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Environmental regulation and technological innovation are two crucial factors for improving industrial carbon productivity.
However, prior research ignored the spatial spillover effects of these factors, and heterogeneity caused by industrialization level
and resource dependence did not acquire attention either. (us, we use the STIRPATmodel and spatial panel Durbin model to
study the spatial spillover effects of two independent variables. (en, a two-dimensional structural heterogeneity analysis is
conducted according to the industrialization level and resource dependence. (e results are as follows: improving environmental
regulation and technological innovation is good for industrial carbon productivity. Simultaneously, there are obvious regional
differences under two-dimensional structural heterogeneity. From the perspective of space, industrial carbon productivity has
high spatial autocorrelation, and it can be enhanced through local environmental legislation, as well as technological innovation.
Environmental regulation’s spatial spillover impact inhibits the improvement of industrial carbon productivity in surrounding
provinces, resulting in a pollution haven effect. However, there is no evident regional spillover effect of technological innovation.
(erefore, we provided new perspectives from spatial spillover and structural heterogeneity to optimize low-carbon policies.

1. Introduction

As a large amount of greenhouse gas emissions has been
produced, global warming has caused frequent occurrences
of extreme weather. (erefore, alleviating global climate
change and reducing greenhouse gas emissions have become
urgent issues. To mitigate climate change, China regarded
carbon neutrality as an important part of ecological progress
and promised to reach carbon neutrality by 2060. However,
according to data released by the International Energy
Agency [1], nearly 60 percent of global emissions were from
China in 2016, and the industrial sector is the main source,
consuming 67.9 percent of China’s energy and emitting 83.1
percent of carbon dioxide [2]. (us, reducing industrial
carbon emissions is crucial to achieving China’s commit-
ment, and a big challenge for China is how to reduce in-
dustrial carbon dioxide emissions while achieving

sustainable economic development. Exactly, industrial
carbon productivity is the embodiment of CO2 reduction
and economic growth. Improving carbon productivity re-
flects an important effort to achieve China’s commitment to
carbon reduction and global climate change strategy.

Carbon productivity, the ratio of GDP output to carbon
dioxide, was put forward by Kaya and Yokobori [3]. Con-
sidering the high pollution attribute of industrial industry, it
is extended as the output level of industrial added value per
unit of industrial carbon dioxide, which refers to industrial
carbon productivity [4]. To improve industrial carbon
productivity, it is necessary to explore its influencing factors.
Porter’s hypothesis, a classical theory, exactly gave us an
appropriate framework to analyze such an issue. Porter’s
hypothesis describes the relationship between environ-
mental regulation, technological innovation, and enter-
prises’ productivity [4]. It is considered that environmental
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regulation gives a driving force to technological innovation
and finally improves the productivity of enterprises. How-
ever, due to the existence of industrial pollutants, such as
CO2, how to improve green total factor productivity (GTTP)
of enterprises has been a new topic under Porter’s hypothesis
framework. Many researches have discussed the effect of
environmental regulation on GTTP [5, 6]. (e result shows
that, in the long run, environmental regulation would
achieve the win-win goal for enterprise competitiveness and
environmental protection. And technological innovation is
also regarded as a driven factor of GTTP in some regions
[7–9]. (erefore, we bring environmental regulation, tech-
nological innovation, and industrial carbon productivity
into a framework, studying its impact mechanism to reduce
industrial carbon emissions and promote high-quality in-
dustrial development. In addition, due to the imbalances of
industrialization level and resource endowment, environ-
mental regulation and technological innovation might
generate different effects in different regions [10, 11]. With
the continuous propulsion of industrialization, there is an
obvious phenomenon that industrial development in some
provinces mainly relies on natural resources. (is may in-
duce industry structure change and economic agglomera-
tion [12, 13], and the economic agglomeration will accelerate
carbon emissions in turn [14]. (erefore, we further ex-
plored two-dimensional structural heterogeneity caused by
industrialization level and resource dependence when
studying the driving factors. Meanwhile, the influence of two
independent variables on industrial carbon productivity
may spill over to the surrounding areas. Based on such
consideration, we dug into the spatial agglomeration
characteristics and spatial spillover effects of them.

(e contributions of this study are as follows. First,
according to Porter’s hypothesis, this paper integrated envi-
ronmental regulation, technological innovation, and industrial
carbon productivity into a framework to analyze their rela-
tionship. And when analyzing spatial spillover effects, we
adopted an improved STIRPAT model and Spatial Durbin
model to carry through. Secondly, three different spatial ma-
trices are creatively used to ensure robustness when discussing
spatial spillover effects. Finally, to investigate the heterogeneity,
30 provinces in China are divided into four quadrants based on
the two-dimensional structural heterogeneity analysis of in-
dustrialization level and resource dependence.

(e rest of the sections are as follows: literature about
industrial carbon productivity, environmental regulation,
and technological innovation is reviewed in Section 2.
Section 3 states the econometric model, index of variables,
and data source. Section 4 presents the empirical analysis
and related discussions. Section 5 gives a conclusion for the
paper and offers some suggestions.

