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%e theory of fuzzy bipolar soft sets is an efficient extension of soft sets for depicting the bipolarity of uncertain fuzzy soft
information; however, it is limited to a single expert. %e present research article introduces the theory of an innovative hybrid
model called the fuzzy bipolar soft expert sets, as a natural extension of two existing models (including fuzzy soft expert sets and
fuzzy bipolar soft sets). %e proposed model is highly suitable for describing the bipolarity of fuzzy soft information having
multiple expert opinions. Some fundamental properties of the developed hybrid model are discussed, including subset, com-
plement, union, intersection, AND operation, and OR operation. %e proposed concepts are explained with detailed examples.
Moreover, to demonstrate the applicability of our initiated model, an application of the proposed hybrid model is presented along
with the developed algorithm to tackle the real-world group decision-making situation, that is, ranking effectiveness of tests in
spread analysis of COVID-19. Finally, a comparative analysis of the developed model with some existing mathematical tools such
as fuzzy soft expert sets and fuzzy bipolar soft sets is provided to show the cogency and reliability of the initiated model.

1. Introduction

%e ranking and selection of alternatives (based on the
preferences of decision-makers) is an important aspect of
decision sciences, but the situations become difficult when
dealing with vague data and uncertainties.%e conception of
the modern theory of probability in the sixteenth century led
to the proposal of different mathematical tools and algo-
rithms by many computer, logics, and mathematical experts
in order to deal with uncertainty and fuzziness, whether
considering social sciences or economics, medical sciences,
or engineering. In 1965, Zadeh [1] initiated the idea of a
fuzzy set model which is capable of handling partial truth
between “absolute false” and “absolute truth.” In such
concepts of fuzzy sets, it is declared that an element of a
universal set U can have some membership degree be-
longing to interval [0, 1] instead of the set 0, 1{ }, thus
allowing to deal with situations considering “how much” an
element satisfies a criteria instead of just declaring whether it

satisfies or not. %is powerful concept of fuzziness was later
used by various scientific researchers from almost every
scientific domain. One important limitation of this model is
to deal with bipolar or dual behaviour situations involving a
positive and a negative side, for instance, effect and side
effect, good and bad, pros and cons. To remove this limi-
tation, Zhang [2] presented Yin-Yang bipolar fuzzy sets
which are capable of handling these bipolar situations. Yin
and Yang are considered as negative and positive parts,
respectively, of a system in Chinese medicine.

%e fuzzy set theory led to the development and proposal
of extensions like intuitionistic fuzzy sets [3] and bipolar
fuzzy sets [2]. However, these models fail to deal with un-
certain situations involving different parameters. %is lim-
itation due to lack of parameterization tools in existing
models led Molodtsov [4] to initiate the notion of soft sets,
which is different from all other preexisting methods and
allows to deal with situations having different parameters.
%e soft set theory has been used in several domains
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including medicine, engineering, and economics. Certain
applications of such a model in decision-making were of-
fered by Maji et al. [5]. Furthermore, Ali et al. [6] studied
several properties of the soft sets. Later on, such a model was
combined with existing uncertain models to develop the
powerful hybrid models incorporating the characteristics of
both the combined models such as fuzzy soft sets [7].

%e soft set model is a powerful tool, but fails to deal with
two-sided information in a soft environment having in-
terrelated parameters, where one parameter affects the other
one, such as “expensive and cheap,” “old and young,” and
“dependent and independent.” To tackle this situation, the
idea of bipolar soft sets (BSSs) was proposed by Shabir and
Naz [8].%e BSS model considers two opposite meaning sets
of parameters named the “set of parameters” and the “not set
of parameters.” %us, dealing with bipolar parameters much
efficiently, Naz and Shabir [9] combined fuzzy set theory
with BSSs to introduce the fuzzy BSSs and further discussed
their decision-making applications. Akram and Ali [10]
introduced Pythagorean fuzzy BSSs and rough Pythagorean
fuzzy BSSs and discussed their applications. Afterwards,
Akram et al. [11] introduced two new decision-making
models, including m-polar fuzzy BSSs and rough m-polar
fuzzy BSSs. A survey on hybrid soft set models was launched
by Ma et al. [12]. Later, Mahmood [13] presented a novel
decision-making method for BSSs and studied some of their
practical applications.

Hybrid models proved to be an important tool in
dealing with group decision-making problems. Many
researchers across the globe constructed novel hybrid
models that give more reliable outputs, when dealing with
different sorts of information pieces in decision-making
problems. In the last few decades, hybrid models have
been developed to tackle numerous real-world multi-
attribute group decision-making (MAGDM) situations
containing vague information. All the abovementioned
models deal with only one expert and fail to consider the
opinion of multiple experts in the same place and are not
considered suitable in MAGDM situations having mul-
tiple expert opinions as in the case of studies utilizing
questionnaires. Alkazellah and Salleh [14] resolved this
issue by introducing the notion of soft expert sets (SESs),
which considers all expert opinions dealing with a
MAGDM situation. Later on, Alkazellah and Salleh [15]
presented fuzzy soft expert sets (FSESs). %is powerful
concept inspired many researchers to solve different
MAGDM problems using the SES approach, as discussed
in [16–21]. For instance, Broumi and Smarandache [22]
presented an intuitionistic fuzzy SES model and discussed
its applications. Hassan and Alhazaymeh [23] introduced
vague SESs. Shabir and Gul [24] developed modified
rough BSSs. Recently, Ali and Akram [25] introduced
N-SESs and fuzzy N-SESs with their use in MAGDM
situations. In addition, Akram et al. [26] launched a novel
hybrid model called m-polar fuzzy SESs and solved certain
MAGDM problems. For more important terminologies,
the readers are referred to [27–39].

%e motivations of this research article are described as
follows:

(1) %e ability of BSSs and fuzzy BSSs is depicting bi-
polar information in a soft environment, which al-
lows to deal with bipolar parameters more
effectively, but not so efficient in group decisions.

(2) SESs and fuzzy SESs appear as powerful tools in
MAGDM problems allowing multiple expert opin-
ions in the same model. Much effective model is
possible, if it deals with bipolarities.

%e major contributions of this study are described as
follows:

(1) %e bipolarity of fuzzy BSSs is merged with the group
decision-making skills of fuzzy SESs to develop a
more powerful, more effective, new model called
fuzzy bipolar SESs or FBSESs, which is capable of
dealing with situations involving multiple experts as
well as bipolar parameters in a fuzzy environment.

(2) %e dominant properties as well as the notable re-
sults about the proposed model are explained, in-
cluding subset, complement, union, intersection,
AND operation, and OR operation. In addition,
supportive numerical examples are provided.

(3) A real-world MAGDM problem to evaluate the
ranking effectiveness of tests for spread analysis of
COVID-19 has been solved with the proposed
model.

(4) An effective algorithm to solve MAGDM problems
with FBSESs is provided.

(5) At the end, advantages, comparative analysis, and
limitations of the proposed model are discussed, to
prove the effectiveness and novelty of the developed
FBSES model.

%e research article is organized as follows. In Section
2, we present a new hybrid mathematical tool called
FBSESs and discuss some of its fundamental properties
including subset, complement, agree FBSES, disagree
FBSES, AND operation, and OR operation. In Section 3,
we discuss a real-world MAGDM problem concerning the
emerging COVID-19 using the FBSES approach. We also
provide an efficient algorithm for the developed model in
this section. Section 4 provides a comparative analysis of
the developed method with certain preexisting models,
including fuzzy BSSs and fuzzy SESs. Finally, in Section 5,
we provide some concluding remarks and future
orientations.

2. Fuzzy Bipolar Soft Expert Sets

%is section reviews some basic terminologies and provides
the notion of FBSESs with necessary properties of these
concepts along with detailed supporting examples.

Definition 1 (see [8]). Let U be a universe and V be the
universe of parameters. For everyB ⊆ V, a triplet (F, G,B)

is said to be a bipolar soft set or BSS onU, where F and G are
functions defined as follows:
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F: B⟶ P(U),

G: B⟶ P(U),
(1)

such that F(ϑ)∩G(ϑ) � ∅, ∀ ϑ ∈B, ϑ ∈B. Here, P(U)

represents the power set of U.
Notice that B(NotB) is the set containing attributes

opposite to those contained in set B.

Definition 2 (see [15]). Let U be the universe, V the uni-
verse of parameters, and E the set of experts. Let
X � V × E × O, where O � 0 � disagree, 1 � agree􏼈 􏼉 repre-
sents the set of opinions. %en, for A⊆X, a pair (c,A) is
said to be a fuzzy soft expert set over the universeU, where c

is the function defined as follows:

c: A⟶ F(U), (2)

whereF(U) serves as the power set of fuzzy subsets overU.
Now, we are ready to define the fuzzy bipolar soft expert

sets.

Definition 3. Let U be the universal set and V be the
universe of parameters. Let E be the set of experts, O �

0 � disagree, 1 � agree􏼈 􏼉 the set of opinions, and
X � V × E × O. %en, the triplet (c, χ,A) is called a fuzzy
bipolar soft expert set or FBSES on U, where c and χ are
functions defined as follows:

c: A⟶ F(U),

χ: A⟶ F(U),
(3)

with A⊆X and A⊆X, such that 0≤ (c(α))(u) +(χ(α))

(u)≤ 1 for all α ∈ A and u ∈ U.

Note 1. A(notA) is the set containing attributes opposite to
those contained in A.

Here, 0≤ (c(α))(u) + (χ(α))(u)≤ 1 for all α ∈ A and
u ∈ U acts as a condition for c and χ to be consistent with the
definition of FBSESs. %e functions c(α) and χ(α) are
considered as the α-approximate and α-approximate ele-
ments of the FBSES (c, χ,A) for each α ∈ A.

Definition 4. Let (c, χ,A) be a FBSES over a universe U,
then the hesitancy region of this FBSES is determined by a
fuzzy soft expert set (H,A), such that

(H(α))(u) � 1 − (c(α))(u) +(χ(α))(u)􏼈 􏼉, (4)

for all α ∈ A and each u ∈ U.
Here, (H,A) represents the grey area or the uncertainty

in making the decision, thus indicating the lack of knowl-
edge of the expert in the case of a particular object with
respect to a parameter under consideration. Moreover,
c(α))(u) + χ(α))(u) + H(α))(u) � 1 for all α ∈ A, α ∈A,
and for all u ∈ U.

Example 1. Consider that 5 patients are monitored in a
mental health facility for the diagnosis of their mental state
by a group of 3 psychiatrists. Let U � u1, u2, . . . , u5􏼈 􏼉 be the
set of patients. Let V � ϑ1, ϑ2, ϑ3􏼈 􏼉

� very quiet, tearfulness or crying diffidence􏼈 􏼉 be the set of
manic behaviours, whereas V � ϑ1, ϑ2, ϑ3􏼈 􏼉

� very quiet, tearfulness or crying diffidence􏼈 􏼉 be the set of
respective depressive behaviours. Let E � x, y, z􏼈 􏼉 be the set
of psychiatrists.

