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Traditional and typical iterative learning control algorithm shows that the convergence rate of error is very low for a class of regular
linear systems. A fast iterative learning control algorithm is designed to deal with this problem in this paper.*e algorithm is based on
the traditional P-type iterative learning control law, which increases the composition of adjacent two overlapping quantities, the
tracking error of previous cycle difference signals, and the current error difference. Using convolution to promote Young inequalities
proved strictly that, in terms of Lebesgue-p norm, when the number of iterations tends to infinity, the tracking error converges to zero
in the system and presents the convergence condition of the algorithm. Compared with the traditional P-type iterative learning
control algorithm, the proposed algorithm improves convergence speed and evades the defect using the normmetric’s tracking error.
Finally, the validation of the effectiveness of the proposed algorithm is further proved by simulation results.

1. Introduction

Iterative learning control is suitable for controlled objects
with repetitive motion (running) properties in a limited
time interval. It uses the data generated during the previous
iteration of the system to correct undesirable control signals
and generate the control signals used in the current iteration
to make the system control. *e performance is gradually
improved, and finally the complete tracking in a limited
time interval is achieved. In a comparison with other
control methods, the iterative learning control method has a
simple controller structure, a small amount of calculation,
and only less knowledge of dynamic characteristics and can
get precise control. *e characteristics of precise tracking
control are applied in many industrial applications such as
assembly line industrial robots and chemical intermittent

processes. *e iterative learning control algorithm is dif-
ferent from other learning algorithms such as neural net-
works and adaptive control. *e iterative learning control
algorithm aims at the controlled system with repeated
operation characteristics in the finite time interval. It uses
the tracking error stored in the system to modify the control
input one by one to realize the goal of completely tracking
the expected trajectory [1–3]. *e iterative learning con-
troller can be designed without precise model information,
which has the advantages of simple structure, batch pro-
cesses, etc. [4, 5]. *e iterative learning control [6] has
achieved many research results in theoretical research and
practical application since it was proposed [7, 8]. *e ILC
optimal approach is also used in recent days for the error
convergence [9]. *e soft, inflatable robotic manipulator
has many useful features. High compliance and low inertia
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combined with pneumatic execution assist fast but still
secure operations and applications [10–12]. However,
precise position control is challenging for soft manipulators
since they usually take many potential coupling and un-
controllable degrees of freedom [13, 14]. Besides, soft
materials’ dynamical behavioral properties act as visco-
elastic materials, which are problematic to model from first
principles [15]. *e body of a soft robot is made of soft and
compliant materials in nature. *is inherent softness allows
them to interact with faint objects and passively adjust their
shape to adapt to amorphous atmospheres [16]. *ese
features are desired for robotic applications that require safe
human-computer interaction, such as wearable robots,
home assistant robots, and medical robots. *ese robots’
soft bodies also present modeling and control challenges
that have limited their functions so far. *e challenge in
constructing such precise control technology is the difficulty
in designing a soft robot model suitable for model-based
control design technology. Consider, for example, a rigid
mechanical system, which is connected by rigid links
through discrete joints. Since the joint displacement can
completely describe the configuration of the rigid body
system, the joint displacement and its derivative are the
natural choice of the state variables of the rigid body robot.

Furthermore, many typical paths tracking control
strategies have been adopted for soft manipulators [17]. A
pneumatic control system-based open-loop and mechanical
feedback control topology are discussed in [18]. Model
predictive control (MPC) and neural network-based non-
linear MPC methodology are adopted to achieve error
convergence for soft actuators [19]. Further advancement
made in the control method is the reinforcement learning
method, which is introduced for precise position tracking in
these manipulators [4, 20].

In [21], the authors used a learned inverse kinematics
model to enhance the tracking accuracy of position with soft
processing aid. Iterative learning control (ILC) is applied in
[22] to find a control strategy for the soft mesh worm robot.
*e authors of [23] used ILC to generate flexible impact
behavior, and the authors of [24] reported an ILC-based
method to learn the grasping task of a soft, fluid, and
elastomeric manipulator. A graph-based, model-free flexible
robot motion control framework was proposed in [25–27].
In literature [28, 29], the authors have suggested a control
strategy influenced bymarine life. Both of these solutions are
only concerned with the coarse-grained motion of the soft
robot. It has fine-grained control and dynamic response
adjustment. Reference [30] uses a numerical model to
control the system response, but this technique is applied to
a linear predictable model. Such assumptions and the lack of
feedback loops can make the system unbalanced and yield
unwanted responses. References [31–33] proposed a control
strategy based on the Finite Element Method (FEM), which
can attain high accuracy but needs a detailed understanding
of soft structural materials’ mechanical properties. *e
controller strategy based on FEM will produce a high
computational cost, making it impossible to execute in real-
time on the embedded processor. *e solution is to run the
FEM-based mechanism in a feedforward open-loop mode,

which leads to control error dominance and reduces the
system’s overall robustness. A model-based soft robot dy-
namic response optimization control strategy is proposed in
[24, 34, 35].

