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+e basic notions in rough set theory are lower and upper approximation operators defined by a fixed binary relation. +is
paper proposes an intuitionistic fuzzy rough set (IFRS) model which is a combination of intuitionistic fuzzy set (IFS) and rough
set. We approximate an IFS by using soft binary relations instead of fixed binary relations. By using this technique, we get two
pairs of intuitionistic fuzzy (IF) soft sets, called the upper approximation and lower approximation with respect to foresets and
aftersets. Properties of newly defined rough set model (IFRS) are studied. Similarity relations between IFS with respect to this
rough set model (IFRS) are also studied. Finally, an algorithm is constructed depending on these approximations of IFSs and
score function for decision-making problems, although a method of decision-making algorithm has been introduced for fuzzy
sets already. But, this new IFRS model is more accurate to solve the problem because IFS has degree of nonmembership and
degree of hesitant.

1. Introduction

To control uncertainty usually, probability theory is de-
liberated as an applicable tool, but for its practical work, a
randomly stable system must be a very basic requirement.
To establish such kind of system, a lot of time is needed. In
today’s speedy life, as everyone has shortage of time, in an
unreliable environment, researchers have introduced many
updated methods and techniques to solve uncertainties.
Rough set (RS), fuzzy set (FS), and soft set (SS) are ex-
pressive methods to control uncertainty, vagueness, and
incompleteness in the information systems. +e above-
mentioned sets have their own operations and properties.
+ese sets are much applicable in real life, computer sci-
ence, and artificial intelligence. We are encountered by
different types of real-world problems everyday which have
uncertainty and vagueness rather than preciseness. Precise
and complete reasoning would not be possible if our

information data are inexact, vague, and incomplete. Re-
cently, the gap between traditional mathematics with
precise concepts and the world full of uncertainty become
much smaller than earlier. In different fields, nature of
vagueness can be different. Researchers are very active and
interested to study many newly defined theories to solve
this problem [1].

Fuzzy set (FS) theory was introduced by Zadeh in 1965
[2] which is a very revolutionary attempt to deal with un-
certainty. +e FS theory is a generalization of classical set
theory. It has greater richness in application than the
classical set theory. It has ability to translate human lin-
guistic terms mathematically. Although FS has the mem-
bership degree, but often the nonmembership degree is
required also to handle critical situations in real-world
problems. Atanassov presented IFS in 1986 [3, 4] which is
the generalization of FS. +e IFS describes the fuzzy char-
acteristic of things more comprehensively than FS and thus
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is a powerful and successful tool to express fuzzy infor-
mation of real-world problems. Elements of IFS are written
in the form of ordered pairs and these ordered pairs are said
to be intuitionistic fuzzy numbers or intuitionistic fuzzy
values. Each intuitionistic fuzzy value is characterized by a
membership degree, a nonmembership degree, and a hes-
itant degree.+e sum of these three degrees is equal to 1.+e
IFSs are important in fuzzy mathematics due to its wide
applications in real life, such as in pattern recognition, career
determination, medical diagnosis, electoral system, and
machine learning [5, 6].

In 1982, rough set (RS) theory introduced by Pawlak [7]
is one of the untraditional methods to control uncertainty. A
subset distinguished by lower approximation and upper
approximation is known as RS. Pawlak used equivalence
relations to prepare approximations in a set [7, 8]. However,
the equivalence relations in RS seem to be very restrictive
that may limit the scope of RS model. For instance, a fre-
quent and significant problem in the medical field is the
stomach pain in the children, which can be expected to some
reasons and it is a demanding job to diagnose the reason
correctly. +e RS theory can help the doctors to diagnose the
correct reason by discharge comments. Also, it has a broad
scale of applications in image processing, knowledge finding,
recognition of optical characters, and pattern recognition
and to recognize various facial expressions in artificial in-
telligence, in data clustering, in decision-making problems
with precised accuracy, and in business and finance because
of their capacity to find the rule induction and knowledge.
Figure 1 shows the graphical representation of RS with lower
approximation and upper approximation. Upper approxi-
mation is a set which has elements having possible belonging
with the target set and lower approximation set has objects
having positive belonging with the target set [9–11].

