||(xk+1 _§k+1)" < ||F(xk+1)|| :"F(xk + dk)"
<O( = =") + O ke - %I )
(75)

On the other hand, it is obvious that

“xk - ik" = dlSt (xk, X*) < ||xk+1 - Ek" < ||xk+1 — ykJrl" + dk'
(76)

It follows from (75) and Lemma 5 that
llocr — %l < 2lldil <O (llx — X ll) holds for all sufficiently
large k. So, lldll = O (llx; — X¢Il), and this is related to (75).
We deduce that if §¢€ (0,1), |dqll= O(IIdk||1+5). If
8 € [1,2], disyll = O(lldill®). Soif § € (0,1), {x,} converges
superlinearly to the solution; otherwise, if & € [1,2], {x;}
converges quadratically to the solution. O

4. Numerical Experiments

In Section 5, we compare the performance of Algorithm 1
with Algorithm 2.1 (writing Algorithm 2.1 as AELM) in [6]
through some numerical experiments. The test function
F(x) is improved by the method in [19]. The form is as
follows:

F(®) =F(x)-J(x)A(ATA) AT (x-x), (77
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Input: given x, € R, N> 0,4, >m>0,6>0,0< py<p; <p, <L k=0
Output:
Step 1. If JTF; <e, stop. Otherwise, set
Xy = e OUF T (1 + ) + (1= T (1 + TF ),
where 0 € [0,1],6 € (0,2].
Step 2. Compute the search direction
di = Ui + M D) ' TiFy _
Step 3. By (7), (8), and (10), compute Pred,, Ared,, 7.
Step 4. Set
v Ixctdi Tezpo
M i< Po
Step 5. Choose iy, as
4y, k<P
Bieer = Hi, T € [p1> P2l
max{(y/4),m}, F>p,
Step 6. Set k:=k + 1, and go to Step 1.
ALGORITHM 1: A modified efficient Levenberg—Marquardt algorithm.
TaBLE 1: Results on singular nonlinear equations with rank (F' (x*) =n - 1.
NE/NJ
Problem n X Algorithm with Algorithm with § =2
AELM 0=1
0=0 0=05 0=0 0=05 0=1
-100 717 717 8/8 9/9 717 717
-10 6/6 6/6 717 717 6/6 6/6
. . -1 1/1 1/1 1/1 1/1 1/1 1/1
Helical valley function 3 ] 9/9 9/9 9/9 9/9 9/9 9/9
10 8/8 8/8 8/8 9/9 8/8 8/8
100 8/8 8/8 8/8 8/8 8/8 8/8
-100 14/14 14/14 14/14 14/14 14/14 14/14
-10 11/11 10/10 11/11 10/10 10/10 10/10
10 -1 8/8 8/8 8/8 717 717 717
1 3/3 3/3 3/3 4/4 4/4 4/4
10 11/11 10/10 10/10 9/9 9/9 9/9
100 9/9 9/9 9/9 9/9 9/9 9/9
-100 14/14 13/13 14/14 13/13 14/14 14/14
-10 11/11 9/9 11/11 8/8 9/9 9/9
. -1 12/12 5/5 5/5 4/4 4/4 4/4
Discrete boundary value 100 1 4/4 44 4/4 3/3 3/3 3/3
10 717 717 717 717 5/5 8/8
100 12/12 11/11 12/12 11/11 12/12 12/12
-100 15/15 13/13 15/15 12/12 14/14 15/15
-10 8/8 6/6 717 5/5 6/6 6/6
500 -1 6/6 5/5 5/5 4/4 4/4 4/4
1 1/1 1/1 1/1 1/1 1/1 1/1
10 8/8 6/6 717 5/5 6/6 6/6
100 15/15 12/12 14/14 11/11 13/13 14/14