So far, most of the literature on iterative learning control
has been focused on the convergence of the algorithm in the
sense of norm metric, pointing out that the algorithm’s
convergence can only be guaranteed if λ is large enough
[36–38]. Since λ norm is an upper-bounded negative ex-
ponential function norm, the error’s essential characteristics
cannot be objectively quantified. *e paper [39] found that
even though the learning algorithm is theoretically con-
vergent when it gets an enormous parameter value, the
upper bound of the error during the initial stage of system
operation often exceeds the allowable error range of practical
engineering. To avoid the above defects of the λ norm, the
papers [40, 41] presented the convergence of PD iterative
learning control algorithm in the sense of PD measurement
in the definite upper norm [42, 43]. It is found that the
learning algorithm is convergent only in a subinterval of the
system running time interval. In [44], to make the iterative
learning control algorithm convergent in the sense of upper-
bounded norm measurement, the algorithm is adjustable
and learning law subinterval modified accordingly. How-
ever, the algorithm structure is quite complex, and it is not
easy to apply in practical nonlinear engineering systems [45].

Furthermore, the Lebesgue-p norm is more reasonable
in terms of the properties of quantization and reaction
function f. It considers both the upper bound value of the
function f in the whole time interval and the p integral
function value at each running time [46]. Based on literature
[47, 48], the tracking performance of iterative learning
control is discussed using the Lebesgue-p norm, but the
algorithm’s convergence is not involved. In references
[49, 50], the stability of iterative learning control for mul-
tistate delay linear systems is studied, and Lebesgue-2 norm
is used to evaluate the learning algorithm’s tracking per-
formance. In [51], convergence analysis is carried out for PD
iterative learning control with feedback information re-
garding Lebesgue-p norm measurement of linear time-in-
variant systems. Literature [52, 53] analyzes the convergence
of fractional-order iterative learning control laws in the
sense of the Lebesgue-p norm. Based on the Lebesgue-p
norm, an accelerated initial state error convergence topology
is discussed in the literature [48, 54].

Further, the convergence of variable gain iterative
learning control algorithm is discussed in [55] in the sense of
Lebesgue-p norm. It can be found from the analysis liter-
ature [49, 51–55] that although these research results avoid
the defect of using the tracking error of the λ norm metric,
they are all convergent analysis for the complete, on-regular
system with D � 0, and their conclusions do not apply to the
regular system D≠ 0. *e reason is that, for a completely
nonregular system, there must be derivative of tracking error
in the iterative learning control law, namely, derivative (D)
or PID iterative learning law. As for the regular system, only
following error, namely, the proportional (P) iterative
learning law, would be used to correct the control law.
Because the traditional P-type iterative learning algorithm
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only uses the previous tracking error to correct the control
law, the tracking speed is low. To improve the conventional
P-type iterative learning algorithm’s convergence speed, an
iterative learning control algorithm is proposed in the lit-
erature [56], but its convergence analysis still adopts the
norm. In the theoretical analysis, λ norm was mainly used in
the measurement of tracking error. However, the conver-
gence condition of the control algorithm could be satisfied
when the parameter λ was relatively large, but the maximum
value of transient tracking error fell beyond the allowable
range of practical engineering application in the repeated
operation of the system, leading to system collapse [57–59].
In literature [60, 61], Ruan et al. studied the convergence of
P-type and PD-type iterative learning control algorithms for
linear time-invariant systems using Lebesgue-p (Lp) norm
and found that the convergence condition of the system is
independent of the value of the parameter λ and mainly
depends on the system’s own properties and the learning
gain matrix. Furthermore, in the sense of Lebesgue-p norm,
the convergence of fractional-order iterative learning con-
trol algorithm for fractional-order linear systems is dis-
cussed in literature [62]. In order to cope the above defects,
this paper proposes a class of regular system to improve the
convergence speed of traditional P-type iterative learning
algorithm. Furthermore, it also overcomes the λ-norm to
measure the tracking error using the tracking error of system
before storage and the current tracking error information as
well as adjust iterative axis on the difference between two-
time error signal. *e control input of successive modified
fast iterative learning control algorithm gives accelerated
and better convergence of the Lebesgue-p norm for par-
ticular satisfied conditions. *is paper is organized into the
following sections. Section 2 presents the problem de-
scription and its importance as well as basic mathematical
background of relevant problems. Section 3 refers to the
convergence and proof of the error convergence and
analysis. It also gives the sufficient conditions for the vali-
dation of the proposed algorithm. Section 4 elaborates the
validation of the proposed algorithm and its result discus-
sion. Finally concluding remarks are given in Section 5.

2. Problem Description

Consider a class of regular systems with repetitive running
characteristics:

_xk(t) � Axk(t) + Buk(t),

yk(t) � Cxk(t) + Duk(t),
􏼨 (1)

where k denotes the number of iterations, t is the time
interval of the system, xk(t) ∈ Rn is the state vector of the
system running in the k th time, and uk(t) ∈ Rr and
yk(t) ∈ Rm are the control input vector and output vector,
respectively, in the system running in the k th time. *e
proper dimensions are taken for all A, B, C, and D matrices.

It is considered that the initial state of the system for
every iteration is consistent with the expected initial state;
that is, xk(0) � xd(0), k � 0, 1, 2, . . ..