Figure 1 shows that the target set is in red line circle,
yellow box is the lower approximated set, blue box is the
upper approximated set, and green box is the universal set.

In 1999, Molodtsov [12, 13] introduced the key notion of
SS to deal with uncertainty. +is new technique is free from
the problems related with existing techniques of uncertainty.
An appropriate number of parameters is available in this
theory which makes it possible. +e SS theory has a wide
variety of applications in many fields, such as operational
research, the smoothness of functions, Riemann integration,
and game theory. Moreover, the SSs have a rich number of
operations which are very helpful to deal with uncertainty in
different types of situations. +e concept of parametric
reduction in SSs has been studied by many authors [14, 15].
Ali et al. [16] initiated some new operations in SS theory.
Abbas et al. [17] initiated various generalized operations in
SS theory by applying many relaxed conditions on pa-
rameters. Applications of SSs can be found in [14, 18–26].

Many extensions of SSs have been presented such as
probabilistic SS theory, bijective SS theory, fuzzy bipolar SS
theory, and intuitionistic fuzzy soft set (IFSS) theory. Akram
et al. [27] introduced three hybrid models, namely, N-soft
rough IF sets, IF N-soft sets, and IF N-soft RSs with real-life
applications of decision-making algorithm. Alcantud et al.
[28] presented covering-based fuzzy RS model by t-norm

and fuzzy logical implicator. +is fuzzy RS model is useful to
characterize the covering-based optimistic and pessimistic
multigranulation.+ey also presented two kinds of decision-
making methods to analyze this model theoretically.
Alcantud et al. [29] presented a tool which aggregates
infinite chains of IF sets over time. +ey presented IF sets
along an indefinitely long number of periods by using score
and accuracy degrees of temporal IF elements.

A parameterized collection of ordinary binary relations
is called a soft binary relation on a universe and this is
generalization of binary relations. In RS theory, rough
approximations just address single binary relations but
rough approximations by using soft binary relations can
deal with different binary relations. +e idea of soft relation
over U is given by Feng et al. [30] in 2013. Babitha and Sunil
[31] presented some results on soft set relations. Many
authors have generalized the notion of Pawlak RS model by
using dominance relations, covering relations, similarity
relations, tolerance relations, fuzzy relations, neighbour-
hood relations, and other indiscernibility relations, see
[28, 32–42].

1.1. RelatedWorks. Feng et al. [1] presented a hybrid model
of SSs which is rough approximation of SS. +ey used an SS
instead of an equivalence relation to granulate the universe.
In the result, soft approximation space and soft RSs have
been introduced as a deviation of rough approximation
space. Furthermore, they also extended Dubois and Prade’s
RSs by approximating a FS in a soft approximation space and
called soft rough FSs. Feng et al. have done a lot of work by
combining SSs, RSs, and FSs and defined new models
[1, 43, 44]. Ali and Shabir [45] studied fuzzy SSs. Roy and
Maji [46] initiated the study of fuzzy SSs. In 2020, Bashir
et al. introduced a model of rough fuzzy ternary semigroups
based on three-dimensional congruence relation [47]. Many
authors introduced RS approximations in IFSs [48, 49].
Kanwal and Shabir approximated the ideals and fuzzy sets in
semigroups based on soft relations [50, 51]. Later in 2020,
Shabir and Kanwal used soft relations to define lower and
upper approximations of a set in [51]. We have generalized
the concept in [51] in terms of IFS by introducing non-
membership degree. Our model IFRS gives approximations
corresponding to every attribute or parameter. In this way,
we get more accurate results by reducing errors than all
previous ones.

Lower
approximation

Upper
approximation

Set

Universe

Figure 1: Graphical representation of rough set.