After monitoring the patients for a fixed period of time,
the psychiatrists make data on the basis of their observations
and we get the FBSES (c, χ, X) as follows:

(c, X) � ϑ1, x, 1( 􏼁, u1, 0.1( 􏼁, u2, 0.3( 􏼁, u3, 0.7( 􏼁, u4, 0.2( 􏼁, u5, 0.5( 􏼁􏼈 􏼉( 􏼁,􏼈

ϑ1, y, 1( 􏼁, u1, 0.1( 􏼁, u2, 0.4( 􏼁, u3, 0.8( 􏼁, u4, 0.1( 􏼁, u5, 0.4( 􏼁􏼈 􏼉( 􏼁,

ϑ1, z, 1( 􏼁, u1, 0.2( 􏼁, u2, 0.25( 􏼁, u3, 0.7( 􏼁, u4, 0.2( 􏼁, u5, 0.4( 􏼁􏼈 􏼉( 􏼁,

ϑ2, x, 1( 􏼁, u1, 0( 􏼁, u2, 0.4( 􏼁, u3, 0.8( 􏼁, u4, 0.1( 􏼁, u5, 0.3( 􏼁􏼈 􏼉( 􏼁,

ϑ2, y, 1( 􏼁, u1, 0.05( 􏼁, u2, 0.5( 􏼁, u3, 0.7( 􏼁, u4, 0.1( 􏼁, u5, 0.35( 􏼁􏼈 􏼉( 􏼁,

ϑ2, z, 1( 􏼁, u1, 0( 􏼁, u2, 0.2( 􏼁, u3, 0.6( 􏼁, u4, 0.15( 􏼁, u5, 0.4( 􏼁􏼈 􏼉( 􏼁,

ϑ3, x, 1( 􏼁, u1, 0( 􏼁, u2, 0.3( 􏼁, u3, 0.7( 􏼁, u4, 0.2( 􏼁, u5, 0.3( 􏼁􏼈 􏼉( 􏼁,

ϑ3, y, 1( 􏼁, u1, 0.05( 􏼁, u2, 0.4( 􏼁, u3, 0.5( 􏼁, u4, 0.1( 􏼁, u5, 0.4( 􏼁􏼈 􏼉( 􏼁,

ϑ3, z, 1( 􏼁, u1, 0( 􏼁, u2, 0.3( 􏼁, u3, 0.7( 􏼁, u4, 0.2( 􏼁, u5, 0.5( 􏼁􏼈 􏼉( 􏼁,

ϑ1, x, 0( 􏼁, u1, 0.8( 􏼁, u2, 0.5( 􏼁, u3, 0.1( 􏼁, u4, 0.5( 􏼁, u5, 0.5( 􏼁􏼈 􏼉( 􏼁,

ϑ1, y, 0( 􏼁, u1, 0.9( 􏼁, u2, 0.5( 􏼁, u3, 0.2( 􏼁, u4, 0.5( 􏼁, u5, 0.5( 􏼁􏼈 􏼉( 􏼁,

ϑ1, z, 0( 􏼁, u1, 0.8( 􏼁, u2, 0.6( 􏼁, u3, 0.2( 􏼁, u4, 0.5( 􏼁, u5, 0.4( 􏼁􏼈 􏼉( 􏼁,

ϑ2, x, 0( 􏼁, u1, 1( 􏼁, u2, 0.5( 􏼁, u3, 0.1( 􏼁, u4, 0.4( 􏼁, u5, 0.5( 􏼁􏼈 􏼉( 􏼁,

ϑ2, y, 0( 􏼁, u1, 0.9( 􏼁, u2, 0.4( 􏼁, u3, 0.2( 􏼁, u4, 0.5( 􏼁, u5, 0.6( 􏼁􏼈 􏼉( 􏼁,

ϑ2, z, 0( 􏼁, u1, 0.9( 􏼁, u2, 0.8( 􏼁, u3, 0.3( 􏼁, u4, 0.5( 􏼁, u5, 0.5( 􏼁􏼈 􏼉( 􏼁,

ϑ3, x, 0( 􏼁, u1, 0.8( 􏼁, u2, 0.6( 􏼁, u3, 0.1( 􏼁, u4, 0.4( 􏼁, u5, 0.6( 􏼁􏼈 􏼉( 􏼁,

ϑ3, y, 0( 􏼁, u1, 0.8( 􏼁, u2, 0.5( 􏼁, u3, 0.3( 􏼁, u4, 0.5( 􏼁, u5, 0.5( 􏼁􏼈 􏼉( 􏼁,

ϑ3, z, 0( 􏼁, u1, 0.9( 􏼁, u2, 0.5( 􏼁, u3, 0.2( 􏼁, u4, 0.5( 􏼁, u5, 0.4( 􏼁􏼈 􏼉( 􏼁􏼉,

(χ, X) � ϑ1, x, 1( 􏼁, u1, 0.8( 􏼁, u2, 0.4( 􏼁, u3, 0( 􏼁, u4, 0.2( 􏼁, u5, 0.4( 􏼁􏼈 􏼉( 􏼁,􏼈

ϑ1, y, 1( 􏼁, u1, 0.85( 􏼁, u2, 0.35( 􏼁, u3, 0.1( 􏼁, u4, 0.1( 􏼁, u5, 0.5( 􏼁􏼈 􏼉( 􏼁,

ϑ1, z, 1( 􏼁, u1, 0.7( 􏼁, u2, 0.25( 􏼁, u3, 0.2( 􏼁, u4, 0.2( 􏼁, u5, 0.4( 􏼁􏼈 􏼉( 􏼁,

ϑ2, x, 1( 􏼁, u1, 0.6( 􏼁, u2, 0.3( 􏼁, u3, 0( 􏼁, u4, 0( 􏼁, u5, 0.35( 􏼁􏼈 􏼉( 􏼁,

ϑ2, y, 1( 􏼁, u1, 0.7( 􏼁, u2, 0.3( 􏼁, u3, 0( 􏼁, u4, 0.05( 􏼁, u5, 0.4( 􏼁􏼈 􏼉( 􏼁,

ϑ2, z, 1( 􏼁, u1, 0.6( 􏼁, u2, 0.25( 􏼁, u3, 0( 􏼁, u4, 0.1( 􏼁, u5, 0.4( 􏼁􏼈 􏼉( 􏼁,

ϑ3, x, 1( 􏼁, u1, 0.8( 􏼁, u2, 0.3( 􏼁, u3, 0.1( 􏼁, u4, 0.1( 􏼁, u5, 0.5( 􏼁􏼈 􏼉( 􏼁,

ϑ3, y, 1( 􏼁, u1, 0.8( 􏼁, u2, 0.3( 􏼁, u3, 0.1( 􏼁, u4, 0.15( 􏼁, u5, 0.4( 􏼁􏼈 􏼉( 􏼁,

ϑ3, z, 1( 􏼁, u1, 0.9( 􏼁, u2, 0.4( 􏼁, u3, 0.05( 􏼁, u4, 0.1( 􏼁, u5, 0.4( 􏼁􏼈 􏼉( 􏼁,

ϑ1, x, 0( 􏼁, u1, 0.1( 􏼁, u2, 0.5( 􏼁, u3, 0.8( 􏼁, u4, 0.5( 􏼁, u5, 0.4( 􏼁􏼈 􏼉( 􏼁,

ϑ1, y, 0( 􏼁, u1, 0.1( 􏼁, u2, 0.4( 􏼁, u3, 0.8( 􏼁, u4, 0.5( 􏼁, u5, 0.4( 􏼁􏼈 􏼉( 􏼁,

ϑ1, z, 0( 􏼁, u1, 0.2( 􏼁, u2, 0.4( 􏼁, u3, 0.7( 􏼁, u4, 0.5( 􏼁, u5, 0.4( 􏼁􏼈 􏼉( 􏼁,

ϑ2, x, 0( 􏼁, u1, 0( 􏼁, u2, 0.5( 􏼁, u3, 0.8( 􏼁, u4, 0.5( 􏼁, u5, 0.5( 􏼁􏼈 􏼉( 􏼁,

ϑ2, y, 0( 􏼁, u1, 0.05( 􏼁, u2, 0.5( 􏼁, u3, 0.7( 􏼁, u4, 0.4( 􏼁, u5, 0.35( 􏼁􏼈 􏼉( 􏼁,

ϑ2, z, 0( 􏼁, u1, 0.1( 􏼁, u2, 0.2( 􏼁, u3, 0.6( 􏼁, u4, 0.5( 􏼁, u5, 0.4( 􏼁􏼈 􏼉( 􏼁,

ϑ3, x, 0( 􏼁, u1, 0.1( 􏼁, u2, 0.4( 􏼁, u3, 0.7( 􏼁, u4, 0.6( 􏼁, u5, 0.3( 􏼁􏼈 􏼉( 􏼁,

ϑ3, y, 0( 􏼁, u1, 0.1( 􏼁, u2, 0.4( 􏼁, u3, 0.5( 􏼁, u4, 0.5( 􏼁, u5, 0.4( 􏼁􏼈 􏼉( 􏼁,

ϑ3, z, 0( 􏼁, u1, 0( 􏼁, u2, 0.4( 􏼁, u3, 0.7( 􏼁, u4, 0.4( 􏼁, u5, 0.5( 􏼁􏼈 􏼉( 􏼁􏼉.

(5)

%is FBSES shows the observations of psychiatrists
during the diagnosis. For example, psychiatrist x declares
“u1” to be 10% talkative, 80% quiet, and 10% normal (grey
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area) during the diagnosis, whereas y declares “u1” to be 10%
talkative, 85% quiet, while acting normal 5% of the time. On
the basis of the collected data, patients having high mem-
bership degrees in manic behaviours are declared as hy-
pomania patients, those with high membership degrees in
depressive behaviours are declared to be under depression,
whereas the patients with almost equal degrees of mem-
bership in both manic and depressive conditions (above
30%–35%) are declared to be suffering with bipolar disorder.
%us, the above set shows that the psychiatrist x considers
“u1” to be under depression, “u3” to be suffering with hy-
pomania, “u2 and u5” to be bipolar, while “u4” to behave like
a normal person, and so on.

Tables 1 and 2 represent the FBSES in Example 1 with
respect to c and χ functions, respectively, whereas Table 3
gives a single table representation of the above FBSES, such
that entries aij of the table of i-th rows and j-th columns are
represented as

aij � cij, χij􏼐 􏼑. (6)

Definition 5. For two FBSESs (c, χ,A) and (c1, χ1,B) on
the universe U, (c, χ,A) is called a fuzzy bipolar soft expert
subset of (c1, χ1,B) if

(1) A⊆B
(2) c(α)⊆ c1(α) and χ1(α)⊆ χ(α) for all α ∈ A. In other

words, (c(α))(u) ≤ (c1(α))(u) and (χ1(α))(u)

≤ (χ(α))(u) for all values of α ∈ A and u ∈ U.

It is denoted by (c, χ,A) 􏽢⊆ (c1, χ1,B). Similarly,
(c1, χ1,B) is a fuzzy bipolar soft expert superset of (c, χ,A),
and the superset relation is then denoted as
(c1, χ1,B)􏽢⊇(c, χ,A).

Definition 6. Any two FBSESs (c, χ,A) and (c1, χ1,B) are
said to be equal over a universeU if and only if (c, χ,A) is a
subset of (c1, χ1,B) and (c1, χ1,B) is a subset of (c, χ,A).

Example 2. Consider Example 1. After treating the patients
for a month, the psychiatrists again diagnose the patients on
the basis of their behaviours.

Let A � (ϑ1, x, 1), (ϑ2, x, 0), (ϑ3, y, 1)􏼈 􏼉 and
B � (ϑ1, x, 1), (ϑ1, z, 1), (ϑ2, x, 0), (ϑ3, y, 1)􏼈 􏼉 be the subsets
of X � V × E × O. Suppose two FBSESs (c, χ,A) and
(c1, χ1,B) are defined in Tables 4 and 5 , respectively.

Here, we see that A ⊂B. In addition, c1(α)⊇c(α) and
χ1(α)⊆ χ(α) for all α ∈ A. Clearly, (c, χ,A) 􏽢⊆ (c1, χ1,B).

Definition 7. %e complement of a FBSES (c, χ,A) over
universe U is denoted by (c, χ,A)c and is defined by
(c, χ,A)c � (cc, χc,A), where cc and χc are functions given
as cc(α) � χ(α) and χc(α) � c(α) for all α ∈ A, α ∈A.

Proposition 1. If (c, χ,A) is a FBSES on U, then

(1) ((c, χ,A)c)c � (c, χ,A)

Proof

(1) From Definition 7, we have (c, χ,A)c � (cc, χc,A)

such that cc(α) � χ(α) and χc(α) � c(α). Now

(c(α))
c

( 􏼁
c

� (χ(α))
c

� c(α),

(χ(α))
c

( 􏼁
c

� (c(α))
c

� χ(α).
(7)

Hence, ((c, χ,A)c)c � (c, χ,A). □

Example 3. Consider the FBSES (c, χ,A) in Example 2. Its
complement (c, χ,A)c is defined in Table 6.