Hypothesis 1. *ere is a unique ideal input ud(t) to make (2)
true:

_xj(t) � Axj(t) + Buj(t),

yj(t) � Cxj(t) + Duj(t),

⎧⎨

⎩ (2)

where yd(t) denotes the expected trajectory and xd(t) is the
expected state.

2.1. Control Target. *is research’s primary and vital control
objective is to design a fast iterative learning control algo-
rithm for a regular linear system described in (1) and to
overcome the shortcoming of the low convergence speed of
the traditional P-type iterative learning control algorithm.
Simultaneously, the convergence of the algorithm is ana-
lyzed by using the Lebesgue-p norm to overcome the defect
of using the tracking error measured norm.

For this control goal, the fast iterative learning control
algorithm is designed as follows:

uk+1(t) � uk(t) + Lp1ek(t) + Ld1Δek(t) + Lp2ek+1(t) + Ld2Δek+1(t),

(3)

where ek(t) � yd(t) − yk(t) is the tracking error of the
k thtrial and ek+1(t) � yd(t) − yk+1(t) is the tracking error of
the (k + 1)thtrial. Δek(t) � ek− 1(t) − ek(t) and Δek+1(t) �

ek(t) − ek+1(t) like the iteration axis on the difference be-
tween two-time error signal, where Δek(t) is called the last
difference signal and Δek+1(t) is called the differential signal
of the current time. Lp1 is the learning gain of the k th
tracking error, Lp2 is the feedback gain of the (k + 1)th
tracking error, and Ld1 and Ld2are the learning gain and
feedback gain of the differential signal, respectively.

According to algorithm (3), when Lp2 and Ld2 are set at
zero, algorithm (3) is the open-loop iterative learning
control algorithm:

uk+1(t) � uk(t) + Lp1ek(t) + Ld1Δek(t). (4)

When Lp2and Ld2 are all set at zero, algorithm (3) be-
comes the traditional P-type iterative learning control
algorithm.

uk+1(t) � uk(t) + Lp1ek(t). (5)

*e question is now raised that what would be the
control law designed for linear regular system (1) to make it
convergent using algorithm (3) and also what conditions
should be chosen for Ld1, Lp2, and Ld2?

2.2. Preliminaries Knowledge. Convergence is obtained
through the following definitions and lemmas: define one
vector-valued function f: [0, T]⟶ Rn and λ norm [63] as

‖f(·)‖A � sup
1: 0

e
− λt max1≤i≤n f

i
(t)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓; λ> 0. (6)

*e upper vertical-bound norm [10] and Lebesgue-p
norm [64] of vector-valued functionf are defined as follows:
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‖f(·)‖sup � sup
t∈D,η

max1≤i≤n f
i
(t)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓,

‖f(·)‖p � 􏽚
T

0
max1⩽i⩽n|f(t)|( 􏼁

pdt􏼢 􏼣

1/p

, 1⩽p⩽∞.

(7)

An important conclusion is given in the literature [65]:
the upper-bounded norm is a particular case of Lebesgue-p
norm, namely,

lim
p⟶∞

‖f(·)‖p � ‖f(·)‖∞ � ‖f(·)‖sup. (8)

Lemma 1 [66]. If the vectometric function g, h: [0, T]⟶ R

is integrable for Lebesgue, then the generalized convolution
Young inequality is

g
∗
h( 􏼁(·)

����
����r
≤ ‖g(·)‖q‖h(·)‖p, (9)

where(g∗ h)(t) � 􏽒
t

0 g(t − τ)h(τ)dτ is the convolution of g

and h, and the parameters p, q, rsatisfy 1 ≤ p, q, r ≤ +∞
and 1/r � 1/p + 1/q − 1. In particular, when r � p, q � 1,
Young’s inequality applies ‖( g∗ h)(·)‖p ≤ ‖g(·)‖1‖h(·)‖p.

3. Convergence Analysis

Theorem 1. uses the designed algorithm (3) to control system
(1) that meets Hypothesis 1. Suppose that the following
conditions are satisfied:

(1) ρ− 1 > 0.
(2) ρ− � ρ− 1(ρ1 + ρ2)< 1.

Among them, ρ � ‖I + DK2‖ − − ‖C exp(A · (·))BK2‖1,
ρ1 � ‖DLd1‖ + ‖C exp(A · (·))BLd1‖1, ρ2 � ‖(A · (·)C exp
(A · (·))BK1‖1, K1 � Lp1 + Ld1 + Ld2, K2 � Lp2 − Ld2. As
the number of iterations k⟶∞, the tracking error of the
system in the Lebesgue-p norm tends to zero, so the limit k
goes to infinity‖ek + 1(·)‖p � 0. *e proof can be seen from
system (1).

For Hypothesis 2 we need to do some assumption as
follows:

Assumption 1. Assume that the initial state and expected
initialization of system (1) satisfy the
statesx1k(0) � x1d(0)(k � 1, 2, 3, . . . , ), where

xk(t) �
x1k(t)

x2k(t)

⎡⎢⎣ ⎤⎥⎦, x1k(t) ∈ Rr
, x2k(t) ∈ Rn− r

. (10)

We consider a class of single input single output linear
time-invariant systems as follows:

_x(t) � Ax(t) + Bu(t),

y(t) � Cx(t),

x(0) � 0, t ∈ [0, T].