2 Mathematical Problems in Engineering



1.2. Connection of IFRS Model with Rough Sets. +e IF set
theory deals mainly with vagueness, while the RS theory
deals with incompleteness. +e study of the combination of
these two theories is useful to deal with impreciseness. It
means that the rough IF sets are useful to deal with both
vagueness and incompleteness. Recently, RS approximations
have been discussed in IF environment. In the result, IF
rough sets, rough IF sets, and generalized IF rough sets have
been presented. Zhou et al. studied different relation-based
IF approximation operators in the axiomatic and con-
structive approaches [52].

1.3. Innovative Contribution. Some researchers have words
that one theory is better than other theory to deal with inexact
data. Majority of researchers admitted that RSs and FSs are
very closely related with each other, but distinction is there
that they model different types of vagueness. +e RS is a
coarsely described crisp set, whereas the FS is viewed as a class
with blunt boundaries. Since the FS has only membership
degree but the IF set has also degree of nonmembership which
is more useful in medical science. To diagnose a decease, IF
environment is better than fuzzy environment due to the
presence of nonmembership degree. In 2020, Shabir et al. [51]
presented a model of RS which is combination of SS and FS.
+ey approximated FS in terms of soft binary relations. In our
paper, we considered an IF set instead of a FS and an IF set has
more accurate results than a FS in medical science. +e IFS
with other algebraic structures generalizes hybrid models
which are very useful in medical science, computer science,
and other fields. Samanta and Mondal [53] presented the IF
rough set (A, B) which is generalized IFS in terms of fuzzy
rough sets A and B. On the other hand, an IF rough set (A, B)

presented by Chakrabarty et al. [48] is the generalization of
fuzzy rough set in terms of IFSs A and B. Zhou [54] proposed
IF rough sets induced by IF approximation spaces and dis-
cussed their properties. Recently, IF set has combined with
rough set approximations and resulting sets are called IF
rough sets and rough IF and generalized IF rough sets. In
axiomatic and constructive approach, Zhou et al. presented a
useful framework and studied different IF rough approxi-
mation operators by using a special type of IF triangular norm
min. Zhou (2014) presented IF soft rough sets and soft rough
If sets. +ese newly presented models were very useful as new
approaches for decision-making problems. By integrating IF
sets with SSs, Maji et al. presented IF soft sets. Jiang et al.
discussed an approach of IF soft sets-based decision making
and they also presented interval-valued IF soft set model. IF
soft set is an important combination of IF sets and SSs. It
makesmore accurate and realistic descriptions ofmaterialistic
world. Zhang presented a useful model combining IF soft sets
with RSs [1, 52, 55, 56].

1.4.Motivation. In the present paper, we extend the concept
given by Shabir et al. [51] in terms of FSs. We use IFSs
instead of FSs which is more valuable to manage uncertainty
in many scientific fields, such as medical diagnosis and
pattern recognition. Our proposed model based on soft
relations is very useful due to importance of IFS in real-life

situations [5, 6]. In our research, we propose a decision-
making algorithm by using our model based on soft rela-
tions. +en, we present an example to illustrate the validity
of our proposed decision-making algorithm. Our IFRS
model is the combination of RS, IFS, and SS which is helpful
to control impreciseness and uncertainty.

1.5.Organizationof thePaper. +e pattern of this paper is as
follows. In Section 2, some foundational concepts are
identified with FSs, IFS, RSs, and SSs and soft binary re-
lations are described. In Section 3, we presented IFRS
model based on soft relations and discussed some prop-
erties. Soft similarity relations have been examined in
Section 4. In Section 5, we gave an approach to a decision-
making problem based on an IFS. Moreover, an example is
presented to illustrate this decision-making algorithm in
Section 6.

2. Preliminaries and Basic Concepts

In this section, some basic notions about binary relations,
IFS, soft sets, and intuitionistic fuzzy soft sets are given.
+roughout this paper, U1 and U2 represent two nonempty
finite sets unless stated otherwise.

