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Difference equations are of growing importance in engineering in view of their applications in discrete time-systems used in
association with microprocessors. We will check out the global stability and boundedness for a nonlinear generalized high-order

difference equation with delay.

1. Introduction

Recently, there is a tremendous rate of interest in examining
difference formulas. Among the factors, this is a necessity for
techniques that we can use in checking out equations
emerging in mathematical models.

Difference formulas have been investigated in different
mathematical branches for an extended period.

Camouzis et al. [1] studied

YZ
ﬁ n (1)

Y, =1
n+l 1+ Yf,,1

Elabbasy et al. [2] dealt with

_ “Yn—k (2)
nil T o
B+yllico Yorsr
Grove et al. [3] presented a summary of
Y - A +BY,+C/Y,,+D|Y,, (3)

"1 A, +B,)Y, +C,Y,  +D,Y,

Kulenovic et al. [4] studied

_CAY,+BY,,

Y, = .
n+l C1Yn +D1Yn71 (4)
Kulenovic and Ladas [5] studied
A +B,Y, +C,Y
Yn+1=A1+ 11,14 n-1 (5)
2+ BY, + G,
Stevic in [6] studied the positive solution of
Y, = Yok (6)
MUY 4 Y + 1
Agarwal and Elsayed [7] studied
bY,Y
Y, =aY, + —"+"2 7
el = Ty v dY, %

For other works, we refer to [6, 8-27].
Our objective is to check out global stability and

boundedness of solutions for

k
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where a; and b; € (0,00) and «,f>1 with the initials

Y .Y 5. Y_, and Y € (0, 00).

2. Local Stability of Equilibrium

Theorem 1. Equation (8) has the following equilibriums:
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where

C = B +2BaB - 248" + a*f* — 2aBAB + A°B — 4afp,

k
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i=0

> 1 k
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1 -
Y, = —EDZ, (10)
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At Y, = —(1/2)D,, we obtain
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where d; = —fvi(Y,Y,...,Y), fori=0,1,...,k, where

k .
Ny dA = (15)

i=0

Theorem 2. (i) Y, = —(1/2)D, of (8) is locally asymptoti-
cally stable if

+—(1/2)/3D +(1/4)BD? - (1/4)D}b, |
(8- (1/2)BD,)’

ay

1 D’b
+ .- +la 17k-1 |

1=
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(ii) Y, = —(1/2)D, of (8) is locally asymptotically stable if
D,[-p +(1/4)BD,]
21
(B~ (1/2)BD,)

(17)

Proof
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-B+aB+AB-C

(19)
-B+ AB+1
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>
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ie.,

((-B+aB+AB-C)/(-B+AB+1))[-f+(1/4)B((-f+aB+ AB—-C)/(-B+ AB+1))]

A+ <L (20)
(B - (1/2)B((~B +aB + AB— C)/ (-B + AB + 1)))?
Proof of (ii) is the same as the proof of (i). O Proof
3. Solutions Boundedness for (8)
In Theorem 3, every solution of (8) is bounded.
k k k
Y,Y,_
Yopp=a+)aY, +—————— —nonk <oy aY, ;+-"2 (21)
; /3 Z]O]ﬂ] Z0 kank ;) bk
O
4. Applications A+ leq (23)
B b
4.1. Case I: « = 0 and 3 = 0. We have
where A= Y% a; and B = Z -0 bj. Then, the equilibrium of
Y Y 22 t
Y, = Z ay, . (22) (22) is locally asymptotically stable
i=0 Z] 0Yj n]
. e Proof
Equation (22) has equilibrium Y = 0.
Theorem 3. Suppose that
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ay+————S—|+|a; -~ a, —-
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42. Case 2 [7]. a=0andf =0withk =3, {ai}f=0 &
{bi}:'(:o = O exceptay, by, by 0

Equation (25) has equilibriums Y = 0.
Let f be defined by

We have
Y, Y
Y, =a)Y, +—" " 25
b by Y, 5 +b5Y, 5 29
_ YoV3
f (Vo v2v3) = agvo + by, + byvy
“ (1/4) (b, +bs) | ot b, +|(1/4) (by +bs) — (1/4)b,
(12 (b, +b)Y| | 4 (-2 (b, + b))’ | (—(1/2) (b, +by))’
ag + (bz+b3)2 +’ b, |+ (b, +bs3) _253|<1,
(b, +b3) (b +b3) (b +b3) '
L N I Y S 6
(b + b1 | (B2 +b)"| | (b +05)" |
1 b, || b |
ag + + + ,
7 (b, + b))l ‘ (b, + b3)2| |(b2 + b3)2|
P S B
a b
Pt bs) (b +by)
(3b, + b32) - a,
(b, +bs)
— YnYn—Z
Hence, the equilibrium Y = 0 of (25) is locally asymp- Yoo = aoYy +a, Y, + 1+bY,  +bY, (27)
totically stable if ((3b, + b5)/ (b, + b3)2) <1-a,.
Equation (27) has the following equilibriums:
. Kk Kk Y, =0,
4.3. Case 3. a=0 and =1 withk=2,{a;},_,&{b;}i,
= 0 exceptay,a;, by, b, #0 Y, = a +a; -1 (28)