Definition 8. A FBSES over the universeU is called a relative
null FBSES, denoted by (Φ,U,A), if Φ(α) � ∅ (i.e.,
(Φ(α))(u) � 0, ∀α ∈ A and u ∈ U) and U(α) � U (i.e.,
(U(α))(u) � 1, ∀α ∈A and u ∈ U), for all α ∈ A, α ∈A.

Table 1: (c, X).

(c, X) u1 u2 u3 u4 u5

(ϑ1, x, 1) 0.1 0.3 0.7 0.2 0.5
(ϑ1, y, 1) 0.1 0.4 0.8 0.1 0.4
(ϑ1, z, 1) 0.2 0.25 0.7 0.2 0.4
(ϑ2, x, 1) 0.0 0.4 0.8 0.1 0.3
(ϑ2, y, 1) 0.05 0.5 0.7 0.1 0.35
(ϑ2, z, 1) 0.0 0.2 0.6 0.15 0.4
(ϑ3, x, 1) 0.0 0.3 0.7 0.2 0.3
(ϑ3, y, 1) 0.05 0.4 0.5 0.1 0.4
(ϑ3, z, 1) 0.0 0.3 0.7 0.2 0.5
(ϑ1, x, 0) 0.8 0.5 0.1 0.5 0.5
(ϑ1, y, 0) 0.9 0.5 0.2 0.5 0.5
(ϑ1, z, 0) 0.8 0.6 0.2 0.5 0.4
(ϑ2, x, 0) 1.0 0.5 0.1 0.4 0.5
(ϑ2, y, 0) 0.9 0.4 0.2 0.5 0.6
(ϑ2, z, 0) 0.9 0.8 0.3 0.5 0.5
(ϑ3, x, 0) 0.8 0.6 0.1 0.4 0.6
(ϑ3, y, 0) 0.8 0.5 0.3 0.5 0.5
(ϑ3, z, 0) 0.9 0.5 0.2 0.5 0.4

Table 2: (χ, X).

(χ, X) u1 u2 u3 u4 u5

(ϑ1, x, 1) 0.8 0.4 0.0 0.2 0.4
(ϑ1, y, 1) 0.85 0.35 0.1 0.1 0.5
(ϑ1, z, 1) 0.7 0.25 0.2 0.2 0.4
(ϑ2, x, 1) 0.6 0.3 0.0 0.0 0.35
(ϑ2, y, 1) 0.7 0.3 0.0 0.05 0.4
(ϑ2, z, 1) 0.6 0.25 0.0 0.1 0.4
(ϑ3, x, 1) 0.8 0.3 0.1 0.1 0.5
(ϑ3, y, 1) 0.8 0.3 0.1 0.15 0.4
(ϑ3, z, 1) 0.9 0.4 0.05 0.1 0.4
(ϑ1, x, 0) 0.1 0.5 0.8 0.5 0.4
(ϑ1, y, 0) 0.1 0.4 0.8 0.5 0.4
(ϑ1, z, 0) 0.2 0.4 0.7 0.5 0.4
(ϑ2, x, 0) 0.0 0.5 0.8 0.5 0.5
(ϑ2, y, 0) 0.05 0.5 0.7 0.4 0.35
(ϑ2, z, 0) 0.1 0.2 0.6 0.5 0.4
(ϑ3, x, 0) 0.1 0.4 0.7 0.6 0.3
(ϑ3, y, 0) 0.1 0.4 0.5 0.5 0.4
(ϑ3, z, 0) 0.0 0.4 0.7 0.4 0.5

4 Mathematical Problems in Engineering



Definition 9. A FBSES over the universeU is called a relative
absolute FBSES, denoted by (U,Φ,A), if U(α) � U (i.e.,
(U(α))(u) � 1, ∀α ∈ A and u ∈ U) and Φ(α) � ∅ (i.e.,
(Φ(α))(u) � 0, ∀α ∈A and u ∈ U), for all α ∈ A, α ∈A.

Definition 10. %e support of a FBSES (c, χ,A) on the
universe U returns the objects u ∈ U with membership
degrees greater than 0. Mathematically,

Suppc(α) � u|c(α)> 0, α ∈ A􏼈 􏼉,

Suppχ(α) � u|χ(α)> 0, α ∈A􏼈 􏼉.
(8)

Remark 1

(i) Suppc(α) � U and Suppχ(α) � ϕ, ∀α ∈ A in the case
of a relative absolute FBSES

(ii) Suppc(α) � ϕ and Suppχ(α) � U, ∀α ∈ A in the case
of a relative null FBSES

Definition 11. An agree FBSES (c, χ,A)1 on the universeU
is a fuzzy bipolar soft expert subset of (c, χ,A) given as

(c, χ,A)1 � c1(α), χ1(α): α ∈ V × E × 1{ }􏼈 􏼉. (9)

Table 4: FBSES (c, χ,A).

(c, χ,A) u1 u2 u3 u4 u5

(ϑ1, x, 1) (0.10, 0.80) (0.30, 0.40) (0.70, 0.00) (0.20, 0.20) (0.50, 0.40)
(ϑ2, x, 0) (0.05, 0.80) (0.40, 0.30) (0.50, 0.10) (0.10, 0.15) (0.40, 0.40)
(ϑ3, y, 1) (1.00, 0.00) (0.50, 0.50) (0.10, 0.80) (0.40, 0.50) (0.50, 0.50)

Table 5: FBSES (c1, χ1,B).

(c1, χ1,B) u1 u2 u3 u4 u5

(ϑ1, x, 1) (0.20, 0.50) (0.40, 0.20) (0.70, 0.00) (0.20, 0.10) (0.60, 0.30)
(ϑ1, z, 1) (0.10, 0.40) (0.50, 0.30) (0.60, 0.10) (0.10, 0.20) (0.40, 0.20)
(ϑ2, x, 0) (0.20, 0.70) (0.50, 0.20) (0.50, 0.10) (0.20, 0.10) (0.50, 0.20)
(ϑ3, y, 1) (1.00, 0.00) (0.60, 0.40) (0.30, 0.70) (0.50, 0.30) (0.50, 0.35)

Table 3: Tabular form of FBSES (c, χ, X).

(c, χ, X) u1 u2 u3 u4 u5

(ϑ1, x, 1) (0.1, 0.8) (0.3, 0.4) (0.7, 0.0) (0.2, 0.2) (0.5, 0.4)
(ϑ1, y, 1) (0.1, .85) (0.4, .35) (0.8, 0.1) (0.1, 0.1) (0.4, 0.5)
(ϑ1, z, 1) (0.2, 0.7) (.25, .25) (0.7, 0.2) (0.2, 0.2) (0.4, 0.4)
(ϑ2, x, 1) (0.0, 0.6) (0.4, 0.3) (0.8, 0.0) (0.1, 0.0) (0.3, .35)
(ϑ2, y, 1) (.05, 0.7) (0.5, 0.3) (0.7, 0.0) (0.1, .05) (.35, 0.4)
(ϑ2, z, 1) (0.0, 0.6) (0.2, .25) (0.6, 0.0) (.15, 0.1) (0.4, 0.4)
(ϑ3, x, 1) (0.0, 0.8) (0.3, 0.3) (0.7, 0.1) (0.2, 0.1) (0.3, 0.5)
(ϑ3, y, 1) (.05, 0.8) (0.4, 0.3) (0.5, 0.1) (0.1, .15) (0.4, 0.4)
(ϑ3, z, 1) (0.0, 0.9) (0.3, 0.4) (0.7, .05) (0.2, 0.1) (0.5, 0.4)
(ϑ1, x, 0) (0.8, 0.1) (0.5, 0.5) (0.1, 0.8) (0.5, 0.5) (0.5, 0.4)
(ϑ1, y, 0) (0.9, 0.1) (0.5, 0.4) (0.2, 0.8) (0.5, 0.5) (0.5, 0.4)
(ϑ1, z, 0) (0.8, 0.2) (0.6, 0.4) (0.2, 0.7) (0.5, 0.5) (0.4, 0.4)
(ϑ2, x, 0) (1.0, 0.0) (0.5, 0.5) (0.1, 0.8) (0.4, 0.5) (0.5, 0.5)
(ϑ2, y, 0) (0.9, .05) (0.4, 0.5) (0.2, 0.7) (0.5, 0.4) (0.6, .35)
(ϑ2, z, 0) (0.9, 0.1) (0.8, 0.2) (0.3, 0.6) (0.5, 0.5) (0.5, 0.4)
(ϑ3, x, 0) (0.8, 0.1) (0.6, 0.4) (0.1, 0.7) (0.4, 0.6) (0.6, 0.3)
(ϑ3, y, 0) (0.8, 0.1) (0.5, 0.4) (0.3, 0.5) (0.5, 0.5) (0.5, 0.4)
(ϑ3, z, 0) (0.9, 0.0) (0.5, 0.4) (0.2, 0.7) (0.5, 0.4) (0.4, 0.5)

Table 6: (c, χ,A)c.

(c, χ,A)c u1 u2 u3 u4 u5

(ϑ1, x, 1) (0.80, 0.10) (0.40, 0.30) (0.00, 0.70) (0.20, 0.20) (0.40, 0.50)
(ϑ2, x, 0) (0.80, 0.05) (0.30, 0.40) (0.10, 0.50) (0.15, 0.10) (0.40, 0.40)
(ϑ3, y, 1) (0.00, 1.00) (0.50, 0.50) (0.80, 0.10) (0.50, 0.40) (0.50, 0.50)
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Definition 12. A disagree FBSES (c, χ,A)0 over the universe
U is a fuzzy bipolar soft expert subset of (c, χ,A) given by

(c, χ,A)0 � c0(α), χ0(α): α ∈ V × E × 0{ }􏼈 􏼉. (10)

Example 4. Consider the FBSES discussed in Example 1.
%en, the agree FBSES and disagree FBSES are represented
in Tables 7 and 8 , respectively.

Definition 13. For any two FBSESs (c, χ,A) and (c1, χ1,B)

over U, “(c, χ,A) AND (c1, χ1,B)” denoted by
(c, χ,A)⊼ (c1, χ1,B) is defined as

(c, χ,A)⊼ c1, χ1,B( 􏼁 � (H, I,A × B), (11)

where H(α, β) � min(c(α), c1(β)) and I(α, β) � max
(χ(α), χ1(β)), ∀(α, β) ∈ A × B, (α, β) ∈A × B.

Example 5. Consider a company needs to fill a position, for
which U � u1, u2, u3, u4􏼈 􏼉 represents the shortlisted candi-
dates. Now the hiring board consisting of 2 members rep-
resented by E � x, y􏼈 􏼉 considers V �{ϑ1 � sound
experience, ϑ2 � intelligence, ϑ3 � good communication} and
V� {ϑ1 � little experience, ϑ2 � stupidity, ϑ3 � bad commu-
nication} as the decision parameters.

Let A � (ϑ1, x, 1), (ϑ2, y, 1), (ϑ3, x, 0)􏼈 􏼉 and B � (ϑ1, x,􏼈

0), (ϑ2, y, 1), (ϑ3, y, 1)}. Suppose (c, χ,A) and (c1, χ1,B)

are two FBSESs over U defined in Tables 9 and 10,
respectively.

%en, by Definition 13, the fuzzy bipolar soft expert
AND operation between the above-defined FBSESs is given
in Table 11.

Definition 14. For any two FBSESs (c, χ,A) and (c1, χ1,B)

over U, “(c, χ,A) OR (c1, χ1,B)” denoted by
(c, χ,A)⊻ (c1, χ1,B) is defined as

(c, χ,A)⊻ c1, χ1,B( 􏼁 � (�H,�I,A × B), (12)

where �H(α, β) � max(c(α), c1(β)) and �I(α, β) � min
(χ(α), χ1(β)), ∀ (α, β) ∈ A × B, (α, β) ∈A × B.

Proposition 2. Let (c, χ,A) and (c1, χ1,B) be two FBSESs
on U, then

(1) ((c, χ,A)⊼ (c1, χ1,B))c � (c, χ,A)c ⊻ (c1, χ1,B)c

(2) ((c, χ,A)⊻ (c1, χ1,B))c � (c, χ,A)c ⊼ (c1, χ1,B)c

Proof

(1) Let (c, χ,A)⊼ (c1, χ1,B) � (J, K,A × B). %en for
all (α, β) ∈ A × B,

(c, χ,A)⊼ c1, χ1,B( 􏼁( 􏼁
c

� (J, K,A × B)
c

� J
c
, K

c
,A × B( 􏼁,

(13)

where Jc � (min(c(α), c1(β)))c � max(cc(α),

cc
1(β)) and Kc � (max(χ(α), χ1(β)))c � min(χc(α),

χc
1(β)).