A binary relationR from U1 to U2 is a subset of U1 × U2
and a subset of U × U is called a binary relation on U. IfR is
a binary relation on U, then R is said to be reflexive if
(u, u) ∈R for all u ∈ U, symmetric if (u, v) ∈R implies
(v, u) ∈R for all u, v ∈ U, and transitive if (u, v) ∈R and
(v, w) ∈R imply (u, w) ∈R for all u, v, w ∈ U. If a binary
relation R is reflexive, symmetric, and transitive, then it is
called an equivalence relation. An equivalence relation
partitions the set into disjoint classes.

LetU be a nonempty universe. An IF setM in the universe
U is an object having the form
M � 〈x, μM(x), cM(x)〉: x ∈ U , where μM: U⟶ [0, 1]

and cM: U⟶ [0, 1], satisfying 0≤ μM(x) + cM(x)≤ 1 for
all x ∈ U. +e values μM(x) and cM(x) are called degree of
membership and degree of nonmembership of x ∈ U to M,
respectively. +e number πM(x) � 1 − μM(x) − cM(x) is
called the degree of hesitancy of x ∈ U to M. +e collection of
all IFSs in U is denoted by IF(U). In the remaining paper, we
shall write an IFS by M � 〈μM, cM〉 instead of
M � 〈x, μM(x), cM(x)〉: x ∈ U . Let M � 〈μM, cM〉 and
N � 〈μN, cN〉 be two IFSs in U. +en, M⊆N if and only if
μM(x)≤ μN(x) and cN(x)≤ cM(x) for all x ∈ U. Two IFSs
M and N are said to be equal if and only if M⊆N and N⊆M.
+e union and intersection of two IFSs M and N in U are
denoted and defined by M∩N � 〈μM ∩ μN, cM ∪ cN〉 and
M∪N � 〈μM ∪ μN, cM ∩ cN〉, where (μM ∩ μN)(x) �

inf μM(x), μN(x) , (cM ∪ cN)(x) � sup cM(x), cN(x) ,
(μM ∪ μN)(x) � sup μM(x), μN(x) , (cM ∩ cN)(x) � inf
cM(x), cN(x) .

Next, we define two special types of (IFSs) as follows:
+e IF universe set U � 1U � 〈1, 0〉 and IF empty set
∅ � 0U � 〈0, 1〉, where 1(x) � 1 and 0(x) � 0 for all x ∈ U.
+e complement of an IFS M � 〈μ, c〉 is denoted and de-
fined as Mc � 〈c, μ〉 [3].
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For a fixed x ∈ U, the pair (μM(x), cM(x)) is called IF
value or IF number. In order to define the order between two
IFNs, Chen and Tan [57] presented the score function as
S(x) � μM(x) − cM(x) and Hong and Choi [58] defined the
accuracy function as H(x) � μM(x) + cM(x), where x is an
IFV. Xu [59,60] combined the accuracy and score functions
and formed the order relations between any pair of IFVs
(x, y) as follows:

(i) If S(x)> S(y), then x >y;
(ii) If S(x) � S(y), then
(a) If H(x) � H(y), then x � y;
(b) If H(x)<H(y), then x<y.

A pair (F, A) is called a soft set over U if F is a mapping
given by F: A⟶ P(U), where A is a subset of E (the set of
parameters) and P(U) is the power set of U. +us, F(e) is a
subset of U for all e ∈ A. Hence, a soft set over U is a pa-
rametrized collection of subsets of U. A pair (F, A) is called
an intuitionistic fuzzy soft set over U if F is a mapping given
by F: A⟶ IF(U) and A is a subset of E (the set of pa-
rameters).+us, F(e) is an IF set inU for all e ∈ A. Hence, an
IF soft set over U is a parametrized collection of IF sets in U.
For two IF soft sets (F, A) and (G, B) over a common
universe U, we say that (F, A) is an IF soft subset of (G, B) if
(1) A⊆B and (2) F(e) is an IF subset of G(e) for all e ∈ A.
Two IF soft sets (F, A) and (G, B) over a common universe
U are said to be IF soft equal if(F, A) is an IF soft subset of
(G, B) and (G, B) is an IF soft subset of (F, A). +e union of
two IF soft sets (F, A) and (G, A) over the common universe
U is the IF soft set (H, A), where H(e) � F(e)∪G(e) for all
e ∈ A. +e intersection of two IF soft sets (F, A) and (G, A)

over the common universe U is the IF soft set (K, A), where
K(e) � F(e)∩G(e) for all e ∈ A [12, 61, 62].