⎧⎪⎪⎨

⎪⎪⎩
(11)

*e system operation interval x(t) ∈ Rn is an n-di-
mensional state variable. u(t) and y(t) are the control input
and output, respectively. A, B, and C, are matrices with

corresponding dimensions, and it is assumed that CB ≠ 0.
Without loss of generality, it is taken that the dynamics of
system (1) is not entirely known, but the initial state of
system (1) when repeatedly running on the interval [0, T] is
resettable, and the desired ideal trajectory is given. To realize
the system’s ultimate complete tracking of the ideal tra-
jectory, we construct a P-type iterative learning control law
with feedback information.

Obviously, in control law (3) above, when Lp2 and Ld2
are set at zero, the control law of degradation of specific
iterative learning control law (4) is as follows:

uk+1(t) � uk(t) + Lp1ek(t) + Ld1Δek(t). (12)

Furthermore, set all the Ld1, Lp2, and Ld2 to zero results
in typical P-Type ILC law as follows:

uk+1(t) � uk(t) + Lp1ek(t). (13)

(1) u1(t), t ∈ [0, T], for any initial control input when
k � 1, 2, . . . .

When the control input u(t) in system (1) is replaced
byuK +1(t) in control law (3), (4), or (5), the corresponding
system dynamics is

_xk+1(t) � Axk+1(t) + Buk+1(t),

yk+1(t) � Cxk+1(t),

xk+1(0) � 0, t ∈ [0, T],

⎧⎪⎪⎨

⎪⎪⎩
(14)

where xk+1(t), uk+1(t), and yk+1(t) are the corresponding
state variables, controlling input and controlling output of
the system for the (k + 1) th iteration. In this paper, Leb-
esgue-p norm is used to demonstrate the convergence of the
algorithm. For easy comparison, the λ upper bound norm
and Lebesgue-p norm are defined as follows:

f: [0, T]⟶ Rm, f(t) � [f1(t), . . . , fm(t)]T is a vector-
valued function, and λ is a positive real number; then, the λ
norm of the vector-valued function f can be expressed as

‖f(·)‖λ � sup
0≤t≤T

e− λt max1≤i≤m f
i
(t)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓. (15)

*e upper verticality [59] and Lebesgue-p norm [65] of
vector-valued function f are

‖f(·)‖sup � sup
0≤t≤T

max1≤i≤m f
i
(t)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

‖f(·)‖p � 􏽚
T

0
max1≤i≤m|f

i
(t)|􏼐 􏼑

p
dt􏼢 􏼣

1/p

, 1≤p≤∞.

(16)

In the literature [65], an important conclusion is that
lim

p⟶∞
‖f(·)‖p � ‖f(·)‖∞ � ‖f(·)‖sup. *at is, the upper-

bounded norm is a particular case of the Lebesgue-p norm.

Proof. of Error Convergence.
*ere is unique ideal input according to Hypothesis 1,

such as
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LPD(1):

Δ

uk+1(t) � uk(t) + Lpek(t) + Ld _ek(t) +

exp(At).ϕk(t)x(0)

t ∈ [0, T], k � 1, 2, . . . ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

where

ϕk(t) �

2a
k

h
1 −

a
k

h
t􏼠 􏼡, t ∈ 0,

h

a
k

􏼢 􏼡,

0, t ∈
h

a
k
, T􏼢 􏼣

a> 1, 0< h<T,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

xk(0) � Ldek(0) +
1
B

xk(0) − xk+1(0)( 􏼁.

(18)

*e above-mentioned Δ is an arbitrary value, subscript
krepresents the number of iterations, and Lp and Ld are
denoted separately, describing proportional and differential
learning gain matrix. □

Hypothesis 2. PD-type iterative learning controller (3) is
used for system (1), if the condition ρ< 1 is met, where

ρ � I − CLd
����

���� + C exp(A(·)) Lp + ALd􏼐 􏼑
�����

�����1
. (19)

*en, the number of iterations approaches infinity, and
the norm of Lebesgue-P becomes significant.

(1) When t ∈ [0, h/ak) is caused by the deviation of
initial state value, the system output cannot follow
the desired trajectory.

(2) In the periodt ∈ [h/ak, T], the tracking error mo-
notonously tends to zero, and the system outputs the
expected trajectory at the output of tracking;
i.e.,‖ek+1(·)‖p⩽ρ‖ek(·)‖p, k � 1, 2, . . . ,

lim
k⟶∞

sup
t∈ h/ak,T[ ]

ek+1(·)
����

����p
� 0,

ek+1(t) � yd(t) − yk+1(t) � ek(t) − exp(At)xk+1(0) −􏼂

C exp(At)xk(0) + C 􏽚
b

′exp(A(t − τ))Buk+1(τ)dτ +

Duk+1(t) − C 􏽚
t

0
exp(A(t − τ))Buk(τ)dτ − Duk(t)􏼣 �

ek(t) − C exp(At) xk+1(0) − xk(0)( 􏼁 + C 􏽚
1

0
exp(A(t − τ))􏼢

B uk+1(τ) − uk(τ)( 􏼁dτ + D uk+1(t) − uk(t)( 􏼁􏼃.