2. Literature Review

We mainly review the literature from the following three
aspects. Firstly, as for the relationship between environ-
mental regulation and industrial carbon productivity, we
summarized three conclusions: (1) environmental regulation
stimulates carbon productivity, which was the innovation

compensation effect. Environmental regulation with ap-
propriate intensity can induce the driving force of tech-
nological innovation, cover the compliance cost caused by
environmental regulation, and finally realize the double
dividend of economy and environment. For example, Wu et
al. [15] believed that environmental regulation effectively
restricted and controlled the growth of carbon emissions in
central and eastern China. Li et al. [16] found that the
disclosure of pollution information transparency index
(PITI) has significantly improved the environmental quality
of Chinese cities. Yang et al. [17] discussed that carbon
trading policies can effectively reduce carbon emissions at a
provincial level in China. (2) Environmental regulation
decreased carbon productivity, namely, compliance cost
effect. For example, Jensen et al. [18] found that declaring
climate policy would stimulate energy demand and accel-
erate carbon emission. Zhang et al. [19] confirmed that
because of local fiscal decentralization, environmental reg-
ulation policies did not work to reduce carbon emission. (3)
(ere is not only a linear relationship between them. Many
factors will change the effect of environmental regulation,
and carbon productivity will give a different response to it
[20]. For instance, Munasinghe [21] pointed out that ap-
propriate environmental regulation would reduce the radius
of the inverted U-shaped curve and even reach the peak
earlier. Yin et al. [22] also found that if conducting stricter
environmental regulations, the inflection point of carbon
emissions might be achieved forward. (ey all believed that
enhancing environmental regulation was helpful to reach the
peak of carbon emission in advance. But the impact of
environmental regulations on industrial carbon productivity
did not receive much attention.

Secondly, there are the following views about techno-
logical innovation and industrial carbon productivity: (1) To
improve carbon productivity, technological innovation
might be the key. Li et al. [23] believe that technology
gradually plays a dominant role in the growth of total factor
industrial carbon productivity. Long et al. [24] verified that
technological progress significantly improved industrial
carbon productivity. Cheng et al. [25] showed that tech-
nological innovation can effectively reduce carbon emissions
with significant heterogeneity and asymmetry. (2) Tech-
nological innovation may reduce carbon productivity. (e
rebound effect of energy explains that technological inno-
vation may not reduce carbon emissions. (e reason is that
technological innovation will increase productivity. To re-
place labor and capital investment in production activities,
increased productivity may lead to more energy con-
sumption and carbon emissions [26]. Mizobuchi [27] ex-
tended the research of Brännlund et al. [28] and calculated
the rebound effect with Japanese household data, concluding
that the rebound range was about 27%. Lin and Du [29]
confirmed that, in China, the rebound effect of energy was
between 30% and 40%. Most researches about the rebound
effect take carbon emission as the main object, while little
attention is paid to industrial carbon productivity.

(irdly, we notice the effect of resource dependence and
industrialization level on industrial carbon productivity. Auty
and Mikesell [30] first proposed the concept of resource curse
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when they studied economic development in countries with
more mines. Compared with countries owning a few resources,
the countries with abundant natural resources tended to de-
velop slowly. Many scholars verified and confirmed the exis-
tence of the resource curse [31]. Some studies even pointed out
that abundant natural resources (especially oil) harmed
manufacturing and limited its prospect of economic growth
[32, 33]. In China, different provinces have diverse resource
endowments. Some provinces have formed an economic model
relying on the comparative advantages of mineral resources. As
a result of economies of scale, learning effect, coordination
effect, adaptive effect, and vested interests, resource-based
provinces have formed path dependence [34]. Such provinces
constantly insist on the inherent development mode and
maintain the high-carbon development path with high energy
consumption. (us, regions with high resource dependence
have significantly different impacts on carbon productivity
compared with other regions. Government departments will
formulate policies to regulate the economic activities of mining
enterprises and adopt stricter environmental regulations in
mining areas with rich resources to protect the ecological en-
vironment, maintain ecological balance, and improve industrial
carbon productivity. Additionally, different conditions of eco-
nomic development will cause different driving forces on the
industrialization level in each region. (e improvement of the
industrialization level will increase air pollutants [35].(erefore,
the level of industrialization has an impact on the formulation of
regional environmental regulations and the evolution of
technological innovation. Obviously, the eastern part of China
has a higher level of industrialization, more flexible environ-
mental regulation policies, and more active technological in-
novation. (erefore, regional differences in industrialization
level may affect the development level of environmental reg-
ulation and technological innovation, leading to differences in
industrial carbon productivity. In a word, the degree of resource
dependence and industrialization in different regions produces
heterogeneity for environmental regulation and technological
innovation. And theymay further cause a heterogeneous impact
on industrial carbon productivity.

To sum up, many scholars have conducted fruitful
studies on environmental regulation, technological inno-
vation, and carbon emissions. However, there are still some
shortcomings. Firstly, many works of literature only pay
attention to a single target of environmental regulation,
without considering economic and carbon reduction targets

simultaneously. Most of them only verify the impact of
environmental regulation on carbon intensity or total factor
productivity, rather than industrial carbon productivity.
Secondly, existing literature mostly adopts the geographical
administrative division method to consider regional het-
erogeneity. Few studies consider the heterogeneous effects of
industrialization levels and resource dependence on in-
dustrial carbon productivity in different regions. Finally, to
estimate the spatial spillover effect, most studies choose a
geographic adjacency matrix, instead of geographical dis-
tance matrices based on the inverse of the highway mileage
or its squared. And fewer papers verify the robustness of the
results through multiple spatial weight matrices.

3. Methodology and Data

3.1. STIRPAT Model. To sum up, many scholars have
conducted fruitful studies on environmental regulation,
technological innovation, and carbon emissions. However,
there are still some shortcomings. Firstly, many works of
York et al. [36] proposed the STIRPATmodel, and this paper
introduced environmental regulation into it so that we can
explore environmental regulation, technological innovation,
and industrial carbon productivity [37]. (e improved
STIRPAT model is formula (1).

ln ICPit � α0 + β1 ln ERIit + β2 ln Tit + cContrit + ηi + λt + εit.

(1)

As shown in model (1), the dependent variable lnICP is
industrial carbon productivity. lnERI stands for environ-
mental regulation and lnT stands for technological inno-
vation. Subscript i refers to provinces, and t represents year.
β1 and β2 are the coefficients of environmental regulation
and technological innovation, respectively. Contr refers to
control variables, which specifically are foreign direct in-
vestment level (FDI), the structure of energy consumption
(ECS), and population size (lnPS). ε denotes error term, η
represents individual effects, and λ denotes time effects.