Now, let for all (α, β) ∈ A × B,

(c, χ,A)
c ⊻ c1, χ1,B( 􏼁

c
� (M, N,A × B), (14)

where M � max(cc(α), cc
1(β)) and N � min

(χc(α), χc
1(β)).

Clearly, we have M � Jc and N � Kc. Hence

(c, χ,A)⊼ c1, χ1,B( 􏼁( 􏼁
c

� (c, χ,A)
c ⊻ c1, χ1,B( 􏼁

c
.

(15)

(2) Let (c, χ,A)⊻ (c1, χ1,B) � (J, K,A × B). %en, for
all (α, β) ∈ A × B,

(c, χ,A)⊻ c1, χ1,B( 􏼁( 􏼁
c

� (J, K,A × B)
c

� J
c
, K

c
,A × B( 􏼁,

(16)

where Jc � (max(c(α), c1(β)))c � min(cc(α), cc
1

(β)) and Kc � (min(χ(α), χ1(β)))c � max(χc(α),

χc
1(β)).

Table 7: Agree FBSES (c, χ, X)1.

(c, χ, X)1 u1 u2 u3 u4 u5

(ϑ1, x) (0.1, 0.8) (0.3, 0.4) (0.7, 0.0) (0.2, 0.2) (0.5, 0.4)
(ϑ1, y) (0.1, .85) (0.4, .35) (0.8, 0.1) (0.1, 0.1) (0.4, 0.5)
(ϑ1, z) (0.2, 0.7) (.25, .25) (0.7, 0.2) (0.2, 0.2) (0.4, 0.4)
(ϑ2, x) (0.0, 0.6) (0.4, 0.3) (0.8, 0.0) (0.1, 0.0) (0.3, .35)
(ϑ2, y) (.05, 0.7) (0.5, 0.3) (0.7, 0.0) (0.1, .05) (.35, 0.4)
(ϑ2, z) (0.0, 0.6) (0.2, .25) (0.6, 0.0) (.15, 0.1) (0.4, 0.4)
(ϑ3, x) (0.0, 0.8) (0.3, 0.3) (0.7, 0.1) (0.2, 0.1) (0.3, 0.5)
(ϑ3, y) (.05, 0.8) (0.4, 0.3) (0.5, 0.1) (0.1, .15) (0.4, 0.4)
(ϑ3, z) (0.0, 0.9) (0.3, 0.4) (0.7, .05) (0.2, 0.1) (0.5, 0.4)

Table 8: Disagree FBSES (c, χ, X)0.

(c, χ, X)0 u1 u2 u3 u4 u5

(ϑ1, x) (0.8, 0.1) (0.5, 0.5) (0.1, 0.8) (0.5, 0.5) (0.5, 0.4)
(ϑ1, y) (0.9, 0.1) (0.5, 0.4) (0.2, 0.8) (0.5, 0.5) (0.5, 0.4)
(ϑ1, z) (0.8, 0.2) (0.6, 0.4) (0.2, 0.7) (0.5, 0.5) (0.4, 0.4)
(ϑ2, x) (1.0, 0.0) (0.5, 0.5) (0.1, 0.8) (0.4, 0.5) (0.5, 0.5)
(ϑ2, y) (0.9, .05) (0.4, 0.5) (0.2, 0.7) (0.5, 0.4) (0.6, .35)
(ϑ2, z) (0.9, 0.1) (0.8, 0.2) (0.3, 0.6) (0.5, 0.5) (0.5, 0.4)
(ϑ3, x) (0.8, 0.1) (0.6, 0.4) (0.1, 0.7) (0.4, 0.6) (0.6, 0.3)
(ϑ3, y) (0.8, 0.1) (0.5, 0.4) (0.3, 0.5) (0.5, 0.5) (0.5, 0.4)
(ϑ3, z) (0.9, 0.0) (0.5, 0.4) (0.2, 0.7) (0.5, 0.4) (0.4, 0.5)

Table 9: FBSES (c, χ,A).

(c, χ,A) u1 u2 u3 u4

(ϑ1, x, 1) (0.70, 0.10) (0.50, 0.30) (0.90, 0.00) (0.30, 0.40)
(ϑ2, y, 1) (0.80, 0.10) (0.40, 0.30) (0.80, 0.10) (0.50, 0.20)
(ϑ3, x, 0) (0.30, 0.50) (0.40, 0.30) (0.20, 0.60) (0.10, 0.80)

Table 10: FBSES (c1, χ1,B).

(c1, χ1,B) u1 u2 u3 u4

(ϑ2, y, 1) (0.80, 0.10) (0.40, 0.30) (0.80, 0.10) (0.50, 0.20)
(ϑ3, y, 1) (0.60, 0.20) (0.40, 0.30) (0.50, 0.30) (0.80, 0.10)
(ϑ1, x, 0) (0.20, 0.70) (0.40, 0.50) (0.10, 0.90) (0.60, 0.40)
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Now, let for all (α, β) ∈ A × B,

(c, χ,A)
c ⊼ c1, χ1,B( 􏼁

c
� (M, N,A × B). (17)

where M � min(cc(α), cc
1(β)) and N � max

(χc(α), χc
1(β)).

Clearly, we have M � Jc and N � Kc. Hence

(c, χ,A)⊻ c1, χ1,B( 􏼁( 􏼁
c

� (c, χ,A)
c ⊼ c1, χ1,B( 􏼁

c
.

(18)
□

Example 6. Consider the FBSESs discussed in Example 5. By
Definition 14, the fuzzy bipolar soft expert OR operation on
these sets (i.e., (c, χ,A)⊻ (c1, χ1,B) � (�H,�I,A × B)) is
given in Table 12.

Proposition 3. If (c1, χ1,A), (c2, χ2,B), and (c3, χ3,C) are
3 FBSESs over the universe U, then

(1) (c1, χ1,A)⊻ ((c2, χ2,B)⊻ (c3, χ3,C)) � ((c1, χ1, A)

⊻ (c2, χ2,B))⊻ (c3, χ3,C)

(2) (c1, χ1,A)⊼ ((c2, χ2,B)⊼ (c3, χ3,C)) � ((c1, χ1,A)

⊼ (c2, χ2,B))⊼ (c3, χ3,C)

(3) (c1, χ1,A)⊻ ((c2, χ2,B)⊼ (c3, χ3,C)) � ((c1, χ1,A)

⊻ (c2, χ2,B))⊼((c1, χ1,B)⊻ (c3, χ3,C)))

(4) (c1, χ1,A)⊼ ((c2, χ2,B)⊻ (c3, χ3,C)) � ((c1, χ1,A)

⊼ (c2, χ2,B))⊻ ((c1, χ1,B)⊼ (c3, χ3,C))

Proof

(1) Suppose that c2(β)⊻ c3(λ) � max(c2(β), c3(λ)),

∀(β, λ) ∈B × C.
%en,

c1(α)⊻ c2(β)⊻ c3(λ)( 􏼁 � max c1(α), max c2(β), c3(λ)( 􏼁( 􏼁, ∀(α, (β, λ)) ∈ A × B × C

� max max c1(α), c2(β)( 􏼁, c3(λ)( 􏼁, ∀((α, β), λ) ∈ A × B × C

� c1(α)⊻ c2(β)( 􏼁⊻ c3(λ)( 􏼁.

(19)

Again suppose that χ2(β)⊻ χ3(λ) � min(χ2(β), χ3
(λ)), ∀(β, λ) ∈B × C.

%en,

χ1(α)⊻ χ2(β)⊻ χ3(λ)( 􏼁 � min χ1(α), min χ2(β), χ3(λ)( 􏼁( 􏼁, ∀(α, (β, λ)) ∈ A × B × C

� min min χ1(α), χ2(β)( 􏼁, χ3(λ)( 􏼁, ∀((α, β), λ) ∈ A × B × C

� χ1(α)⊻ χ2(β)( 􏼁⊻ χ3(λ)( 􏼁.

(20)

Hence (c1, χ1,A)⊻ ((c2, χ2,B)⊻ (c3, χ3,C)) �

((c1, χ1,A)⊻ (c2, χ2,B)) ⊻ (c3, χ3,C).
(2) Suppose that c2(β)∧ c3(λ) � min(c2(β), c3

(λ)), ∀(β, λ) ∈B × C.

Table 11: AND operation between FBSESs (c, χ,A) and (c1, χ1,B).

(H, I,A × B) u1 u2 u3 u4

(ϑ1, x, 1)⊼(ϑ2, y, 1) (0.70, 0.10) (0.40, 0.30) (0.80, 0.10) (0.30, 0.40)
(ϑ1, x, 1)⊼(ϑ3, y, 1) (0.60, 0.20) (0.40, 0.30) (0.50, 0.30) (0.30, 0.40)
(ϑ1, x, 1)⊼(ϑ1, x, 0) (0.20, 0.70) (0.40, 0.50) (0.10, 0.90) (0.30, 0.40)
(ϑ2, y, 1)⊼(ϑ2, y, 1) (0.80, 0.10) (0.40, 0.30) (0.80, 0.10) (0.50, 0.20)
(ϑ2, y, 1)⊼(ϑ3, y, 1) (0.60, 0.20) (0.40, 0.30) (0.50, 0.30) (0.50, 0.20)
(ϑ2, y, 1)⊼(ϑ1, x, 0) (0.20, 0.70) (0.40, 0.50) (0.10, 0.90) (0.50, 0.40)
(ϑ3, x, 0)⊼(ϑ2, y, 1) (0.30, 0.50) (0.40, 0.30) (0.20, 0.60) (0.10, 0.80)
(ϑ3, x, 0)⊼(ϑ3, y, 1) (0.30, 0.50) (0.40, 0.30) (0.20, 0.60) (0.10, 0.80)
(ϑ3, x, 0)⊼(ϑ1, x, 0) (0.20, 0.70) (0.40, 0.50) (0.10, 0.90) (0.10, 0.80)
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%en,

c1(α)⊼ c2(β)⊼ c3(λ)( 􏼁 � min c1(α), min c2(β), c3(λ)( 􏼁( 􏼁, ∀(α, (β, λ)) ∈ A × B × C

� min min c1(α), c2(β)( 􏼁, c3(λ)( 􏼁, ∀((α, β), λ) ∈ A × B × C

� c1(α)⊼ c2(β)( 􏼁⊼ c3(λ)( 􏼁.

(21)

Again suppose that χ2(β)⊼ χ3(λ) � max(χ2(β),

χ3(λ)), ∀(β, λ) ∈B × C.
%en,

χ1(α)⊼ χ2(β)⊼ χ3(λ)( 􏼁 � max χ1(α), max χ2(β), χ3(λ)( 􏼁( 􏼁, ∀(α, (β, λ)) ∈ A × B × C

� max max χ1(α), χ2(β)( 􏼁, χ3(λ)( 􏼁, ∀((α, β), λ) ∈ A × B × C

� χ1(α)⊼ χ2(β)( 􏼁⊼ χ3(λ)( 􏼁.

(22)

Hence (c1, χ1,A)⊼ ((c2, χ2,B)⊼ (c3,

χ3,C)) � ((c1, χ1,A)⊼ (c2, χ2,B))⊼ (c3, χ3,C).
(3) Suppose that c2(β)⊼ c3(λ) � min(c2(β), c3

(λ)), ∀(β, λ) ∈B × C.
%en,

c1(α)⊻ c2(β)⊼ c3(λ)( 􏼁 � max c1(α), min c2(β), c3(λ)( 􏼁( 􏼁, ∀(α, (β, λ)) ∈ A × B × C

� min max c1(α), c2(β)( 􏼁, max c1(α), c3(λ)( 􏼁( 􏼁

� c1(α)⊻ c2(β)( 􏼁⊼ c1(α)⊻ c3(λ)( 􏼁.