(20)

According to Hypothesis 1 and by substituting (3) into
(20), we can get

ek+1(t) � ek(t) − C 􏽚
t

0
exp(A(t − τ))B Lplek(τ) +􏼐􏽨

Ld1Δek(τ) + Lp2ek+1(τ) + LdΔek+1(τ)􏼑􏽩dτ −

D LdlΔek(t) + Lp2ek+1(t) + LdΔek+1(t)􏼐 􏼑 �

ek(t) − C􏽚
0
exp(A(t − τ))B Ld1ek− 1(τ) + Lp1 +􏼐􏽨􏽮

Ld2 + Ld1􏼁ek(τ) + Lp2 − Ld2􏼐 􏼑ek+1(τ)􏽩􏽯dτ − D Ld1􏼂

ek− 1(t) + Lp2 + Ld2 + Ld1􏼐 􏼑ek(t) + Lp2 − Ld2􏼐 􏼑

ek+1(t)􏼃 � ek(t) − C 􏽚
1

0
exp(A(t − τ))BLd1

ek− 1(τ)dτ − C 􏽚
t

0
exp(A(t − τ))BK1ek(τ)dτ −

C 􏽚
d

0
exp(A(t − τ))BK2ek+1(τ)dτ − DLdlek− 1(t) −

DK1ek(t) − DK2ek+1(t).

(21)

Arrangement formula (21) can be obtained as follows:

I + DK2( 􏼁ek+1(t) � I − DK1( 􏼁ek(t) − C 􏽚
t

0
exp(A(t − τ))

BLd1ek− 1(τ)dτ − C 􏽚
t

0
exp(A(t − τ))BK1

ek(τ)dτ − C􏽚
t

0
exp(A(t − τ))BK2ek+1(τ)dτ − DLd1ek− 1(t).

(22)

Lebesgue-p norm is taken from both sides of (22), and
Young inequality is applied to obtain

I + DK2
����

���� ek+1(·)
����

����p
⩽ I − DK1

����
���� ek(·)
����

����p
+

C exp(A · (·))BLd1
����

����1 ek− 1(·)
����

����p
+

C exp(A · (·))BK1
����

����1 ek(·)
����

����p
+

C exp(A · (·))BK2
����

����1 ek+1(·)
����

����p
+

DLd1
����

���� ek− 1(·)
����

����p
.

(23)

Preparation equation (23) can be obtained as follows:

I + DK2
����

���� − C exp(A · (·))BK2
����

����1􏼐 􏼑

ek+1(·)
����

����p
⩽ DLd1

����
���� + C exp(A · (·))BLd1

����
����1􏼐 􏼑

ek− 1(·)
����

����p
+ I − DK1

����
����􏼐 +

C exp(A · (·))BK1
����

����1􏼑 ek(·)
����

����p
.

(24)

*at is,

ρ ek+1(·)
����

����p
⩽ρ1 ek− 1(·)

����
����p

+ ρ2 ek(·)
����

����p
⩽

ρ1 + ρ2( 􏼁max ek− 1(·)
����

����p
, ek(·)
����

����p
􏼚 􏼛.

(25)

Procedure formula (25) can be obtained as follows:
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ek+1(·)
����

����p
≤ ρ− 1 ρ1 + ρ2( 􏼁max ek− 1(·)

����
����p′

􏼨

ek(·)
����

����p
􏼛 � ρmax ek− 1(·)

����
����p′

􏼨 ek(·)
����

����p
􏼛.

(26)

*e conditions of the theorem (26) show that it satisfies
ρ < 1 and k⟶lim ∞‖ek +1(·)‖P � 0 is true; that is, when the
number of iterations approaches infinity, the tracking error
of the system approaches zero.

Note 1. In general, the Young inequality based on gener-
alized convolution is also true for vector-valued functions.
*e conclusion obtained in this paper is also true for multi-
input and multioutput systems in the case of the Lebesgue-p
norm defined for vector-valued functions as described in
this paper. *e demonstration process only needs to replace
the single input single output scalar with the corresponding
multidimensional vector in this paper’s demonstration
process and follow the vector algorithm for the deduction, so
it will not be described further.

Note 2. When Lp1 � Ld1 � 0, the control law of degradation
(2) for specific iterative learning control law (3), the PD-type
control law (3), and the convergence conditions for ρ �

|1 − CBLd1| + ‖C exp(A · (·))(ABLd1 + BLp1)‖1< 1 show
that, in the sense of Lebesgue-p norm, the convergence of
PD-type iterative learning control law (3) not only depends
on the system input and output matrix of CB and the dif-
ferential learning gain Ld1 values, but also depends on the
proportion of the system state matrix A and learning gain L

values of p. Although the convergence conditions relative to
the λ norm in the sense of ρ∗ � |1 − CBLd1|< 1 are con-
ventional, in this paper, the error in measurement and the
analysis of convergence are not dependent on the parameter
selection of λ, and convergence conditions ρ< 1 essentially
describe the system dynamics and control law of learning
gain decided to the convergence of the leading role.