3.2. Spatial Durbin Model. To explore the spatial spillover
effect, we add spatial weight matrices based on model (1) to
construct a spatial panel Durbin model as shown in model
(2).

ln ICPit � α0 + ρ
n

j�1
Wij ln ICPit + c1 

n

j�1
Wij ln ERIit + c2 

n

j�1
Wij ln Tit

+ β1 ln ERIit + β2 ln Tit + c3 

n

j�1
WijContr + cContrit + ηi + λt + εit,

(2)

where ρ is the spatial autoregressive coefficient of ln ICP. c1
and c2 are the spatial lag coefficients of independent vari-
ables, respectively. Wij represents the spatial weight matrix
which is constructed in three ways. A binary contiguity

matrix is built following the principle of the geographic
adjacent relation (W1). Another method of establishing
spatial weight matrix is based on geographical distance
according to the reciprocal of highway mileage between
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provincial capitals (W2). Moreover, we further build the
inverse squared distance matrix using highway mileage (W3)
for robustness.(e specific forms of the three matrices are as
follows, where dij is the highway mileage between provincial
capitals i and j:

W1 �

0, if i and j are adjacent,

1, if i and j are not adjacent,

⎧⎪⎨

⎪⎩
(3)

W2 �

1
dij

, i≠ j,

0, i � j,

⎧⎪⎪⎨

⎪⎪⎩
(4)

W3 �

1
d
2
ij

, i≠ j,

0, i � j.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(5)

It should be noted that a spatial regression model based
on point estimation will generate bias [38]. Due to spatial
correlation, coefficient estimates of explanatory variables do
not represent true spillover effects. But we can use the partial
derivative method to obtain its direct effect and indirect
effect. (erefore, the SDM model can be converted into
formula (6), and the partial differential equation matrix of
explanatory variables is shown as formula (7) [39].

Yt � (1 − ρW)
− 1 βXt + ϕWX( 

− 1
+(1 − ρW)

− 1εt, (6)

zY

zXit

· · ·
zY

zXNt

� (1 − ρW)
− 1

βk W12λk · · · W1Nλk

W21λk βk · · · W2Nλk

· · · · · · ⋱ ⋮
WN1λk WN2λk · · · βk

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (7)

3.3. IndexofVariables. Industrial carbon productivity (ICP):
we measured it through the ratio of industrial added value to
industrial carbon dioxide emissions. However, China’s
central government does not currently publish direct data on
carbon dioxide emissions. (us, it needs to be calculated
through the physical consumption of the energy mix. (e
calculation method is formula (8), which contains nine
energy sources such as raw coal, kerosene, crude oil, gas-
oline, diesel, fuel oil, coke, natural gas, and electricity.

CEi,t � 
9

r�1
Eni,r,t × Sr × Fr ×

44
12

, (8)

where CEi,t indicates the industrial CO2 emissions of
province i in year t. Eni,r,t denotes the energy consumption
and the energy type is r. Sr stands for the reference coefficient
of all energy standard coals provided in China Energy
Statistical Yearbook [40] (Table 1). Fr is the carbon emission
coefficient of China published by the Chinese Academy of
Sciences (Table 2) [41]. Finally, the regional industrial CO2
emissions are calculated in units of 10,000 tons.

Environmental regulation intensity (ERI): currently, there is
no uniform standard to measure environmental regulation. It is
more common to regard the expenditure of pollution treatment
and control for unit output, policy quantities, pollutant emis-
sions, and per capita income as indicators of environmental
regulation [42]. Dasgupta et al. [43] proposed that the national
income level was highly correlated with environmental regu-
lation. (rough the correlation coefficient, Xu [44] tested that
the severity of environmental regulations is endogenously de-
termined by income level. (us, in this study, we choose per
capita disposable income to measure environmental regulation.

Technological innovation (TE): as a key to achieving
carbon peak and carbon neutrality in China, technological

innovation is important for high-quality economic devel-
opment. Existing studies usually adopt the number of
patents as an indicator to stand for technical level and
technological innovation ability [45]. Considering the
availability of data, effective invention patents of industrial
enterprises above designated size are used to measure
technological innovation.

Foreign direct investment (FDI): using the ratio of actual
utilization of foreign direct investment to GDP, foreign
direct investment in each province was measured.(e actual
utilization of foreign direct investment is converted from
dollars to RMB according to the exchange rate.

Population size (PS): the population size is considered to
be constant in a short time.(us, the population size is taken
as the control variable, and the number of populations in
each province is regarded as its indicator. Meanwhile, to
avoid the heteroscedasticity problem, the population is
processed in a logarithm.

Energy consumption structure (ECS): it is measured by
the proportion of coal consumption in total energy con-
sumption. It directly reflects carbon content in each energy.
Calculating formulas are as follows:

CC � En1,i,t × S1, (9)

EC � 
9

r�1
Enr,i,t × Sr, (10)

where CC is coal consumption, EC is the total energy
consumption, and the sign of various energy consumption of
each province is Eni,r,t. Sr is the standard coal conversion
coefficient of each kind of energy source. r� 1means that the
energy variety is raw coal. According to equations (9) and
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(10), a calculation formula of the energy consumption
structure could be derived as shown in the following:

ECS �
En1,i,t × S1


9
r�1 Enr,i,t × Sr

. (11)

3.4. Data Source. In this paper, data of 30 provinces and
autonomous regions in 2004–2016 are all collected from
yearbooks and databases. But because of the availability of
data, Taiwan, Hong Kong, Macao, and Tibet are excluded
from our sample. Per capita disposable income of residents,
industrial added value, GDP in each province, and the
population size are collected in the China Statistical Year-
book (2005–2017) [46]. Energy consumption structure and
the CO2 emission are calculated according to 9 kinds of
energy in China Energy Statistical Yearbook (2005–2017)
[47]. Effective invention patents of industrial enterprises are
in the Science and Technology Statistical Yearbook of China
(2005–2017) [48]. Actual utilization of foreign direct in-
vestment is taken from Wind Database.