(23)

Now suppose that χ2(β)⊼ χ3(λ) � max(χ2(β),

χ3(λ)), ∀(β, λ) ∈B × C.
%en,

χ1(α)⊻ χ2(β)⊼ χ3(λ)( 􏼁 � min χ1(α), max χ2(β), χ3(λ)( 􏼁( 􏼁, ∀(α, (β, λ)) ∈ A × B × C

� max min χ1(α), χ2(β)( 􏼁, min χ1(α), χ3(λ)( 􏼁( 􏼁

� χ1(α)⊻ χ2(β)( 􏼁⊼ χ1(α)⊻ χ3(λ)( 􏼁.

(24)

Hence, (c1, χ1,A)⊻ ((c2, χ2,B) ⊼ (c3, χ3,C)) �

((c1, χ1,A)⊻ (c2, χ2,B))

⊼ ((c1, χ1,B)⊻ (c3, χ3,C)).
(4) Similar to 3. □

Definition 15. Extended fuzzy union of any two FBSESs
(c, χ,A) and (c1, χ1,B) over the same universeU results in
a new FBSES (H∪, I∩, C) over U, where C � A∪B and for
all α ∈ C,

Table 12: OR operation between FBSESs (c, χ,A) and (c1, χ1,B).

(�H,�I,A × B) u1 u2 u3 u4

(ϑ1, x, 1)⊻(ϑ2, y, 1) (0.80, 0.10) (0.50, 0.30) (0.90, 0.00) (0.50, 0.20)
(ϑ1, x, 1)⊻(ϑ3, y, 1) (0.70, 0.10) (0.50, 0.30) (0.90, 0.00) (0.80, 0.10)
(ϑ1, x, 1)⊻(ϑ1, x, 0) (0.70, 0.10) (0.50, 0.30) (0.90, 0.00) (0.60, 0.40)
(ϑ2, y, 1)⊻(ϑ2, y, 1) (0.80, 0.10) (0.40, 0.30) (0.80, 0.10) (0.50, 0.20)
(ϑ2, y, 1)⊻(ϑ3, y, 1) (0.80, 0.10) (0.40, 0.30) (0.80, 0.10) (0.80, 0.10)
(ϑ2, y, 1)⊻(ϑ1, x, 0) (0.80, 0.10) (0.40, 0.30) (0.80, 0.10) (0.60, 0.20)
(ϑ3, x, 0)⊻(ϑ2, y, 1) (0.80, 0.10) (0.40, 0.30) (0.80, 0.10) (0.50, 0.20)
(ϑ3, x, 0)⊻(ϑ3, y, 1) (0.60, 0.20) (0.40, 0.30) (0.50, 0.30) (0.80, 0.10)
(ϑ3, x, 0)⊻(ϑ1, x, 0) (0.30, 0.50) (0.40, 0.30) (0.20, 0.60) (0.60, 0.40)
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H∪(α) �

c(α), if α ∈ A − B,

c1(α), if α ∈B − A,

max c(α), c1(α)( 􏼁, if α ∈ A∩B,

⎧⎪⎪⎨

⎪⎪⎩

I∩(α) �

χ(α), if α ∈ (A) − (B),

χ1(α), if α ∈ (B) − (A),

min χ(α), χ1(α)( 􏼁, if α ∈ (A)∩ (B).

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(25)

We denote it by (c, χ,A)􏽣∪ (c1, χ1,B) � (H∪, I∩, C).

Example 7. A business corporation decides to boost its
business by using an AI virtual chatbot to reply the queries of
their customers more efficiently and make better integration
with all forums. %e corporation assigns the task to two
experienced virtual assistants to compare the available AI
chatbots in order to find the best one for their needs.

%e set U � u1, u2, u3, u4, u5􏼈 􏼉 represents the available
competing AI virtual chatbots. %e set V� {ϑ1 � quick re-
sponse, ϑ2 � powerful integration, ϑ3 � comprehension}
represents the suitable parameters; then, V� {ϑ1 � loose
response, ϑ2 �weak integration, ϑ3 �misinterpretation}. Let
E � x, y􏼈 􏼉 represent the set of experts and
O � 1 � agree, 0 � disagree􏼈 􏼉 represent the set of opinions.

Let A � (ϑ1, x, 1), (ϑ2, x, 1), (ϑ3, y, 0)􏼈 􏼉 and
B � (ϑ1, x, 1), (ϑ1, y, 1), (ϑ2, x, 1)􏼈 􏼉. Now suppose that we
have the FBSESs (c, χ,A) and (c1, χ1,B) defined in Ta-
bles 13 and 14 , respectively.

%en their extended union (H∪, I∩, C), where
C � A∪B, is defined in Table 15.

Definition 16. Extended fuzzy intersection of two FBSESs
(c, χ,A) and (c1, χ1,B) on U results in a new FBSES
(H∩, I∪, C) over U, where C � A∪B and ∀α ∈ C,

H∩(α) �

c(α), if α ∈ A − B,

c1(α), if α ∈B − A,

min c(α), c1(α)( 􏼁, if α ∈ A∩B,

⎧⎪⎪⎨

⎪⎪⎩

I∪(α) �

χ(α), if α ∈ (A) − (B),

χ1(α), if α ∈ (B) − (A),

max χ(α), χ1(α)( 􏼁, if α ∈ (A)∩ (B).

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(26)

We denote it by (c, χ,A)􏽣∩ (c1, χ1,B) � (H∩, I∪, C).

Example 8. Consider the FBSESs (c, χ,A) and (c1, χ1,B) in
Example 7. %eir extended intersection (H∩, I∪, C), where
C � A × B, is defined in Table 16.

Proposition 4. If (c1, χ1,A), (c2, χ2,B), and (c3, χ3,C) are
three FBSESs on universe U, then

(1) (c1, χ1,A)􏽣∪ (c2, χ2,B) � (c2, χ2,B)􏽣∪ (c1, χ1,A)

(2) (c1, χ1,A)􏽣∩ (c2, χ2,B) � (c2, χ2,B)􏽣∩ (c1, χ1,A)

(3) (c1, χ1,A)􏽣∪ ((c2, χ2, B)􏽣∪ (c3, χ3,C)) � ((c1,

χ1,A)􏽣∪ (c2, χ2,B))􏽣∪ (c3, χ3,C)

(4) (c1, χ1,A)􏽣∩ ((c2, χ2, B)􏽣∩ (c3, χ3,C)) � ((c1, χ1,
A)􏽣∩ (c2, χ2,B)) 􏽣∩ (c3, χ3,C)

Proof. (1) Let (c1, χ1,A)􏽣∪ (c2, χ2,B) � (P, Q,A∪B).
From Definition 15, for all α ∈ A∪B, we have

P(α) �

c1(α), if α ∈ A − B,

c2(α), if α ∈B − A,

max c1(α), c2(α)( 􏼁, if α ∈ A∩B,

⎧⎪⎪⎨

⎪⎪⎩

Q(α) �

χ1(α), if α ∈ (A) − (B),

χ2(α), if α ∈ (B) − (A),

min χ1(α), χ2(α)( 􏼁, if α ∈ (A)∩ (B).

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(27)

We consider only the nontrivial case when α ∈ A∩B,
and then we have

c1(α)􏽣∪ c2(α) � P(α) � max c1(α), c2(α)( 􏼁 � max c2(α), c1(α)( 􏼁 � c2(α)􏽣∪ c1(α). (28)

Similarly,

χ1(α)􏽣∪ χ2(α) � Q(α) � min χ1(α), χ2(α)( 􏼁 � min χ2(α), χ1(α)( 􏼁 � χ2(α)􏽣∪ χ1(α). (29)
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Hence, it proves that (c1, χ1,A)􏽣∪ (c2, χ2,B) � (c2, χ2,
B)􏽣∪ (c1, χ1,A).

Proofs of other parts are similar to part 1. □

Definition 17. Restricted fuzzy union of two FBSESs
(c, χ,A) and (c1, χ1,B) over the common universe U re-
sults in a new FBSES (c, χ,A)􏽣∪ R(c1, χ1,B) � (H∪′ , I∩′ , C)

over U, where C � A∩B≠∅ and ∀α ∈ C,

H∪′(α) � max c(α), c1(α)( 􏼁,

I∩′(α) � min χ(α), χ1(α)( 􏼁.
(30)

Definition 18. Restricted fuzzy intersection of two FBSESs
(c, χ,A) and (c1, χ1,B) on universe U results in a new

FBSES (c, χ,A)􏽣∩ R(c1, χ1,B) � (H∩′ , I∪′ , C) overU, where
C � A∩B≠∅ and ∀α ∈ C,

H∩′ (α) � min c(α), c1(α)( 􏼁,

I∪′ (α) � max χ(α), χ1(α)( 􏼁.
(31)

Example 9. Consider the FBSESs (c, χ,A) and (c1, χ1,B) in
Example 7. If C � A∩B, then by Definition 17, their re-
stricted union is defined in Table 17.

Similarly by Definition 18, we have the restricted in-
tersection in Table 18 as (c, χ,A)􏽣∩ R (c1, χ1,B)

� (H∩′ , I∪′ , C).

Proposition 5. If (c1, χ1,A), (c2, χ2,B), and (c3, χ3,C) are
three FBSESs on U, then

Table 15: (H∪, I∩, C).

(H∪, I∩, C) u1 u2 u3 u4 u5

(ϑ1, x, 1) (0.50, 0.30) (0.50, 0.20) (0.80, 0.10) (0.40, 0.30) (0.80, 0.10)
(ϑ1, y, 1) (0.40, 0.50) (0.60, 0.20) (0.80, 0.10) (0.40, 0.40) (0.70, 0.20)
(ϑ2, x, 1) (0.50, 0.20) (0.60, 0.20) (0.80, 0.00) (0.50, 0.30) (0.40, 0.40)
(ϑ3, y, 0) (0.40, 0.50) (0.30, 0.50) (0.30, 0.40) (0.50, 0.40) (0.20, 0.60)

Table 16: (H∩, I∪, C).

(H∩, I∪, C) u1 u2 u3 u4 u5

(ϑ1, x, 1) (0.40, 0.40) (0.50, 0.30) (0.70, 0.20) (0.30, 0.40) (0.70, 0.10)
(ϑ1, y, 1) (0.40, 0.50) (0.60, 0.20) (0.80, 0.10) (0.40, 0.40) (0.70, 0.20)
(ϑ2, x, 1) (0.50, 0.40) (0.50, 0.20) (0.80, 0.10) (0.50, 0.30) (0.30, 0.50)
(ϑ3, y, 0) (0.40, 0.50) (0.30, 0.50) (0.30, 0.40) (0.50, 0.40) (0.20, 0.60)

Table 13: (c, χ,A).

(c, χ,A) u1 u2 u3 u4 u5

(ϑ1, x, 1) (0.40, 0.30) (0.50, 0.20) (0.80, 0.10) (0.30, 0.40) (0.70, 0.10)
(ϑ2, x, 1) (0.50, 0.25) (0.60, 0.20) (0.80, 0.00) (0.55, 0.30) (0.30, 0.50)
(ϑ3, y, 0) (0.40, 0.50) (0.30, 0.50) (0.30, 0.40) (0.50, 0.40) (0.20, 0.60)

Table 14: (c1, χ1, B).

(c1, χ1, B) u1 u2 u3 u4 u5

(ϑ1, x, 1) (0.50, 0.40) (0.50, 0.30) (0.70, 0.20) (0.40, 0.30) (0.80, 0.10)
(ϑ1, y, 1) (0.40, 0.50) (0.60, 0.20) (0.80, 0.10) (0.40, 0.40) (0.70, 0.20)
(ϑ2, x, 1) (0.50, 0.40) (0.50, 0.20) (0.80, 0.10) (0.50, 0.30) (0.40, 0.40)

Table 17: Restricted union (H∪′ , I∩′ , C).