Note 3. Compared with the convergence conditions under
the λ norm, the convergence conditions given in this paper
are conservative, but their convergence is no longer de-
pendent on selecting the λ value. Simultaneously, the article
gets the convergence condition as ρ � ρ− 1(ρ1 + ρ2)< 1, and
must satisfy ρ− 1 < 1 or (ρ1 + ρ2)< 1, and so make when
selecting feedback gain and the learning gain more immense
freedom.

4. Simulation Examples and Discussion

4.1. Algorithm Application to Soft Robotic Position Control.
*e soft structure has unlimited degrees of freedom;
therefore, building a model as accurate as a rigid structure is
challenging. It makes the quite fine-grained control structure
challenging, especially when tuning the dynamic response.
*erefore, people have raised serious concerns, especially in
rehabilitation applications where fine-grained control of
muscles under the support of soft structures is compulsory.
A further illustration is high-speed applications, such as

industrial robots with soft tentacles, where fine-tuned dy-
namic response is necessary. As an emerging field, soft
robots have very limited research on precise modeling and
vibrant response tuning [67]. *e method to improve the
tracking accuracy and performance of flexible and inflatable
manipulators is to syndicate flexible structures with stiff
parts. Compared with a completely soft design, this hybrid
design usually has worse inclusive compliance and higher
inertia, but the degree of freedom is also reduced. As a result,
the control action of the remaining degrees of freedom can
be amplified, accordingly improving the tracking control
performance. *e literature [68–71] describes such kind of
examples.

*e rigid body dynamics of the soft robotic arm are
calculated by defining the difference in pressure between the
two actuators, Δp � pA − pB, as shown in Figure 1. In the
positive alpha direction, the positive pressure difference p

accelerates the arm (compare Figure 2). To describe the
dynamics of the robotic arm with p as input and arm angle α
as an output, use device recognition. Apply the same
mechanism of an acknowledgement as in [72].*e following
continuous-time transfer function is obtained:

G(s) �
α(s)

Δp(s)
� κ

ω2
0

ω2
0 + 2δω0s + s

2, (27)

where the parametric values are taken as κ � 7.91 rad/bar,
ω0 � 14.141/s, δ � 0.31. Now discretizing this transfer
function can be obtained by taking sampling time of 0.02 s.

x1(k)

x2(k)
􏼢 􏼣 �

0.96 0.18

− 0.36 0.80
􏼢 􏼣

x1(k − 1)

x2(k − 1)
􏼢 􏼣 +

0.09

0.91
􏼢 􏼣u(k − 1),

y(k) � [10]
x1(k)

x2(k)
􏼢 􏼣,

(28)

where k denotes the time index and the states are being
described as k(x1, x2)

T � (α, _α) · α is the arm deflection
angle that is directly measurable and that is normalized
(π, 10π). u is the control input and initial condition for this
u0 � 0. For this proposed controller, parameters are
Lp1 � 0.5, Ld1 � 0.01, Lp2 � 0.2, Ld2 � 0.002, and the desired
trajectory is taken as yd � 30° sin(2πt).

When algorithm (3) is applied to the soft robotic system
(28), the system’s output tries to reach its desired trajectory.
It can be seen from Figure 1 that after the second iteration,
the controller effort of the learning algorithm (3) is re-
markable, but the error is still significant. After a few it-
erations, it can be noted, as in Figure 3, that the error reaches
its convergent limit compared to the super norm. *e error
of the super norm is more prominent as well as not con-
verging to zero. *e reason is that, when iterative learning
control algorithm (3) is used for system (1), if the condition
ρ< 1 is met, whereρ � ‖I − CLd‖ + ‖C exp(A(·))(Lp + ALd)

‖1, then as the number of iterations approaches infinity, the
sup-norm is significant. When t ∈ [0, h/ak) is caused by the
deviation of the initial state value, system output cannot
follow the desired trajectory, so the error does not converge
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to zero as expected. In contrast with the period t ∈ [h/ak, T],
the tracking error monotonously tends to zero, and the
system outputs tracks ultimately as the expected output, i.e.,
‖ek+1(·)‖p≤ ρ‖ek(·)‖p, k � 1, 2, . . . ,.

Algorithm (3) uses previous and current error infor-
mation, and its convergence is proved through sufficient
conditions. Under the above conditions, when the algo-
rithms proposed in (3) and (4) are applied to the soft robotic
systems (21) having an arbitrary initial state, the system
tracking errors are shown in Figure 3. According to the
Lebesgue-p norm, errors in the proposed algorithms’ follow-
up (2) and (3) tend monotonously to zero with the increase
in iteration number. At this point, the tracking error reaches
the error convergence limits when algorithm (3) executes
four iterations. In contrast, algorithm (4) requires more
iterations to achieve the convergence limit but cannot reach
zero. *erefore, under the given appropriate learning gain,
algorithm (3) has a faster convergence speed and higher
control accuracy than algorithms (4) and (5). Algorithm (3)
updating law includes feedback gains with current and

previous information of the errors such as ek(t), Δek(t) and
Δek+1(t). As the number of iterations k⟶∞, the tracking
error of the system in the Lebesgue-p norm tends to zero, the
output of the system tries to follow within the finite time
interval t ∈ [0, T], and ultimately a perfect desired trajectory
is achieved. Algorithm (3) is more robust and guarantees
monotonic error convergence for position tracking, espe-
cially in soft robotic applications.*is robust topology is also
applied to higher-order high dynamical systems with little
modifications in the learning proportional and derivative
gains according to the system requirements.