4. Empirical Result

4.1. 5e Trend of Industrial Carbon Productivity Change.
Figure 1 depicts the developing trend of GDP and industrial
carbon productivity in China. Obviously, from 2004 to 2016,
industrial carbon productivity generally shows a steady
rising trend. And it increased from 67,716 yuan/ton to
142,271 yuan/ton with an increased rate of 110%. However,
the trend of industrial carbon productivity is flat from 2008
to 2009. And after that, there is a sharp increase. We inferred
that it may be accounted for by the global crisis. From 2014

to 2016, China’s economic growth is stable, but the growing
trend of industrial carbon productivity slows down. Beijing,
Tianjin, Shanghai, Guangdong, and other economically
developed provinces show a significant increasing trend,
while Heilongjiang, Yunnan, Ningxia, and Xinjiang prov-
inces decrease. It is noteworthy that the industrial carbon
productivity in 2016 is higher than in 2004 in Shanxi, Inner
Mongolia, Liaoning, Hainan, Gansu, and Qinghai provinces.
But in recent years, it has been decreasing obviously. (e
decline of industrial carbon productivity in these provinces
is probably influenced by resource dependence and indus-
trialization levels.

4.2. Results of the Nonspace Panel Model. Variance Inflation
Factor (VIF) analysis, one index to exampling multi-
collinearity between variables, is required before estimating
regression coefficients (Table 3). Table 3 shows that VIF
values of all variables range from 1.1 to 5.58, with an average
of 2.95. All the VIF values of each variable are smaller than
10, which indicates that there is no multicollinearity between
variables.

Based on the econometric model (5), we conduct em-
pirical tests using different methods. As shown in Table 4,
the outcome of the Hausman test shows that we need to
reject the null hypothesis, which means that, in our study, a
fixed-effects model is more appropriate. According to the
Bayesian Information Criterion (BIC), we find that the value
of BIC in column (2) is smaller. It means that the explan-
atory power of column (2) is fitting better. Besides, the core
explanatory variables of column (2) are significant at a 1%
significance level. (erefore, we select the individual fixed
effect model to analyze and explain the results.

When only considering the effect of two independent
variables, environmental regulation and technological innova-
tion are both significantly positive. It can be concluded that
environmental regulation positively relates to industrial carbon
productivity, which is similar to technological innovation. (e
results show that environmental regulation and technological
innovation have strong positive effects on industrial carbon
productivity. After adding control variables one by one, we can
get the same conclusion. But the influence of environmental
regulation is greater than technological innovation by com-
paring the coefficient of two variables. Specifically, for every 1%
increase in environmental regulation intensity, the dependent
variable will increase by 0.512%. While if technological inno-
vation increases by 1%, industrial carbon productivity will only
increase by 0.0795%. (is implies that the current level of
technological innovation does not have an effective promotion
effect on industrial carbon productivity. Hence, stringent en-
vironmental regulation contributesmore to the improvement of
industrial carbon productivity than other means. But as an
important way for sustainable development, technological in-
novation cannot be ignored. For control variables, FDI is
significantly positive at the 1% significance level, while ECS is
significantly negative. (is means that we should expand for-
eign direct investment to improve industrial carbon produc-
tivity and get off overreliance on coal consumption as soon as
possible.

Table 2: Carbon emission coefficient of energy mix.

Energy mix Convert units Carbon emission coefficient
Raw coal ton 0.7476
Coke ton 0.1128
Crude oil ton 0.5854
Gasoline ton 0.5532
Kerosene ton 0.3416
Diesel ton 0.5913
Fuel oil ton 0.6176
Natural gas 104m3 0.4479
Electricity 104 kw·h 2.2132

Table 1: (e standard coal conversion coefficient of energy mix.

Energy mix Convert units (e standard coal conversion
coefficient

Raw coal ton 0.7143
Gasoline ton 1.4714
Fuel oil ton 1.4286
Coke ton 0.9714
Kerosene ton 1.4714
Natural gas 104m3 13.3
Crude oil ton 1.4286
Diesel ton 1.4571
Electricity 104 kw·h 1.229
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4.3. Two-Dimensional Structural Heterogeneity Analysis.
(e term resource-based industry has been focused on and
used widely in recent years, but there is not a uniform
definition for it. At present, the resource-based industry in a
narrow sense refers to the mining of minerals and the
primary processing of minerals [5]. Considering the avail-
ability of data, we determined 11 resource-based industries
according to the narrow concept mentioned above as shown
in Table 5. Based on the existing research, we measure each
province’s resource dependence through the proportion of
resource-based industrial employees in all industrial em-
ployees. If the proportion is more than 40%, the province
will be defined as a province with high resource dependence.
Figure 2 shows the proportion of resource-based industrial
employees in all industrial employees in 2015 in each
province. And Hebei, Shanxi, Heilongjiang, Guizhou,
Gansu, Yunnan, Ningxia, Shaanxi, InnerMongolia, Qinghai,
and Xinjiang provinces can be assigned to provinces with
high resource dependence.

Besides, per capita GDP, industrialization rate (the ratio
of industrial added value to GDP), industrial structure,
employment structure, and urbanization rate are interna-
tional indicators for measuring the industrialization level. In
this paper, we adopt the ratio of industry sector value added
in GDP to measure the industrialization level according to
Xu and Lin [49]. 30 provinces and autonomous regions in
China are divided into two parts by the average annual ratio
of industrialization rate from 2004 to 2016.

Finally, from the two-dimensional structure of indus-
trialization level and resource dependence, 30 provinces and
autonomous regions in China are divided into 4 quadrants.
As shown in Figure 3, Region I represents the provinces with

high industrialization levels and high resource dependence.
Region II includes the provinces with high industrialization
levels and low resource dependence. Region III shows the
provinces with low industrialization levels and low resource
dependence. Region IV represents the provinces with low
industrialization levels and high resource dependence.
According to the division, we test this study by subgroups.