(H∪′ , I∩′ , C) u1 u2 u3 u4 u5

(ϑ1, x, 1) (0.50, 0.30) (0.50, 0.20) (0.80, 0.10) (0.40, 0.30) (0.80, 0.10)
(ϑ2, x, 1) (0.50, 0.20) (0.60, 0.20) (0.80, 0.00) (0.50, 0.30) (0.40, 0.40)
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(1) (c1, χ1,A)􏽣∪ R(c2, χ2,B) � (c2, χ2,B)􏽣∪ R

(c1, χ1,A)

(2) (c1, χ1,A)􏽣∩ R(c2, χ2,B) � (c2, χ2,B)􏽣∩ R(c1, χ1,
A)

(3) (c1, χ1,A)􏽣∪ R((c2, χ2,B) 􏽣∪ R(c3, χ3,C)) � ((c1, χ1,
A) 􏽣∪ R(c2, χ2,B)) 􏽣∪ R(c3, χ3,C)

(4) (c1, χ1,A)􏽣∩ R((c2, χ2,B) 􏽣∩ R(c3, χ3,C)) � ((c1, χ1,
A)􏽣∩ R(c2, χ2,B)) 􏽣∩ R(c3, χ3,C)

Proof. (1) For all α ∈ A∩B,

c1􏽣∪ Rc2)(α) � max c1(α), c2(α)( 􏼁 � max c2(α), c1(α)( 􏼁 � c2􏽣∪ Rc1)(α).(( (32)

Similarly for all α ∈A∩B,

χ1􏽣∪ Rχ2)(α) � min χ1(α), χ2(α)( 􏼁 � min χ2(α), χ1(α)( 􏼁 � χ2􏽣∪ Rχ1)(α).(( (33)

Hence (c1, χ1,A)􏽣∪ R(c2, χ2,B) � (c2, χ2,B)
􏽣∪ R(c1, χ1,A).

Proofs of other parts are similar to part 1. □

Proposition 6. If (c, χ,A) and (c1, χ1,B) are two FBSESs
on U, then

(1) ((c, χ,A)􏽣∪ (c1, χ1,B))c � (c, χ,A)c􏽣∩ (c1, χ1,B)c

(2) ((c, χ,A)􏽣∩ (c1, χ1,B))c � (c, χ,A)c􏽣∪ (c1, χ1,B)c

(3) ((c, χ,A)􏽣∪ R(c1, χ1,B))c � (c, χ,A)c

􏽣∩ R(c1, χ1,B)c

(4) ((c, χ,A)􏽣∩ R(c1, χ1,B))c � (c, χ,A)c􏽣∪ R

(c1, χ1,B)c

Proof. (1) %ere are 3 cases for α ∈ A∪B:

(i) If α ∈ A − B, then we have

c􏽣∪ c1)
c
(α) � (c)

c
� c

c􏽣∩ c
c
1)(α), χ􏽣∪ χ1)

c
(α) � (χ)

c
� χc􏽣∩ χc

1)(α).(((( (34)

(ii) If α ∈B − A, then we have

c􏽣∪ c1)
c
(α) � c1( 􏼁

c
� c

c􏽣∩ c
c
1)(α), χ􏽣∪ χ1)

c
(α) � χ1( 􏼁

c
� χc􏽣∩ χc

1)(α).(((( (35)

(iii) If α ∈ A∩B, then we have

c ∪̂ c1􏼐 􏼑
c
(α) � max c(α), c1(α)( 􏼁( 􏼁

c
� min c

c
(α), c

c
1(α)( 􏼁 � c

c ∪̂ c
c
1􏼐 􏼑(α),

χ ∪̂ χ1􏼐 􏼑
c
(α) � min χ(α), χ1(α)( 􏼁( 􏼁

c
� max χc

(α), χc
1(α)( 􏼁 � χc ∪̂ χc

1􏼐 􏼑(α).
(36)

In all three cases, it is obvious that

(c, χ,A)􏽣∪ c1, χ1,B( 􏼁)
c

� (c, χ,A)
c􏽣∩ c1, χ1,B( 􏼁

c
.(

(37)

Similarly, we can prove the remaining parts. □

Proposition 7. If (c, χ,A) and (c1, χ1,A) are two FBSESs
over U, then

(1) (c, χ,A)􏽣∪ (c1, χ1,A) � (c, χ,A)􏽣∪ R(c1, χ1,A)

(2) (c, χ,A)􏽣∩ (c1, χ1,A) � (c, χ,A)􏽣∩ R(c1, χ1,A)

(3) (c, χ,A)􏽣∪ (c, χ,A) � (c, χ,A)

Table 18: Restricted intersection (H∩′, I∪′, C).

(H∩′ , I∪′ , C) u1 u2 u3 u4 u5

(ϑ1, x, 1) (0.40, 0.40) (0.50, 0.30) (0.70, 0.20) (0.30, 0.40) (0.70, 0.10)
(ϑ2, x, 1) (0.50, 0.40) (0.50, 0.20) (0.80, 0.10) (0.50, 0.30) (0.30, 0.50)
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(4) (c, χ,A)􏽣∩ (c, χ,A) � (c, χ,A) Proof. (1) For all α ∈ A∪A � A∩A, we have

c ∪̂ c1􏼐 􏼑(α) � max c(α), c1(α)( 􏼁 � c ∪̂ Rc1􏼐 􏼑(α),

χ􏽣∪ χ1)(α) � min χ(α), χ1(α)( 􏼁 � χ􏽣∪ Rχ1)(α).((
(38)

Hence, (c, χ,A)􏽣∪ (c1, χ1,A) � (c, χ,A)􏽣∪ R(c1, χ1,A).
%e remaining parts can be proved in a similar fashion. □

Proposition 8. If (Φ,U,A) is a null FBSES, (U,Φ,A), an
absolute FBSES, and (c, χ,A) is any other FBSES onU, then

(1) (c, χ,A)􏽣∪ (Φ,U,A) � (c, χ,A)

(2) (c, χ,A)􏽣∩ (Φ,U,A) � (Φ,U,A)

(3) (c, χ,A)􏽣∪ (U,Φ,A) � (U,Φ,A)

(4) (c, χ,A)􏽣∩ (U,Φ,A) � (c, χ,A)

Proof

(1) For all α ∈ A∪A � A∩A � A, we have

(c􏽣∪Φ)(α) � max(c(α),Φ(α)) � max(c(α), 0) � c(α),

(39)

and for all α ∈A∪A � A∩A � A,

(χ􏽣∪U)(α) � min(χ(α),U(α)) � min(χ(α), 1) � χ(α).

(40)

Hence, (c, χ,A)􏽣∪ (Φ,U,A) � (c, χ,A).
(2) For all α ∈ A∪A � A � A∩A, we have

(c􏽣∩Φ)(α) � min(c(α),Φ(α)) � min(c(α), 0) � 0 � Φ(α),

(41)

and for all α ∈A∪A � A � A∩A,

(χ􏽣∩U)(α) � max(χ(α),U(α)) � max(χ(α), 1) � 1 � U(α).

(42)

Hence, (c, χ,A)􏽣∩ (Φ,U,A) � (Φ,U,A).

%e remaining parts can be easily verified with similar
arguments. □

Proposition 9. Let (c1, χ1,A), (c2, χ2,B), and (c3, χ3,C)

be any three FBSESs on U, then

(1) (c1, χ1,A)􏽣∩ R((c2, χ2,B)􏽣∪ (c3, χ3,C)) � ((c1, χ1,
A)􏽣∩ R(c2, χ2,B)) 􏽣∪ ((c1, χ1,A)􏽣∩ R(c3, χ3,C))

(2) (c1, χ1,A)􏽣∪ R((c2, χ2,B) 􏽣∩ (c3, χ3,C)) � ((c1,

χ1,A)􏽣∪ R(c2, χ2,B)) 􏽣∩ ((c1, χ1,A)􏽣∪ R(c3, χ3,C))

(3) (c1, χ1,A)􏽣∩ ((c2, χ2,B)􏽣∪ R(c3, χ3,C)) � ((c1, χ1,
A)􏽣∩ (c2, χ2,B))􏽣∪ R((c1, χ1,A) 􏽣∩ (c3, χ3,C))

(4) (c1, χ1,A)􏽣∪ ((c2, χ2,B)􏽣∩ R (c3, χ3,C)) � ((c1,

χ1,A)􏽣∪ (c2, χ2,B))􏽣∩ R ((c1, χ1,A)􏽣∪ (c3, χ3,C))

(5) (c1, χ1,A)􏽣∩ R((c2, χ2,B)􏽣∪ R(c3, χ3,C)) � ((c1, χ1,
A)􏽣∩ R(c2, χ2,B))􏽣∪ R ((c1, χ1,A)􏽣∩ R(c3, χ3,C))

(6) (c1, χ1,A)􏽣∪ R((c2, χ2,B)􏽣∩ R(c3, χ3,C)) � ((c1, χ1,
A)􏽣∪ R(c2, χ2,B))􏽣∩ R ((c1, χ1,A)􏽣∪ R(c3, χ3,C))

Proof

(1) Consider α ∈ A∩ (B∪C). %en, three possibilities
exist:

(i) If α ∈ A∩ (B − C), then

c1(α)􏽣∩ R c2􏽣∪ c3( 􏼁(α) � c1(α)􏽣∩ Rc2(α) � min c1(α), c2(α)( 􏼁,

χ1(α) ∩̂ R χ2 ∪̂ χ3􏼐 􏼑(α) � χ1(α)􏽣∩ Rχ2(α) � max χ1(α), χ2(α)( 􏼁,

c1􏽣∩ Rc2( 􏼁(α)􏽣∪ c1􏽣∩ Rc3( 􏼁(α) � max c1􏽣∩ Rc2( 􏼁(α),∅( 􏼁 � min c1(α), c2(α)( 􏼁,

χ1􏽣∩ Rχ2( 􏼁(α)􏽣∪ χ1􏽣∩ Rχ3( 􏼁(α) � min χ1􏽣∩ Rχ2( 􏼁(α),U( 􏼁 � max χ1(α), χ2(α)( 􏼁.

(43)

(ii) If α ∈ A∩ (C − B), then

c1(α)􏽣∩ R c2􏽣∪ c3( 􏼁(α) � c1(α)􏽣∩ Rc3(α) � min c1(α), c3(α)( 􏼁,

χ1(α)􏽣∩ R χ2􏽣∪ χ3( 􏼁(α) � χ1(α)􏽣∩ Rχ3(α) � max χ1(α), χ3(α)( 􏼁,

c1􏽣∩ Rc2( 􏼁(α)􏽣∪ c1􏽣∩ Rc3( 􏼁(α) � max ∅, c1􏽣∩ Rc3( 􏼁(α)( 􏼁 � min c1(α), c3(α)( 􏼁,

χ1􏽣∩ Rχ2( 􏼁(α)􏽣∪ χ1􏽣∩ Rχ3( 􏼁(α) � min U, χ1􏽣∩ Rχ3( 􏼁(α)( 􏼁 � max χ1(α), χ3(α)( 􏼁.

(44)
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(iii) If α ∈ A∩ (B∩C), then

c1(α)􏽣∩ R c2􏽣∪ c3( 􏼁(α) � c1(α)􏽣∩ R max c2(α), c3(α)( 􏼁 � min c1(α), max c2(α), c3(α)( 􏼁( 􏼁,

χ1(α)􏽣∩ R χ2􏽣∪ χ3( 􏼁(α) � χ1(α)􏽣∩ R min χ2(α), χ3(α)( 􏼁 � max χ1(α), min χ2(α), χ3(α)( 􏼁( 􏼁,

c1􏽣∩ Rc2( 􏼁(α)􏽣∪ c1􏽣∩ Rc3( 􏼁(α) � max c1􏽣∩ Rc2( 􏼁(α), c1􏽣∩ Rc3( 􏼁(α)( 􏼁

� max min c1(α), c2(α)( 􏼁, min c1(α)∩ c3(α)( 􏼁( 􏼁

� min c1(α), max c2(α), c3(α)( 􏼁( 􏼁, χ1􏽣∩ Rχ2( 􏼁(α) 􏽣∪ χ1􏽣∩ Rχ3( 􏼁(α)

� min χ1􏽣∩ Rχ2( 􏼁(α), χ1􏽣∩ Rχ3( 􏼁(α)( 􏼁

� min max χ1(α), χ2(α)( 􏼁, max χ1(α), χ3(α)( 􏼁( 􏼁

� max χ1(α), min χ2(α), χ3(α)( 􏼁( 􏼁.