8 Mathematical Problems in Engineering
TaBLE 1: Continued.
NE/N]J
Problem n X Algorithm with Algorithm with § =2
AELM d=1
0=0 6=0.5 60=0 0=0.5 =1
-100 16/16 16/16 16/16 16/16 16/16 16/16
-10 11/11 11/11 11/11 11/11 11/11 11/11
30 -1 9/9 9/9 9/9 9/9 9/9 9/9
1 717 717 717 6/6 6/6 6/6
10 11/11 11/11 11/11 11/11 11/11 11/11
100 10/10 10/10 10/10 10/10 10/10 10/10
-100 16/16 16/16 16/16 16/16 16/16 16/16
-10 12/12 12/12 12/12 12/12 12/12 12/12
. . . -1 9/9 10/10 10/10 9/9 9/9 9/9
Discrete integral equation 100 1 8/8 77 8/8 717 717 717
10 12/12 11/11 11/11 11/11 11/11 12/12
100 10/10 10/10 10/10 10/10 10/10 10/10
-100 17/17 17/17 17/17 17/17 17/17 17/17
-10 13/13 13/13 13/13 13/13 13/13 13/13
500 -1 11/11 11/11 11/11 11/11 10/10 10/10
1 9/9 8/8 9/9 8/8 8/8 8/8
10 12/12 12/12 12/12 12/12 12/12 12/12
100 10/10 10/10 10/10 10/10 10/10 10/10

TaBLE 2: Numerical results for singular nonlinear equations with rank (F "(x*)=n-1).

Iters/fnorm/trust/EI
Problem n X . . .
AELM (times: 3.63) 6 =1 (times: 7.47) 6 = 2 (times: 3.76)
1 16/1.5876e - 07/1/1.044 16/2.3984e—-07/1/1.044 16/2.3152e - 07/1/1.071
Rosenbrock 2 10 18/1.199¢-07/1/1.038 18/1.211e-07/1/1.038 18/1.2102¢ - 07/1/1.0628
100 21/1.3601e—-07/1/1.034 21/1.3604e —07/1/1.034 21/1.3603e —07/1/1.053
1 40/2.0905e - 07/1/1.017 40/6.4701e—-07/1/1.017 40/4.8829e-07/1/1.027
Powell badly 2 10 25/3.4159¢-07/1/1.028 25/3.6737e—-07/1/1.028 25/3.0308e — 07/1/1.045
100 30/3.4445e—-07/1/1.023 30/3.1265e—-07/1/1.023 30/3.0929e¢ - 07/1/1.037
1 16/1.5876e —07/1/1.044 16/2.0905e - 07/1/1.044 16/2.0897e—-07/1/1.071
Wood 4 10 19/1.926e-07/1/1.037 19/1.9262e-07/1/1.037 19/1.9262e - 07/1/1.059
100 22/2.8391e—07/1/1.031 22/2.8391ee—07/1/1.032 22/2.8391e—07/1/1.050
1 9/9.8336e - 07/0/1.007 9/1.5533e - 09/0/1.007 96/1.4071e - 09/0/1.128
Helical valley 3 10 8/2.7959e - 07/0/1.090 8/7.0428e - 07/0/1.090 9/8.3791e — 14/0/1.128
100 8/2.0685e —07/0/1.090 8/1.2902¢ - 08/0/1.090 8/1.1432e—08/0/1.013
1 8/7.2842e-07/1/1.090 8/7.3653e~05/1/1.090 8/7.4202e-05/1/1.013
Brown almost-linear 10 10 23/7.9915e—-07/1/1.030 23/7.9915e - 05/1/1.030 23/7.9915e - 05/1/1.048
100 45/6.5326e - 07/1/1.015 45/6.5326e —05/1/1.015 45/6.5326e — 05/11.024
1 3/0.00016727/0/1.259 3/0.00016758/0/1.259 4/1.1606e — 05/0/1.316
Discrete boundary value 10 10 11/5.6012¢ — 07/0/1.064 10/1.3863e —05/0/1.071 9/1.1763e —05/0/1.129
100 9/9.2906e —07/0/1.079 9/8.9129¢ — 06/0/1.079 9/8.7568e — 06/0//1.129
1 7/9.5122e-07/1/1.103 7/8.4521e—06/1/1.103 6/1.1785e—05/1/1.001
Discrete integral equation 30 10 11/9.8059¢ - 07/1/1.064 11/8.1669e — 06/1/1.064 11/7.3177e - 06/1/1.002
100 10/1.0601e - 07/0/1.071 10/1.0609¢e — 09/0/1.071 10/1.0606e — 09/0/1.116
1 8/5.2977e—-07/0/1.008 8/2.4187e—-07/0/1.008 804/6.2122¢ - 09/1/1.001
Trigonometric 10 10 19/2.3813e—-07/0/1.037 -/19.064/0/1 540/2.7155e - 09/1/1.002
100 -/46.227e-07/0/1 -/29.583/0/1 19/62.146/1/1
1 14/2.2087e—07/0/1.050  14/2.2087e — 05/1/1.050 14/2.2087e — 05/1/1.081
Variably dimensioned function 10 10 16/1.1269e - 07/1/1.044 16/1.1269e - 05/1/1.044 16/1.1269e - 05/1/1.071
100 19/3.702e—07/1/1.037 19/3.702¢ - 05/1/1.037 19/3.702¢ - 05/1/1.059
1 9/2.2916e - 07/1/1.007 9/2.4133e - 05/1/1.007 9/2.3888e-05/1/1.129
Broyden tridiagonal 30 10 14/1.419¢ - 05/1/1.050 14/1.419¢ - 05/1/1.050 14/1.419¢ -05/1/1.081
100 17/2.5157e — 05/1/1.041 17/2.5157e - 07/1/1.041 17/2.5157e - 05/1/1.066
1 12/4.2271e - 07/1/1.059 12/4.2313e - 06/1/1.059 12/4.2305e — 06/1/1.095
Broyden banded 30 10 18/4.5992e-07/1/1.039 18/4.5992e - 06/1/1.039 18/4.5992e - 06/1/1.062
100 24/2.7182e—07/1/1.029 24/2.7182e—06/1/1.029 24/2.7182e - 06/1/1.046
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TaBLE 3: Results on singular nonlinear equations with rank (F'(x*) =n-2.