4.3.1. Results of Heterogeneity Analysis. Based on the re-
gional division above, this section further considers regional
heterogeneity. And the estimated results of subgroups are
shown in Table 6. (e results of column (1) show the re-
gression outcome of provinces in Region I. We can find that
resource dependence and industrialization level change ef-
fects of independent variables. In these provinces, envi-
ronmental regulation is significantly positive, while
technological innovation is not significant. (at is probably
because the economic development in such provinces is
highly dependent on coal and other fossil resources. (e
inherent path dependence will easily lead to the neglect of
cultivating technology innovation ability, and then it will
hinder the breakthrough in the core technology of carbon
emission reduction. As a result, to combat climate change,
the government will formulate the economic activities of
industrial enterprises through environmental regulations
rather than technological innovation. To enhance industrial
carbon productivity, strengthening environmental regula-
tion will be the dominant way in such provinces.

Column (2) indicates Region II with low resource de-
pendence and high industrialization level, and column (3)
indicates Region III with low resource dependence and low
industrialization level. (e results of these two columns both
show the significant impact of environmental regulation at
1% level. Enhancing environmental regulation intensity can
restrain the extensive carbon emission effectively. But
provinces in Region II are mostly located in eastern China,
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Figure 1: (e trend of industrial carbon productivity and GDP in China.

Table 3: Variance inflation factor analysis of the variables.

Variable LnTE LnERI LnPS ECS FDI Mean VIF
VIF 5.58 3.98 2.67 1.42 1.10 2.95
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and they are all in the late stage of industrialization. (ey
finished the transfer of heavy industry with high emissions
and their technological innovation capabilities were stronger
than the central and western provinces. As a consequence, in
Region II, technological innovation could offer a significant

impact. However, for the provinces in Region III, its impact
is not significant. (is is because the provinces with low
resource dependence and low industrialization levels are all
in central and western China except Beijing and Shanghai. In
these provinces, the holistic capacity of innovation is

Table 4: Regression results of the nonspace panel model.

(1) (2) (3) (4) (5)
OLS Individual fixed effect Time fixed effect Double fixed effect Random effect

LnERI 0.625∗∗∗ 0.512∗∗∗ 0.740∗∗∗ 0.208 0.467∗∗∗
(7.89) (8.84) (6.82) (1.40) (8.32)

LnTE 0.0725∗∗∗ 0.0795∗∗∗ 0.0515 0.0286 0.0774∗∗∗
(3.42) (5.31) (1.89) (1.13) (5.13)

FDI 0.0912∗∗∗ 0.0386∗∗∗ 0.0904∗∗∗ 0.0379∗∗∗ 0.0513∗∗∗
(10.42) (3.62) (8.54) (3.66) (5.13)

ECS −0.00202 −0.00937∗∗∗ −0.00107 −0.00824∗∗∗ −0.00832∗∗∗
(−1.42) (−6.68) (−0.71) (−5.10) (−6.05)

LnPS 0.230∗∗∗ −0.656∗∗ 0.248∗∗∗ −0.653∗∗ 0.198∗∗
(6.64) (−2.69) (6.23) (−2.70) (2.85)

_cons −0.576 8.034∗∗∗ −1.686 11.27∗∗∗ 1.534∗
(−0.71) (4.57) (−1.60) (5.63) (2.02)

Obs 390 390 390 390 390
R2 0.719 0.916 0.728 0.924
F/Wald 196.0 113.2 58.55 90.64 786.15
BIC 234.5 −62.04 292.8 −31.50 .
Hausman test 29.32 [0.0000]
Note: the value in the parenthesis is the t-statistic or z-statistic; ∗ , ∗∗ , and ∗∗∗ denote 10%, 5%, and 1% significance level, respectively.

Table 5: (e list of resource-intensive industries.

Type Resource-intensive industries

Mining

Oil and gas exploitation industry
Ferrous metal mining and dressing industry

Nonferrous metal mining and dressing industry
Coal mining and washing industry

Nonmetallic mining and dressing industry

Primary processing industry

Nonmetallic mineral products industry
Petroleum processing, coking, and nuclear fuel processing
Ferrous metal smelting and rolling processing industry

Metal products industry
Nonferrous metal smelting and rolling processing industry

Electricity and heat production and supply
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Figure 2: (e proportion of resource-intensive industrial employees in all industrial employees.
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laggard, and the productivity of green products is weak.
(ere are few valid industrial patents so that technological
innovation does not work. Comparing column (2) with
column (3), it can be found that the effect of technological
innovation is changed by the industrialization level. (e
heterogeneity is verified.

(e regression results of column (4) represent the
provinces in Region IV.(is kind of province has superiority
in natural endowment, but the level of industrialization is
low. It means that primary or tertiary industry may be the
dominant industry in Region IV. Pollution caused by in-
dustry is not obvious. (us, the effect of environmental
regulation is not significant anymore. As economic

development in such provinces is not strongly dependent on
industry, technological innovation has shown its advantages.
Besides, FDI has a positive effect in Region II and Region III
(columns 2 and 3), but it is not significant in Region I and
Region IV (columns 1 and 4). (is means that, with high
resource dependence, the way of economic development is
stubborn, opening to the world and introducing foreign
capital is insufficient. (e influence of energy consumption
structure on industrial carbon productivity is significantly
negative in all provinces, indicating that China’s energy
consumption structure is still in a high-carbon mode.