(45)

Hence, we prove that in all 3 possibilities, we have
(c1, χ1,A)􏽣∩ R((c2, χ2,B)􏽣∪ (c3, χ3, C)) � ((c1, χ1,A)􏽣∩ R

(c2, χ2,B)) 􏽣∪ ((c1, χ1,A)􏽣∩ R(c3, χ3, C)).
Similarly, we can prove the remaining parts. □

3. Application of FBSESs in aMAGDMProblem

In this section, we will use the proposed FBSESmodel to deal
with the uncertainties in a real-life problem.

Definition 19. For agree and disagree FBSES tables with
entries aij � (cij, χij), the focus agree (f-agree) FBSES and
focus disagree (f-disagree) FBSES tables consist of i-th rows
and j-th columns with entries fij defined as

fij � cij − χij. (46)

Definition 20. %e f-agree score �ξj of an object ui ∈ U is
defined as

�ξ � 􏽘
i

fij, (47)

where fij is the ij-th entry of the focus agree FBSES table.

Definition 21. %e f-disagree score�ηj of an object ui ∈ U is
defined as

�η � 􏽘
i

fij, (48)

where fij is the ij-th entry of the focus disagree FBSES table.

Example 10. Ranking effectiveness of tests for spread
analysis of COVID-19.

COVID-19 is a highly contagious disease caused by
SARS-CoV-2 (severe acute respiratory syndrome corona-
virus 2). After being first time informed to theWHO (World
Health Organization) on December 31, 2019, when several
cases of an unknown pneumonia sort of disease were re-
ported in theWuhan city of China, this viral disease has been
the most important concern for the whole humanity. On
March 11, 2020, the WHO Director General officially

categorized this COVID-19 outbreak as a pandemic on the
basis of rapid increase in cases extending outside China all
over the world.%e outbreak has been declared to be a world
health emergency by the WHO.

%is novel and highly lethal disease has proved to spread
successfully in all weather conditions and all health stan-
dards (though a bit slower in certain situations). People
already suffering with chronic diseases such as diabetes,
cardio problems, and respiratory diseases are proved to be
more vulnerable to get the virus. %is virus hits all ages and
genders leaving no one safe to walk free. Children not very
vulnerable to the disease are otherwise highly affected by the
socioeconomic changes and the fear initiated by the out-
break. Strict lockdowns, closure of educational institutions,
lack of supplies, etc., caused by the outbreak are also con-
siderable factors ruining the economies and societies.

%is disease has proved to be a game changer since its
outbreak changing economies, restricting travels, isolating
countries, increasing casualties massively, andmakingmajor
demographic changes. %e virus causing COVID-19 is
mutating at a high rate and is, therefore, highly unpre-
dictable. According to the recent updates by the WHO as of
March 20, 2021, there have been 121,969,223 confirmed
cases globally of COVID-19, including 2,694,094 deaths
reported, and the numbers are still increasing. Since this is a
novel disease and is mutating, we do not have a medication
for the treatment of this disease. Different countries and
institutions claimed for different medicines to be helpful in
the treatment of COVID-19, but later proved to be wrong.
Different countries are developing and have developed
vaccines to save people from getting infected, but the
availability of vaccination to each and every person will take
a lot of time. Moreover, these vaccines might not work with
the virus’s new strands and have a success rate up to 80% to
90% only. It is, therefore, very necessary to keep track of the
spread effectively, so that it may be restricted frommoving to
less-affected or not-affected areas.

Currently, different types of tests are available for COVID-
19 playing a vital role in analyzing the spread of this disease and
helping the decision-makers and governments in making
policies, respectively. Let U � u1, u2, u3, u4􏼈 􏼉 be the set of
available tests for COVID-19, where
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(i) u1: rRT-PCR (real-time reverse transcription po-
lymerase chain reaction) is a diagnosis test for
COVID-19 with high specificity and sensitivity. %e
test is conducted using nasal or mouth swabs.

(ii) u2: CBNAAT (cartridge-based nucleic acid ampli-
fication test) is a diagnosis test formerly used in TB
diagnosis, now used in some countries for COVID-
19 diagnosis. It is faster than RT-PCR.

(iii) u3: Antigen tests target the spike proteins of
coronavirus in order to detect it as a foreign ma-
terial. Samples are taken by nasal swabs.

(iv) u4: Antibody tests also called serological tests for
COVID-19 detect antibodies created in a body
against COVID-19. %is test detects prior and
ongoing infections by detecting IgG and IgM an-
tibodies. Blood sample is used in this test.

Consider E � x, y􏼈 􏼉 to be the set of 2 agencies analyzing
the above-discussed COVID-19 diagnosis tests individually.
%e agencies consider the setV� {ϑ1, ϑ2, ..., ϑ10} as the set of
favorable characteristics of a good test, such that

(i) ϑ1: sensitivity� (true positives/true positives + false
negatives)

(ii) ϑ2: specificity� (true negatives/true neg-
atives + false positives)

(iii) ϑ3: positive predictive value (PPV)� (true posi-
tives/true positives + false positives) at 5%
prevalence

(iv) ϑ4: PPV at 10% prevalence
(v) ϑ5: PPV at 15% prevalence
(vi) ϑ6: negative predictive value (NPV)� (true nega-

tives/true negatives + false negatives) at 5%
prevalence

(vii) ϑ7: NPV at 10% prevalence
(viii) ϑ8: NPV at 15% prevalence
(ix) ϑ9: low test load (meaning minimum time, cost,

training, and equipment)
(x) ϑ10: independent (independent of age, disease se-

verity, and no reconfirmation by further tests)

However, the set V � ϑ1, ϑ2, . . . , ϑ10􏼈 􏼉 is considered as
the set of unfavorable characteristics, such that

(i) ϑ1: false-negative rate (FNR)� (false negatives/true
positives + false negatives)

(ii) ϑ2: false-positive rate (FPR)� (false positives/true
negatives + false positives)

(iii) ϑ3: false discovery rate (FDR)� (false positives/true
positives + false positives) at 5% prevalence

(iv) ϑ4: FDR at 10% prevalence
(v) ϑ5: FDR at 15% prevalence
(vi) ϑ6: false omission rate (FOR)� (false negatives/

true negatives + false negatives) at 5% prevalence
(vii) ϑ7: FOR at 10% prevalence

(viii) ϑ8: FOR at 15% prevalence
(ix) ϑ9: high test load (meaning maximum time, cost,

training, and equipment)
(x) ϑ10: dependent (dependent on age, disease severity,

and need confirmation by further tests)

For more clarification about the above-mentioned for-
mulas and tests one can visit the following link: https://en.
wikipedia.org/wiki/Sensitivity_and_specificity.

Note that PPV, NPV, FDR, and FOR are prevalence-
dependent factors and therefore are calculated at three
different levels in order to analyze the tests in maximum

Table 19: Agree FBSES (c, χ, X)1.

(c, χ, X)1 u1 u2 u3 u4

(ϑ1, x) (0.90, 0.10) (0.80, 0.20) (0.70, 0.30) (0.80, 0.20)
(ϑ1, y) (0.93, 0.07) (0.75, 0.25) (0.55, 0.45) (0.87, 0.13)
(ϑ2, x) (0.95, 0.05) (0.92, 0.08) (0.85, 0.15) (0.80, 0.20)
(ϑ2, y) (0.97, 0.03) (0.90, 0.10) (0.90, 0.10) (0.98, 0.02)
(ϑ3, x) (0.48, 0.51) (0.34, 0.65) (0.20, 0.80) (0.17, 0.83)
(ϑ3, y) (0.62, 0.38) (0.28, 0.72) (0.22, 0.77) (0.69, 0.30)
(ϑ4, x) (0.66, 0.33) (0.53, 0.47) (0.34, 0.66) (0.31, 0.69)
(ϑ4, y) (0.78, 0.22) (0.45, 0.54) (0.38, 0.62) (0.83, 0.17)
(ϑ5, x) (0.76, 0.23) (0.64, 0.36) (0.45, 0.55) (0.41, 0.59)
(ϑ5, y) (0.84, 0.15) (0.57, 0.43) (0.49, 0.51) (0.88, 0.11)
(ϑ6, x) (0.99, 0.00) (0.99, 0.01) (0.98, 0.02) (0.99, 0.01)
(ϑ6, y) (0.99, 0.00) (0.98, 0.01) (0.97, 0.02) (0.99, 0.01)
(ϑ7, x) (0.98, 0.01) (0.97, 0.02) (0.96, 0.04) (0.97, 0.03)
(ϑ7, y) (0.99, 0.01) (0.97, 0.03) (0.95, 0.05) (0.98, 0.01)
(ϑ8, x) (0.98, 0.02) (0.96, 0.03) (0.94, 0.06) (0.96, 0.04)
(ϑ8, y) (0.99, 0.01) (0.95, 0.04) (0.92, 0.08) (0.98, 0.02)
(ϑ9, x) (0.10, 0.80) (0.60, 0.30) (0.75, 0.10) (0.50, 0.50)
(ϑ9, y) (0.20, 0.70) (0.80, 0.15) (0.65, 0.15) (0.50, 0.45)
(ϑ10, x) (0.95, 0.00) (0.80, 0.15) (0.60, 0.30) (0.50, 0.50)
(ϑ10, y) (0.90, 0.05) (0.75, 0.20) (0.50, 0.40) (0.50, 0.50)

Table 20: Disagree FBSES (c, χ, X)0.

(c, χ, X)0 u1 u2 u3 u4

(ϑ1, x) (0.10, 0.85) (0.10, 0.80) (0.20, 0.70) (0.15, 0.75)
(ϑ1, y) (0.05, 0.90) (0.20, 0.70) (0.40, 0.50) (0.10, 0.85)
(ϑ2, x) (0.02, 0.95) (0.04, 0.90) (0.10, 0.85) (0.10, 0.85)
(ϑ2, y) (0.00, 0.95) (0.05, 0.90) (0.10, 0.80) (0.00, 0.96)
(ϑ3, x) (0.50, 0.45) (0.60, 0.35) (0.80, 0.20) (0.80, 0.15)
(ϑ3, y) (0.35, 0.60) (0.70, 0.20) (0.75, 0.15) (0.30, 0.65)
(ϑ4, x) (0.30, 0.65) (0.45, 0.50) (0.65, 0.35) (0.60, 0.30)
(ϑ4, y) (0.20, 0.75) (0.50, 0.40) (0.60, 0.35) (0.15, 0.80)
(ϑ5, x) (0.20, 0.70) (0.35, 0.60) (0.50, 0.40) (0.55, 0.40)
(ϑ5, y) (0.10, 0.85) (0.40, 0.55) (0.50, 0.45) (0.10, 0.85)
(ϑ6, x) (0.01, 0.99) (0.01, 0.95) (0.02, 0.95) (0.01, 0.95)
(ϑ6, y) (0.01, 0.99) (0.02, 0.95) (0.03, 0.94) (0.01, 0.95)
(ϑ7, x) (0.02, 0.95) (0.03, 0.94) (0.04, 0.90) (0.03, 0.94)
(ϑ7, y) (0.01, 0.95) (0.03, 0.94) (0.05, 0.90) (0.02, 0.95)
(ϑ8, x) (0.02, 0.95) (0.04, 0.95) (0.06, 0.90) (0.04, 0.90)
(ϑ8, y) (0.01, 0.95) (0.05, 0.90) (0.08, 0.90) (0.02, 0.95)
(ϑ9, x) (0.90, 0.10) (0.30, 0.65) (0.15, 0.80) (0.50, 0.45)
(ϑ9, y) (0.75, 0.20) (0.15, 0.80) (0.30, 0.60) (0.45, 0.50)
(ϑ10, x) (0.05, 0.90) (0.20, 0.80) (0.35, 0.60) (0.50, 0.45)
(ϑ10, y) (0.10, 0.90) (0.20, 0.75) (0.40, 0.50) (0.50, 0.45)
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possibilities. Moreover, all these values remain the same for
any sample. For instance, we considered a sample of 10,000
people in our assumptions.