Here, we have

1+ (ag+a, - 1)(b; +b,)
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Let f defined by

f (v v1,v,) = agvy + ayv RN () B
oo 00T T L by + by,

of (vo, v, v2) . (byvy + 1+ byv,)v, a4 vy

v, 0 (byvy +1+ b2v2)2 0 (byvy + 1+ b,w,)
of (VO’ Vb Vz) —a i —VoV2 (bl)

o, ! (byv, + 1+ bzvz)z’

of (vo,v1,v2) _ (1+byvy +byv,)vy = vovyb, _ (byvy + 1)y,

v, (1+byv, +byv,) - (byv, +1+byvy)”
ap + V2 |+ a ~vov, (by) 2|_,_| (byvy + 1)y, <1, (29)
(byvy +1+ b2v2)| (byvy + 1+ byvy) | |(b1"1 +1+b,v,)
ay + V2 ta, - vov, (by) - (byv + vy <1,
(byvy + 1+ byv,) (byvi + 1+ b,v,)" (byvy +1+byv,)
(v + 1+ byvy)v, B vov, (by) (v + vy <1
(byv, + 1+b,,)° ! (byvy +1+byv,)  (byv, +1+b,,)°
(byvy + 1+ byvy)vy — vy, (b1)2+ (L+byv1)vy <1-ay-ay,
(byv, + 1+ byvy)
vy +byviv, + bzvg —Vo¥2b, +2v0 +b,vy, <l-ay-a,.
(byv, + 1+ byv,)
0<1l-ay—ay; (30)
So, we have
(ii) The  equilibrium Y, =—((a,+a, —1)/(1 + (a
Theorem 4 1 ! A !

+a, — 1) (b, + b,))) of equation (27) is locally as-

] . ) . ymptotically stable if
(i) The equilibrium Y, = 0 of equation (27) is locally as-
ymptotically stable if

(-1+ay +a,)(2ay(by +b,) +2a, (b, +b,) —b, +byay + ba, - b, + b,a, +b,a,)
(ag (b, +b,) +a, (b, +b,) - b, +b,a, +b,a, - b, + b,a, + bya,)’

<l-ay-a. (31)

4.4. Case 4. We will consider the difference equation as a
particular case of (8):

Y Y N Y + Y " YnYn—4
=a a a ’
n+l 0tn 2 n=2 47 n4 byY, +b,Y, 5 +bY, 4
(32)
Theorem 5. Suppose
1<(1-ay—a,-ay)(by + b, +b,). (33)

Then, the equilibrium Y =0 of (32) is locally asymp-
totically stable.

Proof. Let f be defined by
Yov4
bove + byv, + by,
(34)

£ (Vos v vy) = agvy + ayvy + ayvy +

Therefore,
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Of (Vo v2r v4) -4 (boVo + by, + byvy) vy — vyvy (By) _ byvyvy + b4vi
9y 0 (bove + byvy + b4v4)2 (bovo + byv, + 1941/4)2
Of (vo> v2ovy) -4 (bovg + byvy +byv,)0 = vovy (by) _ —VoVsb,
v, ? (byvy + byv, + b4v4)2 (byvy + byvy + b4v4)2,
Of (Vo> V2o v4) —a (bovy + byvy +byvy) vy = vovy (by) _ bovg +b,v,7p
v,y ‘ (byve + byvy + b4v4)2 (byvy + byvy + b4v4)2,
of (Y,Y,Y) b, +b,
=49 2
vy (by +by +b,)
af (Y,Y,Y) -b, (35)
=a,+ 5
v, (by +by +b,)
8f(Y,Y,Y)_a by +b,
ov, 4 (by+b, + bz)z)
a + b, + b, 2|+a2+ by 2+a4+—b°+b2 51<1,
(bo+b4+b2) | (b0+b4+b2) | (b0+b4+b2)
(by +by +b,)
1<(1-ay—a,—ay)(by+b,+b,).
O
Theorem 6. Every solution of (32) is bounded. Proof
YnYn—4 1
Y, =a,Y,+a,Y, ,+a Y, 4+ boY. +b,Y, B, <(a0 + b4)Y” +a,Y, , +asY, 4 (36)

There are many cases in which the solution of (32) is
bounded:

(1) If (aq+ (1/by))<1,a, =0anda, = 0.

(2) If (ag+a, + (1/by))<1,Y, ,<Y,anda, = 0.

(3) If (ag+a,+ (1/by))<1,Y, 4,<Y,anda, =0.

4)If (ag+a,+a,+ (1/b))< 1,Y,,<Y,andY,,
<Y,. O
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