4.4. Endogeneity Test and Robustness Test. (e estimation
results of the model may be biased due to the endogenous
problems of environmental regulation and technological
innovation. (us, we use the instrumental variables to es-
timate. In this paper, the lagged terms of environmental
regulation and technological innovation are used as in-
strumental variables. For environmental regulation, we in-
troduced the first-order and second-order lagged terms of it.
For technological innovation, we introduced the third-order
and fourth-order lagged terms of it. Estimated results using
OLS, 2SLS, and GMM are all displayed in Table 7. (e result
of instrument variables shows that there are no overiden-
tification problem, underidentification problem, and weak
instrumental variables. (e selection of instrumental vari-
ables is reasonable. Comparing 2SLS with OLS, the coeffi-
cients of environmental regulation and technological
innovation are all improved after considering endogenous
variables. (at is to say, the influence of environmental
regulation and technological innovation was underestimated
through OLS estimation. On this basis, to eliminate the
heteroscedasticity of the error term, we further adopt the
GMM Model to estimate. Using GMM, the coefficient of

Industrialization

Hebei, Shanxi, Inner Mongolia,
Shaanxi, Qinghai

Tianjin, Liaoning, Jilin,
Jiangsu, Zhejiang, Fujian,

Jiangxi, Shandong, Henan Guangdong

Heilongjiang, Guizhou, Yunnan,
Gansu, Ningxia, Sinkiang

Beijing, Shanghai, Anhui, Hubei,
Hunan, Guangxi, Hainan, Chongqing 

Sichuan

Region I

Region III

Region II

Region IV

Figure 3: Regional division based on the two-dimensional structure.

Table 6: Results of heterogeneity analysis.

(1) (2) (3) (4)
Model I Model II Model III Model IV

LnERI 0.752∗∗∗ 0.450∗∗∗ 0.779∗∗∗ 0.0889
(7.81) (5.83) (8.56) (0.68)

LnTE 0.00872 0.122∗∗∗ 0.0242 0.182∗∗∗
(0.33) (5.42) (1.22) (4.48)

FDI 0.0146 0.0394∗∗∗ 0.0774∗∗∗ −0.00607
(0.65) (4.22) (3.61) (−0.09)

ECS −0.00519∗ −0.00368∗ −0.0206∗∗∗ −0.00878∗
(−2.58) (−2.38) (−8.87) (−2.22)

LnPS −1.406 −0.105 −0.635 −5.467∗∗∗
(−1.35) (−0.41) (−1.84) (−6.63)

_cons 13.30 3.834∗ 5.846∗ 51.62∗∗∗
(1.50) (2.17) (2.47) (7.59)

Obs 65 130 117 78
R2 0.950 0.893 0.928 0.892
F 116.2 68.35 102.0 55.25
Note: the value in the parenthesis is the t-statistic; ∗ , ∗ ∗ , and ∗∗∗ denote
10%, 5%, and 1% significance level, respectively.
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environmental regulation is in the middle compared with
OLS and 2SLS. (e coefficient of technological innovation
with GMM is consistent with the estimated result of 2SLS.
Environmental regulation and technological innovation still
significantly enhance industrial carbon productivity.

To avoid the estimation bias caused by the selection of proxy
indicators, the logarithms of the national per capita GDP
(LnERI1) [42] and the R&D input intensity (TE1) are selected as
substitute indicators for environmental regulation and tech-
nological innovation, respectively. TE1 is the ratio of internal
expenditure on R&D to theGDP of each province. It reflects the
situation of technological innovation directly [50]. Estimated
results are illustrated in column (4) of Table 7. We can find that
there is a significantly positive impact of environmental reg-
ulation at 1%, and technological innovation is 5%. (e con-
clusion of this paper is robust.

4.5. Analysis of Spatial Spillover Effect

4.5.1. Analysis of Spatial Autocorrelation. (is part mainly
talks about the spatial autocorrelation characteristics of
industrial carbon productivity. Considering the reliability of
the classic method, we adopted Global Moran’s I index to
investigate the spatial autocorrelation. Global Moran’s I
index is calculated as equation (12):

GlobalMoran’s Ι �
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where Yi and Yj represent different space units. (e
subscripts i and j mean the unit number, and the total

number is n. (e values of Moran’s I represent a level of
agglomeration, ranging from −1 to 1. Value 1 means a
clustering trend, while value −1 means a discrete trend in
the spatial distribution [51]. Figure 4 shows the results
under matrices W1, W2, and W3 from 2004 to 2016,
where Global Moran’s index is significantly positive in
each year. We can find that there is a spatial agglomer-
ation characteristic of industrial carbon productivity. (e
value of Global Moran’s I in Figure 4 increased gradually,
which indicated that the spatial autocorrelation of in-
dustrial carbon productivity is gradually enhancing, and
the agglomeration effects are more obvious. Besides, local
spatial autocorrelation in this section is verified by Local
Moran scatterplot with the W1 matrix (Figure 5), and the
results in 2004, 2008, 2012, and 2016 are displayed as
representatives. (e Local Moran’s index is calculated as
follows:
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(13)
According to Figure 5, each year, the trend lines of in-

dustrial carbon productivity are all located in quadrants one and
three, which indicate H-H agglomeration and L-L agglomer-
ation, respectively. In 2016, only eight provinces were in the
second quadrant and the fourth quadrant, which exhibits
discrete trends in spatial distribution. (e rest of the provinces
all present the characteristics of agglomeration. Meanwhile, the
provinces with H-H agglomeration characteristics increase year
by year and most of them are with low resource dependence.
(e provinces with L-L agglomeration characteristics are

Table 7: Results of endogeneity test and robustness test.

(1) (2) (3) (4)
OLS 2SLS GMM OLS

LnERI 0.512∗∗∗ 0.567∗∗∗ 0.536∗∗∗ LnERI1 0.454∗∗∗
(8.84) (3.64) (3.75) (18.54)

LnTE 0.0795∗∗∗ 0.112∗∗ 0.112∗∗∗ TE1 0.147∗∗
(5.31) (2.93) (3.39) (3.15)

Control variables Yes Yes Yes Control variables Yes

_cons 8.034∗∗∗ −0.0789 0.237 _cons 5.424∗∗
(4.57) (−0.05) (0.16) (3.29)

N 390 270 270 N 390
R2 0.916 0.696 0.696 R2 0.929
Sargan_p 0.1156
Kleibergen-Paap rk LM 74.855∗∗∗
Kleibergen-Paap rk Wald F 43.770> 9.93
Note: the value in the parenthesis is the t-statistic; ∗∗∗ , ∗∗ , and ∗ indicate 1%, 5%, and 10% significance level, respectively.
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mainly located in northwestern China and most of them are
with high resource dependence.