%e agencies analyze the tests and make data depending
on the various kits and labs available in their respective areas
and we get the following.

Tables 19 and 20 represent the information collected by
the agencies regarding the tests in the form of agree FBSES
and disagree FBSES, respectively.

Algorithm 1 based on FBSES is used to compare and
rank the tests.

Using Tables 19 and 20, we calculate the focus agree and
focus disagree or simply f-agree and f-disagree scores, which
are displayed in Tables 21 and 22, respectively.

%e final score table (see Table 23) indicates that the best
available test is the rRT-PCR test. On the basis of the above
calculations and assumptions, the tests are then ranked in
their effectiveness as

rRT − PCR>CBNAAT> antibody test> antigen test.
(49)

Remark 2. %e above section gives a detailed comparison of
the four widely used COVID-19 diagnosis tests, but the
above details may vary with the original situation depending
on the quality of kits, personnel, and availability of re-
sources. Moreover, different techniques can prove to be
much effective than others in different scenarios. For in-
stance, RT-PCR takes more time; thus, for rapid testing,
CBNAAT and antigen tests are more useful (though
errorsome). For postdisease analysis, we use the antibody
tests that detect the antibodies against COVID-19 created by
the immune system of the body.

Figure 1 indicates how the sensitivity and specificity of
tests vary with each other and with themselves in different
conditions. In order to maximize the effectiveness, the
quality of the tests must not be compromised as a slight

(1) Input the FBSES (c, χ, X).
(2) Find the agree and disagree FBSES tables with entries aij � (cij, χij).
(3) Find the focus agree and focus disagree tables with entries fij � cij − χij.
(4) Determine the f-agree score�ξ ∈ D1:

�ξj � 􏽐ifij as the last row in the focus agree FBSES table.
(5) Determine the f-disagree score �η ∈ D0: �ηj � 􏽐ifij as the last row in the focus disagree FBSES table.
(6) Find the final score �λj ��ξj − �ηj.
(7) Find k for which �λk � max(�λj).
(8) Rank uk for ascending values of k.

ALGORITHM 1: Ranking of tests based on FBSES.

Table 21: f-Agree FBSES.

U u1 u2 u3 u4

(ϑ1, x) 0.80 0.60 0.40 0.60
(ϑ1, y) 0.86 0.50 0.10 0.74
(ϑ2, x) 0.90 0.84 0.70 0.60
(ϑ2, y) 0.94 0.80 0.80 0.96
(ϑ3, x) − 0.03 − 0.31 − 0.60 − 0.66
(ϑ3, y) 0.24 − 0.44 − 0.55 0.39
(ϑ4, x) 0.33 0.06 − 0.32 − 0.38
(ϑ4, y) 0.56 − 0.09 − 0.24 0.66
(ϑ5, x) 0.53 0.28 − 0.10 − 0.18
(ϑ5, y) 0.69 0.14 − 0.02 0.77
(ϑ6, x) 0.99 0.98 0.96 0.98
(ϑ6, y) 0.99 0.97 0.95 0.98
(ϑ7, x) 0.97 0.95 0.92 0.94
(ϑ7, y) 0.98 0.94 0.90 0.97
(ϑ8, x) 0.96 0.93 0.88 0.92
(ϑ8, y) 0.98 0.91 0.84 0.96
(ϑ9, x) − 0.70 0.30 0.65 0.00
(ϑ9, y) − 0.50 0.65 0.50 0.05
(ϑ10, x) 0.95 0.65 0.30 0.00
(ϑ10, y) 0.85 0.55 0.10 0.00
�ξ 12.29 10.21 7.17 9.30

Table 22: f-Disagree FBSES.

U u1 u2 u3 u4

(ϑ1, x) − 0.75 − 0.70 − 0.50 − 0.60
(ϑ1, y) − 0.85 − 0.50 − 0.10 − 0.75
(ϑ2, x) − 0.93 − 0.86 − 0.75 − 0.75
(ϑ2, y) − 0.95 − 0.85 − 0.70 − 0.96
(ϑ3, x) 0.05 0.25 0.60 0.65
(ϑ3, y) − 0.25 0.50 0.60 − 0.35
(ϑ4, x) − 0.35 − 0.05 0.30 0.30
(ϑ4, y) − 0.55 0.10 0.25 0.30
(ϑ5, x) − 0.50 − 0.25 0.10 0.15
(ϑ5, y) − 0.75 − 0.15 0.05 − 0.75
(ϑ6, x) − 0.98 − 0.94 − 0.93 − 0.94
(ϑ6, y) − 0.98 − 0.93 − 0.91 − 0.94
(ϑ7, x) − 0.93 − 0.91 − 0.86 − 0.91
(ϑ7, y) − 0.94 − 0.91 − 0.85 − 0.93
(ϑ8, x) − 0.93 − 0.91 − 0.84 − 0.86
(ϑ8, y) − 0.94 − 0.85 − 0.82 − 0.93
(ϑ9, x) 0.80 − 0.35 − 0.65 0.05
(ϑ9, y) 0.55 − 0.65 − 0.30 − 0.05
(ϑ10, x) − 0.85 − 0.60 − 0.25 0.05
(ϑ10, y) − 0.80 − 0.55 − 0.10 0.05
�η − 11.83 − 10.11 − 6.66 − 8.17

Table 23: Final scores.
�ξj � 􏽐ifij �ηj � 􏽐ifij

�λj ��ξj − �ηj

�ξ1 � 12.29 �η1 � − 11.83 �λ1 � 24.12
�ξ2 � 10.21 �η2 � − 10.11 �λ2 � 20.32
�ξ3 � 7.17 �η3 � − 6.66 �λ3 � 13.38
�ξ4 � 9.30 �η4 � − 8.17 �λ4 � 17.47

Mathematical Problems in Engineering 15



misinterpretation can prove to be disastrous on a large scale.
Figure 2 shows the dependence of number of cases on the
effectiveness of tests. Tests with the same specificity and
sensitivity can show major differences with varying preva-
lences. With a slight increase or decrease in prevalence
percentage, the number of false positives and false negatives
can change significantly. Keeping this in view, prevalence-
dependent factors have been analyzed at three different
levels. Despite the high test load, the rRT-PCR technique

appeared to be the most effective in all situations and is
therefore considered as the “gold standard” for testing.

In addition to the above diagnosis tests, contact tracing
can also prove to be an effective strategy if implemented
wisely. Countries such as China and South Korea used
mobile tracing apps and geolocalization technology to an-
nounce high infection areas and track those in contact with
the infected, thus getting a firm control on the spread of this
disease efficiently.
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Figure 1: Sensitivity and specificity variations.
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Figure 2: Prevalence dependence on PPV and NPV (at 5%, 10%, and 15% prevalence of disease).
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4. Comparative Analysis

To reveal the authenticity and viability of the developed
FBSES model, in this section we discuss its advantages,
limitations, and comparative analysis with fuzzy SESs and
fuzzy BSSs.

(i) Advantages: last few decades have proved to be very
productive in the decision sciences providing nu-
merous powerful uncertain models to deal with
uncertainties and vague information. More efficient
uncertain models and their hybrid structures are to
be proposed in order to deal with the uncertainties
and novel problems arising in the world. %e
existing fuzzy BSSs [9] and fuzzy SESs [15] have
proved their importance and effectiveness in dealing
difficult uncertain situations, but a more viable
model having mutual characteristics of both these
models is required. For this reason in this study, we
developed a novel hybrid model called FBSESs
which is capable of dealing with information in-
volving opinions of multiple experts in the fuzzy
bipolar environment. Hence, the developed model
is much authentic and viable in dealing MAGDM

situations comparatively. It can be readily seen that
the fuzzy BSSs cannot handle multiple expert
opinions. Similarly, fuzzy SESs fail to handle pa-
rameters efficiently in a bipolar environment.
Meanwhile, the proposed FBSES model is capable of
handling both fuzzy bipolar soft information and
fuzzy soft expert information collectively as well as
individually.

(ii) Comparison: when dealing with MAGDM prob-
lems, models such as fuzzy SESs [15] and fuzzy BSSs
[9] happen to be very productive in making correct
decisions. However, they are restricted to be used in
their respective environments because they can only
deal with the information supported by their re-
spective structures. %is issue can be solved by
combining two or more models, where the new
hybrid model is formed by the combination of its
parent models, which is more general and reliable
than the former ones. %e fuzzy SES model [15] is
best suitable to deal with fuzzy soft expert infor-
mation, but fails to handle fuzzy bipolar soft data. In
a similar way, fuzzy BSSs [9] are capable of dealing
with fuzzy bipolar soft information efficiently, but
are inadequate in dealing with information con-
cerning multiple expert opinions. %is leads to the
need of the FBSES model which can deal with fuzzy
bipolar soft information under the opinion of
multiple experts in one place. In order to proclaim
the efficacy and reliability of the developed model,
its comparative analysis with the fuzzy SESs [15] and
fuzzy BSSs [9] is presented in Tables 24 and 25. For
further clarification, Figure 3 is also provided to
represent the comparison.

(iii) Limitations: the computational process of the de-
veloped model can be slow in the case of some
MAGDM problems due to an increased number of
parameters, as a result of the two oppositely defined
sets of parameters viewed under the opinions of
multiple experts. %is limitation can be tackled if
properly coded algorithm of the proposed model is
practiced in different mathematical software such as
MATLAB, which allows to deal with large datasets
quickly and efficiently. Another important restric-
tion is that the FBSES model is not very durable in
the case of increased alternatives and/or parameters.
Any increase or decrease in the alternatives can
change the ranking order of the objects in a given
MAGDM situation. %e same is for the respective
parameters. %is is due to the independent be-
haviour of alternatives and parameters.

Table 24: Comparison table for Example 10.

Tests Fuzzy SESs [15] Fuzzy BSSs [9] Proposed FBSESs
u1 12.26 43.00 24.12
u2 10.53 16.00 20.32
u3 7.22 − 32.00 13.83
u4 9.68 − 27.00 17.47
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50
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Proposed FBSESs

u1 u2

u3 u4

Figure 3: Comparison between results of different models on
Example 10.

Table 25: Comparison between ranking results of different models
on Example 10.

Models Ranking order
Fuzzy SESs [15] u1 > u2 > u4 > u3
Fuzzy BSSs [9] u1 > u2 > u4 > u3
Proposed FBSESs u1 > u2 > u4 > u3
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5. Conclusions

Numerous real-world MAGDM problems from various do-
mains, including medical sciences and artificial intelligence,
have been solved efficiently by the fuzzy SES model and its
generalizations. %e fuzzy BSS model is another effective
model inspiring many researchers in dealing situations with
fuzzy bipolar soft information, and emerging as a key
component in many hybrid models, including rough m-polar
fuzzy BSSs, to tackle different uncertain situations. Despite
their effectiveness, the abovementioned theories have their
own limitations. %e existing fuzzy SESs are not capable of
handling situations concerning bipolar soft information,
whereas the fuzzy BSS model is inadequate when considering
multiple expert opinions. To overcome these limitations, this
study presented the concept of FBSESs by combining fuzzy
SESs and fuzzy BSSs which is more useful and reliable than its
components. An important characteristic of this initiated
model is its capability of dealing with fuzzy SES and fuzzy BSS
information collectively as well as individually. In this re-
search article, some fundamental properties of the proposed
model, including subset, complement, extended union, ex-
tended intersection, restricted union, restricted intersection,
AND operation, and OR operation have been discussed in
detail. Moreover, a detailed comparison of the different types
of COVID-19 tests and the ranking of their effectiveness in
analyzing the spread of COVID-19 has been done under the
novel FBSES model, which is supported by an efficient al-
gorithm. Finally, we have provided a comparison of our
initiated model with existing models such as fuzzy SESs [15]
and fuzzy BSSs [9] to show the authenticity and supremacy of
the developed hybrid model. In future, our research work can
be expanded to (1) intuitionistic fuzzy BSESs, (2) m-polar
fuzzy BSESs, (3) spherical fuzzy BSESs, (4) picture fuzzy
BSESs, and (5) q-rung orthopair fuzzy BSESs.
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