An IF soft set can be represented by a table, which is
shown in the following example.

Example 1. Let U � x, y, z, s, t , A � e1, e2 . Consider an
IF soft set (F, A) over U defined by F(e1)(x) �

(0.3, 0.4), F(e1)(y) � (0.4, 0.3), F(e1)(z) � (0.4, 0.2), F(e1)

(s) � (0.8, 0.1), F(e1)(t) � (0.2, 0.6) and (Fe2)(x) �

(0.9, 0), F(e2)(y) � (0.5, 0.5), F(e2)(z) � (0.4, 0.5), F(e2)

(s) � (0.3, 0.7), F(e2)(t) � (0.6, 0.3).
+e above intuitionistic fuzzy soft set can be represented

as in Table 1.

3. Approximations of an IFS by Soft
Binary Relation

In this section, we consider soft binary relation from U1 to
U2 and approximate an IFS of U2 by using aftersets and get
two IF soft sets of U1. Similarly, we approximate an IFS of U1
by using foresets and get two IF soft sets of U2. We also study
some properties of these approximations.

Definition 1 (see [30]). A soft binary relation (σ, A) from
U1 to U2 is a soft set over U1 × U2, that is,
σ: A⟶ P(U1 × U2), where A is a subset of the set of
parameters E.

Of course, (σ, A) is a parameterized collection of binary
relations from U1 to U2. +at is, for each e ∈ A, we have a
binary relation σ(e) from U1 to U2.

Definition 2. Let (σ, A) be a soft binary relation from U1 to
U2 and M � 〈μM, cM〉 be an IFS in U2. +en, we define
lower approximation σM � (σμM , σcM ) and upper approxi-
mation σM � (σμM , σcM ) of M � 〈μM, cM〉 with respect to
aftersets as follows:

σ
μM

(e) u1(  �

∧a∈u1σ(e)μM(a), if u1σ(e)≠∅,

1, if u1σ(e) � ∅,

⎧⎪⎨

⎪⎩

σ
cM

(e) u1(  �
∨a∈u1σ(e)cM(a), if u1σ(e)≠∅,

0, if u1σ(e) � ∅,

⎧⎪⎨

⎪⎩

σμM (e) u1(  �

∨a∈u1σ(e)μM(a), if u1σ(e)≠∅,

0, u1σ(e) � ∅,

⎧⎪⎨

⎪⎩

σcM (e) u1(  �
∧a∈u1σ(e)cM(a), if u1σ(e)≠∅,

1, if u1σ(e) � ∅,

⎧⎪⎨

⎪⎩

(1)

where u1σ(e) � a ∈ U2: (u1, a) ∈ σ(e)  and is called the
afterset of u1 for u1 ∈ U1 and e ∈ A.

(i) σμM (e)(u1) indicates the degree to which u1 defi-
nitely have the property e.

(ii) σcM (e)(u1) indicates the degree to which u1
probably do not have the property e.

(iii) σμM (e)(u1) indicates the degree to which u1
probably have the property e.

(iv) σcM (e)(u1) indicates the degree to which u1 defi-
nitely do not have the property e.

In Definition 2, soft binary relation from U1 to U2 is
given and IFS in U2 can be approximated as lower and upper
approximations with respect to the aftersets. +e resulting
sets are two pairs of IF soft sets.

Definition 3. Let (σ, A) be a soft binary relation from U1 to
U2 and M � 〈μM, cM〉 be an IFS in U1. +en, we define
lower approximation Mσ � (μM σ ,cM σ) and upper ap-
proximation Mσ � (μMσ,cMσ) of M � 〈μM, cM〉 with re-
spect to foresets as follows:

Table 1: Representation of IF soft set.