4.5.2. Spatial Durbin Model Estimation. As mentioned in
the methodology and data, we use the Durbin model to
discover spatial spillover effects with three spatial weight
matrices. (e results are shown in Table 8. According to
models (1)–(4) based on the W1 matrix, the spatial lag

coefficients (rho) of the dependent variable are notably
positive. It indicates that industrial carbon productivity
has a significantly spatial autocorrelation and shows H-H
aggregation and L-L aggregation characteristics. Indus-
trial carbon productivity in surrounding provinces will
influence the local, promoting or decreasing together. For
the W2 matrix and W3 matrix, model (5) and model (9)
show that using spatial individual fixed effect model, the
values of rho are 0.2440 and 0.1429, respectively. (ey are
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Figure 4: (e trend of Global Moran’s I index under different spatial weights.
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all positive at the significance level of 10%. But in models
(6)–(8) and models (10)–(12), the spatial lag coefficients
of industrial carbon productivity (rho) are not significant.
(erefore, interpreting the spatial spillover effect
according to the spatial individual fixed effect model is
the best choice. According to the results of models (1),
(5), and (9), the coefficients of environmental regulation
are all positive and significant (W1: 0.8311, W2: 0.9756,
and W3: 0.9201). And technological innovation is similar
(W1: 0.2353, W2: 0.2150, and W3: 0.1762). It demon-
strates the robustness of conclusions that strict envi-
ronmental regulation and technological innovation are
conducive to boosting local industrial carbon produc-
tivity. And then, we will discuss further to see the direct
effects and indirect effects of each explanatory variable
under W1, W2, and W3 (Table 9) [52].

Table 9 extensively shows the outcomes of direct
effect, indirect effect, and total effect. And results of the
spatial individual fixed effect model based on W1, W2,
and W3 are displayed, respectively. (e direct effects of
environmental regulations under all spatial weight ma-
trices are significantly positive at the significance level of
1% (W1: 0.8089, W2: 0.9707, and W3: 0.9110), which
means that the enhancement of local environmental
regulations is beneficial to local industrial carbon pro-
ductivity. However, the spillover effects of environmental
regulation intensity are −0.4136, −0.7320, and −0.5726,
which means that local environmental regulation has a
negative relationship with industrial carbon productivity
in surrounding provinces. (e reason may be that
strengthening local environmental regulations will lead
to pollution shelter effect. Companies with heavy pol-
lution will migrate to neighboring provinces where en-
vironmental regulation is not strict. (us, the migration
of companies with heavy pollution increases carbon
emissions and reduces industrial carbon productivity in
the neighboring provinces. As for technological inno-
vation, the direct effects are all significantly positive
under each spatial weight matrix (W1: 0.2254, W2:
0.2116, and W3: 0.1751), but the indirect effects of the
technological innovation are not significant. It shows that
the local technological innovation can increase local
industrial carbon productivity but does not contribute to
neighboring provinces. (e reason is complex. On the
one hand, technological innovation has a time lag and a
dissemination effect. (e dissemination effect could
improve the level of technology in neighboring provinces
and then push their industrial carbon productivity. But
because of the existence of time lag, the impact of
technological innovation in neighboring provinces does
not always manifest itself promptly. On the other hand,
the influence of innovation agglomeration will have both
positive and bad consequences. Innovation agglomera-
tion possibly leads to the flow of innovation elements
between provinces and generates uncertain influence for
the industrial carbon productivity in neighboring prov-
inces finally. In conclusion, the spillover effect of tech-
nological innovation is neither specific.

5. Conclusion and Policy Implication

(is paper examines the impact of environmental regulation
and technological innovation on industrial carbon pro-
ductivity using data from 30 Chinese provinces and au-
tonomous areas from 2004 to 2016. (e modified STIRPAT
model and Durbin model are adopted as the main instru-
ment for exploring spatial spillover effects. After that, we
construct the two-dimensional structural heterogeneity
analysis according to industrialization level and resource
dependence to detect their moderating effect.

(is paper reveals the following: (1) for industrial carbon
productivity, environmental regulation serves as a driving force
to it, similar to technological innovation. (e enhancement of
environmental regulation intensity can limit the carbon
emission behavior of industrial enterprises so that CO2 reduces
and industrial carbon productivity improves. Technological
innovationwill also play the same role through the revolution of
low-carbon technology and raising production efficiency. (2)
(ere is an obvious heterogeneity caused by resource depen-
dence and industrialization level. Specifically, environmental
regulation has a positive effect in provinces with high resource
dependence and high industrialization levels (Region I) and

Table 9: Results of the direct effects and indirect effects.