NEF/NJ
Problem n X Algorithm with § =1 Algorithm with § = 2
AELM
0=0 0=0.5 0=0 0=0.5 0=1
-100 852/717 275/250 169/158 1802/1521 2585/2168 366/318
-10 76/64 163/144 69/61 1595/1334 3865/3226 585/484
Powell badly scaled 2 -1 183/167 97179 118/103 2754/2296 2585/2168 341/279
1 1288/1076 128/111 127/105 - 996/833 711/591
10 3/3 92/76 3/3 714 714 1043/873
100 3/3 3/3 3/3 3/3 3/3 1954/1622
-100 14/14 14/14 14/14 14/14 14/14 14/14
-10 11/11 10/10 11/11 10/10 10/10 10/10
10 -1 8/8 8/8 8/8 717 717 717
1 3/3 3/3 3/3 4/4 4/4 4/4
10 11/11 10/10 10/10 9/9 9/9 9/9
Discrete boundary value 100 10/10 10/10 10/10 10/10 10/10 10/10
-100 14/14 13/13 14/14 13/13 14/14 14/14
-10 11/11 9/9 11/11 8/8 9/9 9/9
100 -1 6/6 5/5 5/5 4/4 4/4 4/4
1 4/4 4/4 4/4 3/3 3/3 3/3
10 717 9/9 717 717 8/8 8/8
100 13/13 12/12 13/13 11/11 12/12 13/13
-100 16/16 16/16 16/16 16/16 16/16 16/16
-10 11/11 11/11 11/11 11/11 11/11 11/11
30 -1 9/9 9/9 9/9 9/9 9/9 9/9
1 717 717 717 6/6 6/6 6/6
10 11/11 11/11 11/11 11/11 11/11 11/11
Discrete integral equation 100 12/12 12/12 12/12 12/12 12/12 12/12
-100 16/16 16/16 16/16 16/16 16/16 16/16
-10 12/12 12/12 12/12 12/12 12/12 12/12
100 -1 10/10 10/10 10/10 9/9 9/9 9/9
1 8/8 717 8/8 717 717 717
10 12/12 11/11 11/11 11/11 11/11 12/12
100 14/14 14/14 14/14 14/14 14/14 14/14

TaBLE 4: Numerical results for singular nonlinear equations with rank (F'(x*) =n-2).