U e1 e2

x (0.3, 0.4) (0.9, 0)

y (0.4, 0.3) (0.5, 0.5)

z (0.4, 0.2) (0.4, 0.5)

s (0.8, 0.1) (0.3, 0.7)

t (0.2, 0.6) (0.6, 0.3)
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μM σ(e) u2(  �

∧a∈σ(e)u2
μM(a), if σ(e)u2 ≠∅,

1, if σ(e)u2 � ∅,

⎧⎪⎨

⎪⎩

cMσ(e) u2(  �

∨a∈σ(e)u2
cM(a), if σ(e)u2 ≠∅,

0, if σ(e)u2 � ∅,

⎧⎪⎨

⎪⎩

μMσ(e) u2(  �

∨a∈σ(e)u2
μM(a) if σ(e)u2 ≠∅,

0 if σ(e)u2 � ∅,

⎧⎪⎨

⎪⎩

cMσ(e) u2(  �
∧a∈σ(e)u2

cM(a), if σ(e)u2 ≠∅,

1, if σ(e)u2 � ∅,

⎧⎪⎨

⎪⎩

(2)

where σ(e)u2 � a ∈ U1: (a, u2) ∈ σ(e)  and is called the
foreset of u2 for u2 ∈ U2 and e ∈ A. Of course,
σM: A⟶ IF(U1), σM: A⟶ IF(U1) and
M σ : A⟶ IF(U2), Mσ: A⟶ IF(U2). +e following ex-
ample explains these concepts.

In Definition 3, soft binary relation from U1 to U2 is
given and IFS in U1 can be approximated as lower and upper
approximations with respect to the foresets. +e resulting
sets are two pairs of IF soft sets.

Example 2. Suppose that Mr. X wants to buy a shirt for his
own use. Let U1 � the set of all shirts designs  �

d1, d2, d3, d4, d5, d6  and U2 � the colors of all designs  �

c1, c2, c3, c4  and the set of attributes be
A � e1, e2, e3  � the set of stores near his house{ }.

Define σ: A⟶ P(U1 × U2) by

σ e1(  �

d1, c1( , d1, c2( , d1, c3( , d2, c2( , d2, c4( ,

d4, c2( , d4, c3( , d5, c3( , d5, c4( , d6, c1( 

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

σ e2(  � d1, c3( , d2, c3( , d4, c1( , d5, c1( , d6, c2( , d6, c3(  ,

σ e3(  � d2, c4( , d3, c1( , d3, c3( , d5, c3( , d5, c4(  ,

(3)

which represents the relation between designs and colors
available on store ei for 1≤ i≤ 3. +en,

d1σ e1(  � c1, c2, c3 ,

d2σ e1(  � c2, c4 ,

d3σ e1(  � ∅,

d4σ e1(  � c2, c3 ,

d5σ e1(  � c3, c4 ,

d6σ e1(  � c1 

d1σ e2(  � c3 ,

d2σ e2(  � c3 ,

d3σ e2(  � ∅,

d4σ e2(  � c1 ,

d5σ e2(  � c1 ,

d6σ e2(  � c2, c3 

d1σ e3(  � ∅,

d2σ e3(  � c4 ,

d3σ e3(  � c1, c3 ,

d4σ e3(  � ∅,

d5σ e3(  � c3, c4 ,

d6σ e3(  � ∅,

(4)

where diσ(ej) represents the color of the design di available
on the store ej.

Also,

σ e1( c1 � d1, d6 ,

σ e1( c2 � d1, d2, d4 ,

σ e1( c3 � d1, d4, d5 ,

σ e1( c4 � d2, d5 ,

σ e2( c1 � d4, d5 ,

σ e2( c2 � d6 ,

σ e2( c3 � d1, d2, d6 ,

σ e2( c4 � ∅,

σ e3( c1 � d3 ,

σ e3( c2 � ∅,

σ e3( c3 d3, d5 ,

σ e3( c4 � d2, d5 ,

(5)
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where σ(ej)ci represents the design of the color ci available
on the store ej.