Variables Effect (1) (2) (3)
W1 W2 W3

LnERI1

Direct 0.8089∗∗∗ 0.9707∗∗∗ 0.9110∗∗∗
(7.89) (8.74) (8.32)

Indirect −0.4136∗∗∗ −0.7320∗∗∗ −0.5726∗∗∗
(−4.05) (−4.69) (−5.01)

Total 0.3953∗∗∗ 0.23873∗∗ 0.3384∗∗∗
(9.04) (2.15) (7.40)

TE1

Direct 0.2254∗∗∗ 0.2116∗∗∗ 0.1751∗∗∗
(4.51) (4.32) (3.48)

Indirect −0.1326 −0.1688 0.0179
(−1.24) (−0.76) (0.18)

Total 0.0928 0.0428 0.19300∗∗
(0.82) (0.20) (2.04)

FDI

Direct 0.0423∗∗∗ 0.0291∗∗∗ 0.0293∗∗∗
(4.62) (3.20) (3.36)

Indirect 0.0423 −0.0376 -0.0224
(1.50) (−0.52) (-0.89)

Total 0.0846 ∗∗∗ −0.0086 0.0070
(2.59) (−0.11) (0.24)

ECS

Direct −0.0041∗∗∗ −0.0050∗∗∗ −0.0043∗∗∗
(−3.18) (−3.70) (−3.26)

Indirect -0.0004 0.0054 0.0036
(−0.17) (1.51) (1.36)

Total −0.0045 0.0004 −0.0007
(−1.55) (0.12) (−0.28)

LnPS

Direct −0.3045 0.0227 −0.5080∗
(−1.15) (0.09) (−1.68)

Indirect 2.2142∗∗∗ 3.7180∗∗ 1.5216∗∗∗
(2.84) (2.43) (2.80)

Total 1.9097∗∗∗ 3.7406∗∗ 1.0136∗∗
(2.65) (2.55) (2.39)

Note: the value in the parenthesis is the t-statistic; ∗∗∗ , ∗∗ , and ∗ indicate
1%, 5%, and 10% significance level, respectively.

12 Mathematical Problems in Engineering



provinces with low resource dependence and low industriali-
zation levels (Region III), but technological innovation has no
effect. In provinces with high resource dependence and low
industrialization level (Region IV), while environmental regu-
lation has no substantial impact on industrial carbon pro-
ductivity, technological innovation does. In provinces with low
resource dependence and high industrialization levels (Region
II), environmental regulation and technological innovation are
all significant. (is implies that, to realize effective carbon re-
ductions, diverse policies should be adopted in different regions
with nonuniform industrialization levels and resource en-
dowment. (3) Foreign direct investment is positively correlated
with industrial carbon productivity.(is is probably because the
growth of the economy stimulated by foreign direct investment
overpasses the growth of carbon emissions so that increasing
foreign direct investment plays a positive role. However, the
structure of energy is inversely related to industrial carbon
productivity. (e greater the share of coal consumption, the
more adverse to the realization of carbon emission reduction
targets, which is reasonable. It shows that the current energy
consumption structure dominated by fossil fuels is unreason-
able and needs to be adjusted urgently. (4) Industrial carbon
productivity exhibits spatial autocorrelation from the per-
spective of spatial agglomeration. (e characteristics of H-H
and L-L agglomeration are obvious. Local environmental
regulation and technological innovation are advantageous to
local industrial carbon productivity, but the spillover effect of
environmental regulation is not beneficial to neighboring
provinces’ industrial carbon productivity. (is is because the
enhancement of local environmental regulation may dislodge
the polluting enterprise to the adjacent provinces and cause
more CO2 there. (e industrial carbon productivity in adjacent
provinces will decrease inevitably. Furthermore, because of the
dual effects of diffusion effect and time lag, the spillover effect of
technological innovation is insignificant. Technology coopera-
tion in adjacent provinces is weak. And the linkage effect of
technological innovation is not obvious so that the flow of
innovation elements between different provinces is unplanned.
(is may exacerbate the ambiguity around technological in-
novation’s impact on industrial productivity.

Based on the preceding conclusions, policy recom-
mendations are made to provide advice to decision makers
in order to improve industrial carbon productivity.

First, in general, the government needs to strengthen
the rigor of environmental regulation and vigorously
promote technological innovation. Environmental regu-
lation policy plays a favorable role in China’s emission
reduction and high-quality industrial development.
Technological innovation should be encouraged towards
cleaner production, energy conservation, and emissions
reduction, achieving green development and low-carbon
transition finally.

Second, the government should make appropriate
policies to promote industrial carbon productivity in
different provinces respectively, taking two-dimensional
structural heterogeneity of resource dependence and in-
dustrialization level into consideration. In provinces with
high resource dependence and high industrialization level
(Region I) and provinces with low resource dependence

and low industrialization level (Region III), environmental
regulations have a greater impact on industrial carbon
productivity. Environmental regulation should be regar-
ded as the main tool to improve industrial carbon pro-
ductivity in such provinces. However, in provinces with
high resource dependence and low industrialization levels
(Region IV), technological innovation is more effective in
improving industrial carbon productivity. Hence, it needs
to continuously improve technological innovation ca-
pacity and cooperation with neighboring provinces, to
promote industrial carbon productivity in neighboring
provinces. As for the provinces with low resource de-
pendence and high industrialization levels (Region II),
environmental regulation and technological progress both
have a positive impact. Improving industrial carbon
productivity in these provinces can be accomplished by
tightening regulations and stimulating technological
innovation.

(ird, the government should pay attention to spatial
linkage and regional cooperation when making industrial
emission reduction policies. Environmental regulation
may have a negative spillover impact, causing polluting
businesses to relocate. Polluting firms want to settle in
areas where environmental restrictions are slack. (is
may promote regional environmental polarization and
enhance the difficulty of carbon reduction. (us, the
government should reinforce the collaborative gover-
nance between adjacent provinces. Additionally, the
spillover effect of technological innovation is not sig-
nificant. It is necessary to heighten the technical col-
laboration and increase the number of joint patents to
realize the linkage mechanism of technological innova-
tion among provinces. In addition, the government
should focus on the flow of innovation factors, as well as
the spread of technological innovation and reducing the
time-lag effect of technological transformation.

(is paper has some limitations which can be studied
in the future. First, the conclusion of this study was
inferred by provincial data. It might be more interesting
to explore whether we can get the same or other
meaningful outcomes using the city’s data. Second, the
heterogeneity caused by industrialization level and re-
source dependence is confirmed in this paper. But it is not
clear whether they change the effects of independent
variables. Future researches could pay more attention to
the moderating effects of industrialization level and re-
source dependence, observing the difference they gen-
erate on environmental regulation and technological
innovation.
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