Iters/fnorm/trust/EI
Problem n X . . .
AELM (times: 4.655) 6 =1 (times: 3.374) d =2 (times: 3.614)
1 11/4.6197e — 05/0/1.065 11/4.6202¢ — 05/0/1.065 11/4.6202e —05/0/1.105
Rosenbrock 2 10 13/0.00010074/0/1.054 13/0.00010074/0/1.054 13/0.00010074/0/1.088
100 17/3.4089¢ — 05/0/1.041 17/3.4089¢ — 05/0/1.041 21/63/3.4089e — 05/0/1.066
1 1288/1.0433e—-07/0/1.000 127/4.9595e - 07/1/1.008 996/41.8112e - 07/0/1.001
Powell badly 2 10 3/3.3583e - 05/0/1.259 3/3.3562¢ - 05/0/1.028 7/1.6053e —05/0/1.169
100 3/0.0099779/0/1.259 3/0.009978/0/1.023 3/0.009978/0/1.442
1 14/3.2876e — 06/0/1.050 14/3.2877e — 06/0/1.081 14/3.2877e — 06/0/1.081
Wood 4 10 17/3.0842e — 06/0/1.041 17/3.0842e — 06/0/1.041 17/3.0842e —06/1/1.066
100 20/4.5433e - 06/0/1.035 20/4.5433e - 06/0/1.035 20/4.5433e - 06/0/1.056
1 13/5.9421e - 06/1/1.054 13/5.9553e — 06/0/1.054 13/5.9694e — 06/0/1.088
Helical valley 3 10 14/2.087e - 06/1/1.050 14/2.0897e —06/0/1.050 14/2.0934e - 06/1/1.081
100 18/3.0231e—06/1/1.039 18/3.1777e —06/0/1.039 18/3.3522¢ — 06/1/1.062
1 8/7.2842¢ —05/1/1.147 8/7.3653e —05/1/1.090 8/7.4202¢ — 05/0/1.147
Brown almost-linear 10 10 23/7.9915e - 05/1/1.030 23/7.9915¢ - 05/1/1.030 23/7.9915¢ —05/1/1.048
100 45/6.5326¢ —05/1/1.015 45/6.5326¢ — 05/1/1.015 45/6.5325¢ - 05/1/1.024
1 3/0.0001676/0/1.259 3/0.00016795/0/1.259 4/1.1572¢ - 05/0/1.316
Discrete boundary value 10 10 11/5.5963e - 06/0/1.065 10/48/1.383e —05/0/1.065 9/1.2359¢ - 05/0/1.129
100 10/6.7629¢ — 08/0/1.071 10/6.3555e —08/0/1.071 10/6.1475e — 08/0//1.116
1 7/9.5122e —06/1/1.104 7/8.4521e—06/1/1.104 6/1.1785e —05/1/1.200
Discrete integral equation 30 10 11/9.806e — 06/1/1.065 11/8.167e - 06/1/1.065 11/7.3178e - 06/1/1.105
100 12/1.3149¢ - 07/0/1.059 12/11.8382e - 07/0/1.059 12/1.137¢ - 09/0/1.095
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Iters/fnorm/trust/EI
6 =1 (times: 3.374)

§ =2 (times: 3.614)

13/9.9955¢ — 06/0/1.054
22/2.4389e - 08/0/1.032
1/120.79/0/1

14/7.3496e — 06/1/1.001
16/1.8831e—07/0/1.002
19/48/170.57/0/1

14/2.2087e - 05/1/1.050
16/1.1269¢ — 05/0/1.044
19/3.702e — 05/0/1.037

14/2.2087e - 05/1/1.081
16/1.1269¢ - 05/0/1.071
19/3.702e — 05/0/1.059

9/2.4133e - 05/1/1.007
14/1.419¢ - 05/1/1.050
17/2.5157e —07/1/1.041

9/2.3903e-05/1/1.129
14/1.419¢ - 05/1/1.081
17/2.5157e — 05/1/1.066

10
TaBLE 4: Continued.
Problem n X0 .
AELM (times: 4.655)
1 13/2.2087e - 05/1/1.054
Trigonometric 10 10 31/1.113e - 09/0/1.022
100 -/15.261/0/1
1 14/2.2087e - 05/1/1.050
Variably dimensioned function 10 10 16/1.1269e - 05/0/1.044
100 19/3.702e — 05/0/1.037
1 9/2.294e - 05/1/1.080
Broyden tridiagonal 30 10 14/1.4189e - 05/1/1.050
100 17/2.5157e —05/1/1.041
1 12/4.2271e—07/1/1.059
Broyden banded 30 10 18/4.5992e —07/1/1.039
100 24/2.7182e¢—07/1/1.029