4.2. Validation for Typical PMSM Servo Position Control
System. A typical PMSM (permanent magnet synchronous
motor)-based servo position control system is taken as an
example for validating the proposed algorithm.*e standard
state-space linear servo position control model of the PMSM
can be described as follows:

dθ(t)

dt
� ω(t),

dω(t)

dt
�
1
J
Te(t) −

1
J
TL(t) −

Bf

J
ω(t),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(29)

which the value of each parameter is described in Table 1.
*e state-space equation for the given system in a

standard form can be expressed as follows:

_x(t) � Ax(t) + Bu(t),

y(t) � Cx(t).
􏼨 (30)

*e states of the system are described as
x � [θ(t),ω(t)]T, and the control input is
u � Te(t) � ktiq(t), for which each matrix of the system can
be calculated as follows:
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A �

0 1

0
− Bf

J

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B � 0
1
J

􏼢 􏼣

T

,

C � 1 0􏼂 􏼃.

(31)

To validate the Lebesgue-p norm proposed in this paper,
we assume the parameters to be as follows: the rotational
inertia J � 0.004 kg.m2 and viscous friction coefficient
Bf � 0.0001Nm/rad/s. For ILC, the parameters are taken as
Lp1 � 0.8, Ld1 � 0.01, Lp2 � 0.3, Ld2 � 0.006, and the desired
trajectory for the system is yd � 50° sin(2πt).

*e controller’s effort is shown in Figure 2, which de-
scribes the output of system (31), attempting to follow the
desired position. *e figure displays the simulation results
and interpretation and also shows the control consequence
of a particular iteration of the method. As we have seen, the
performance of the second iteration is not better and initially
has significant errors, the delay is relatively apparent, and the
error is critical.*e operation of the ILC control additionally
reduces the error and attempts to exceed its goal. *e error
converges rapidly to its limit after a limited amount of time
and several iterations, and the performance of the method
precisely tracks the target location.

In comparison, these conditions still occur despite
modifying the controller parameters several times. As shown
in Figure 2, the system’s desired and output position can be
seen and automatically updated by the output accurately
following the optimal level. *e controller’s action is stable
and sufficient for the error to converge to its monotone
convergence limit under satisfactory conditions.

*e system’s tracking curve is seen in Figure 2 in the
second iteration of the learning system, and the error curve
indicates that the error is too high. In Figure 4, the results of
the different iterations errors are shown.*e error trajectory
of the device is already greatly decreased, and the most
significant error in the tenth iteration relative to the second
trial (the results are shown in Figure 4) has very good
tracking accuracy for algorithm (3) as compared to the other
two algorithms. *e error is too small to meet the demands
of the system. *erefore, we can say that the proposed
Lebesgue-p norm scheme for accurate position tracking is
significantly fast compared to algorithms (4) and (5). *e
sufficient conditions and the Lebesgue-P error criterion
suggest that the findings are acceptable and that the

mechanism is stable enough to monitor the PMSM servo
control position. *is approach can also be implemented
with a specific additional extension to other complicated
speed and position servo systems for the broad range of
traditional automation applications.

4.3. Application and Validity for Other Linear Systems.
*e following linear system is taken to validate the proposed
algorithm’s effectiveness further, and it is obtained from
[73].

_x(t) �
− 2 3

0 1
􏼢 􏼣x(t) +

1

0
􏼢 􏼣u(t),

y(t) � 2 0􏼂 􏼃x(t) + u(t),

⎧⎪⎪⎨

⎪⎪⎩
(32)

where t ∈ [0, 2]. Algorithm (3) was used to control system
(32). It was assumed that yd(t) � sin(5t) of the desired
trajectory, and the initial state of the system wasx1(0) � 0
x2(0) � 0. *e initial control was set as u(t) � 0, and
Lp1 � 0. If the convergence condition is satisfied, then the
control parameters are chosen as Lp1 � 0.3, Ld1 � 0.1,
Lp2 � 0.2, and Ld2 � 0.1. To validate the effectiveness of
algorithm (3) proposed in this paper, simulation compari-
sons are made with open-loop algorithm (4) and traditional
P-type algorithm (5). *e simulation results are shown in
Figure 5–7. Figure 5 shows the output tracking curve of
different iteration times during algorithm (3) control. Fig-
ure 6 shows the tracking error curve in the sense of the norm
of upper certainties and Lebesgue-2 norm; Figure 7 shows
the tracking error curves of algorithms (3)–(5) in the
Lebesgue-2 norm sense.