12/4.2313e - 06/1/1.059
18/4.2297e - 06/11.039
24/2.7182e - 06/1/1.029

12/4.2305e - 06/1/1.095
18/4.5984e — 06/1/1.062
24/2.7178e — 06/1/1.046

where A € R™f(1<k<n) has full column rank, and
F(x*) = 0. It is certain that

T(x") = ](x*)<1—A(ATA)'1AT), (78)

where test problems F(x) are nonsingular test functions
from [20]. We take A = [1,1,...,1]" € R™!, rank of J (x*)
as n— 1, and choose

11 - 1
A= [ ], (79)
1 -1 .- #1

rank of J(x*) as n—2.

We set the following parameters in the algorithms:
Po=10"%p, =0.25p, =0.75,Ny =54, =1,m=10"8,
0 =0,0.50r1,and é = 1 or 2. The algorithms are terminated
when [[J{F;[|<107° or the number of iterates exceeds 10*.
When 6 = 1 and § = 1, Algorithm 1 is reduced to the AELM.

By numerical experiments, we find the numerical results
of Algorithm 1 are the same as the numerical results of
AELM in some functions. So we only list the results of other
experiments in the following tables. Further, we adopt the
efficiency index defined as EI in [21] to compare the per-
formance of algorithm AELM and Algorithm 1. The results
of the four experiments with rankJ (x*) = n — 1 are shown in
Tables 1 and 2, and the results of the four experiments with
rank] (x*) = n — 2 are shown in Tables 3 and 4, respectively.
We use six starting points £100x,, +10x,, and +x, for each
test problem, where X, is suggested in [20].

(i) NF stands for the quantity of function calculations
(ii) NJ stands for the quantity of Jacobian calculations

(iii) ’- indicates that the iteration number is more than

10*
(iv) E.I. = p"/NF| where p is the convergence order of
algorithm.

It is shown in Table 1 that when 6 = 0.5 and ¢ = 2, the
effect of Algorithm 1 is obviously better than that of AELM.
Algorithm 1 wins 40.5% of the numerical results while
AELM wins 2.38%, and 57.1% of the two algorithms have the
same results. The advantage of Algorithm 1 is not obvious
when 6 = 0.5 and § = 1. Algorithm 1 can win 19% of the

numerical results while AELM win 7.14%, and 73.8% of two
algorithms have the same result.

Table 3 shows that when 6 = 0.5 and § = 1, Algorithm 1
and AELM have the best experimental results. Algorithm 1
win 23.3% of the numerical results, and 76.6% of the two
algorithms has the same result. The advantage of Algo-
rithm 1 is not obvious when 6 = 0.5 and § = 2. Algorithm 1
wins 40% of the numerical results while AELM wins 20%,
and 40% of the two algorithms has the same results.

Further, we adopt the EI and let 8 = 0.5 in the experi-
ment. Tables 2 and 4 show that when § = 1, the experimental
data EI of AELM and Algorithm 1 are similar, but when
0 = 1, the EI of Algorithm 1 is obviously larger than that of
AELM. In addition, in terms of the experimental time,
except when ranking (F' (x*) =n-2) and § = 1, the exe-
cution time of Algorithm 1 is longer than that of AELM. In
other cases, the execution time of Algorithm 1 is close to or
less than that of AELM.

In general, it is shown that for most test problems,
Algorithm 1 performs better than AELM. So it can indicate
that Algorithm 1 is more efficient than AELM to solve
systems of nonlinear equations.

5. Conclusion

In this paper, we propose a new LM algorithm by modifying
the LM parameter for systems of nonlinear equations.
Through numerical experiments, we find the calculation
amounts of Algorithm 1 smaller than AELM in the case
where 6 and § take some suitable value, which shows the
effectiveness of the new Algorithm 1. Under some condi-
tions, the global convergence of the new LM method is
proved, and the local convergence of the new LM method is
shown to be at least superlinear. Numerical results show that
the new algorithm is efficient.
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