As shown in Figure 5, after the 20th iteration, the system
output has been fully tracked on the expected trajectory in a
finite time. It can be seen from Figure 6 that the Lebesgue-2
norm and the upper-bounded norm of algorithm (3) con-
verge to 0. As can be seen from Figure 7, algorithm (3) has
the highest convergence rate, algorithm (4) comes second,
and algorithm (5) has the lowest convergence rate. *e

Table 1: PMSM servo control parameters.

Parameter Symbol
Electromagnetic torque Te

Load torque TL

Mechanical angle of the motor θ(t)

Coefficient of viscous friction Bf

Mechanical angular velocity ω(t)

System moment of inertia J
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reason lies in the fact that algorithm (4) increases the dif-
ference signal of error in two adjacent iterations based on
algorithm (5). Algorithm (3) uses the current error and the
previous error to form the difference signal, while algorithm
(4) only uses the previous error to create the difference
signal. Compared with algorithm (4), algorithm (3) makes
full use of the current error information. To better illustrate
the effectiveness of algorithm (3) designed in this paper, the
numerical values of tracking errors of algorithms (3)–(5)
under different iteration times are given below, as shown in
Table 2.

Table 2 shows that the tracking error of algorithms
(3)–(5) in the first iteration is 1.217316. After the 15th it-
eration, the error of algorithm (5) is 0.07538, and the error of
algorithm (4) is 0.024335. *e error of algorithm (3) is
0.003683. From the vertical data in Table 2, the three al-
gorithms’ tracking error can be reduced successively with the

increase of iteration number. However, from the horizontal
data in Table 2, the tracking error of algorithm (3) is the
smallest, followed by algorithm (4), and that of algorithm (5)
under the same iteration number is the largest. *erefore, it
is easily observed from Table 1 that the convergence speed of
the fast iterative learning control algorithm (3) designed in
this paper is significantly higher than that of algorithms (4)
and (5).

4.4. Validation for Other Linear System. To illustrate the
tracking capability of algorithm (3) in this paper for different
expected signals, let us assume the expected trajectory, yd, to
be as follows:

yd(t) �

0, 0≤ t< 0.4,

1, 0.4≤ t< 0.8,

0, 0.8≤ t< 1.2, other linear system,

1, 1.2≤ t< 1.6,

0, 1.6≤ t≤ 2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(33)

*e value is the same as that of the above expected si-
nusoidal trajectory. *e tracking effect of the output curve
on the predicted trajectory under different iteration times is
shown in Figure 8, which shows the tracking effect of it-
eration 2, iteration 10, and iteration 15.
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Table 2: Comparison of error convergence rate at the same iter-
ation number.

Iteration
number k

Algorithm (3) e Algorithm (4) e Algorithm (5) e

1 1.217316 1.217316 1.217316
6 0.153358 0.300994 0.450737
8 0.066961 0.172115 0.302922
10 0.029238 0.098419 0.203581
15 0.003683 0.024335 0.07538
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It can be seen from Figures 5 and 8 that the control
algorithm (3) designed in this paper can achieve complete
tracking of different expected tracks in the finite time in-
terval with the increase of iteration numbers for the pre-
dicted trajectory of slow and abrupt changes. *e new
proposed updating input iterative learning law includes
feedback gains with current and previous information of the
errors such as ek(t), Δek(t), and Δek+1(t). As the number of
iterations k⟶∞, the system’s tracking error in the
Lebesgue-p norm tends to zero. *e system’s output tries to
follow within the finite time interval as specified for this
system, t ∈ [0, 2]. Ultimately, a perfect desired trajectory yd

is achieved.*e result of the system is shown for the different
iterations in Figure 8. When the tracking error converges
after 15 or more iterations and tends to zero, the system’s
output precisely follows the desired trajectory yd. Accord-
ingly, algorithm (3) in the sense of the Lebesgue-p norm is
robust and satisfies ρ< 1, and k⟶lim ∞‖ek +1(·)‖P � 0 is
accurate. When the number of iterations approaches in-
finity, the tracking error of the system approaches zero. *is
robust control topology is also applied to higher-order
dynamic systems with little change in proportional and
derivative learning gains as required by the system. Fur-
thermore, it can also correctly work for the motor position
control, aircraft altitude and latitude control, angle of attack,
soft articulated robot position control, satellite positioning
systems, and piezoelectric nanopositioning control systems.

5. Conclusion

*is research paper has discussed a fast iterative learning
control algorithm for a class of regular linear systems with
direct input-output transmission terms of Lebesgue-p norm.
*e convergence of the algorithm is proved under the
Lebesgue-p norm, and sufficient conditions are given for the
convergence of the norm form of the algorithm. *is al-
gorithm not only has a higher convergence rate than the
traditional P-type algorithm, but also avoids the defect of

using the tracking error of the normmetric and increases the
degree of freedom of learning gain selection. Due to the
convolution limitation of Lemma 1, the algorithm in this
paper is only applicable to regular linear systems. *erefore,
in future studies, the convergence of typical nonlinear
systems in the Lebesgue-p norm can be further analyzed.
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