DefineM �〈μM, cM〉: U2⟶ [0, 1]which represents the preference of the

colors given byMr.X such that

μM c1(  � 0.9, μM c2(  � 0.8, μM c3(  � 0.4, μM c4(  � 0

cM c1(  � 0.0, cM c2(  � 0.2, cM c3(  � 0.5, cM c4( 

DefineN �〈μN, cN〉: U1⟶ [0, 1]which represents the preference of the

designs given byMr.X such that

μN d1(  � 1, μN d2(  � 0.7, μN d3(  � 0.5, μN d4(  � 0.1,

μN d5(  � 0, μN d6(  � 0.4

cN d1(  � 0, cN d2(  � 0.2, cN d3(  � 0.5, cN d4(  � 0.7,

cN d5(  � 1, cN d6(  � 0.5.

(6)

+erefore, the lower and upper approximations (with
respect to the aftersets as well as with respect to the foresets)
are

σ
M

� σ
μM

, σ
cM

 (given in Table 2),

σM
� σμM , σcM( (given in Table 3),

(7)

and

N σ � σ
μN

, σ
cN

 (given in Table 4)
Nσ

�
μNσ,

cNσ( (given in Table 5).

(8)

Table 2 shows the lower approximation of IFS M with
respect to the aftersets by using Definition 2. Table 3
shows the upper approximation of IFS M with respect
to the aftersets by using Definition 2. Table 4 shows the
lower approximation of IFS N with respect to the foresets
by using Definition 3. Table 5 shows the upper approxi-
mation of IFS N with respect to the foresets by using
Definition 3.

Theorem 1. Let (σ, A) be a soft binary relation from U1 to
U2, that is, σ: A⟶ P(U1 × U2). For any IFSs,
M � 〈μM, cM〉, N � 〈μN, cN〉, and P � 〈μP, cP〉 of U2, the
following are true:

(1) If N⊆P, then σN⊆σP;
(2) If N⊆P, then σN⊆ σP;
(3) σN ∩ σP � σN∩P;
(4) σN ∩ σP⊇σN∩P;
(5) σN ∪ σP⊆σN∪P;
(6) σN ∪ σP � σN∪P;
(7) σ1U2 � 1U1

if u1σ(e)≠∅;
(8) σ1U2 � 1U1

if u1σ(e)≠∅;
(9) σM � (σMc

)c if u1σ(e)≠∅;

(10) σM � (σMc

)c if u1σ(e)≠∅;
(11) σ0U2 � 0U1

� σ0U2 if u1σ(e)≠∅.

Proof

(1) Let u1 ∈ U1. If u1σ(e) � ∅, then σμN (e)(u1) � 1 �

σμP (e)(u1) and σcN (e)(u1) � 0 � σcP (e)(u1). If
u1σ(e)≠∅, then σμN (e)(u1) � ∧a∈u1σ(e)μN(a)≤
∧a∈u1σ(e)μP(a) because μN(a)≤ μP(a) � σμP (e)(u1).
+us, σμN (e)(u1)≤ σμP (e)(u1).
Also,
σcN (e)(u1) � ∨a∈u1σ(e)cN(a)≥∨a∈u1σ(e)cP(a) be-
cause cN(a)≥ cP(a)

� σcP (e)(u1).
+us, σcN (e)(u1)≥ σcP (e)(u1). Hence, σN⊆σP.

(2) Let u1 ∈ U1. If u1σ(e) � ∅, then σμN (e)(u1) � 0 �

σμP (e)(u1) and σcN (e)(u1) � 1 � σcP (e)(u1). If
u1σ(e)≠∅, then
σμN (e)(u1) � ∨a∈u1σ(e)μN(a)≤∨a∈u1σ(e)μP(a) be-
cause μN(a)≤ μP(a) � σμP (e)(u1).
+us, σμN (e)(u1)≤ σμP (e)(u1).
Also,
σcN (e)(u1) � ∧a∈u1σ(e)cN(a)≥∧a∈u1σ(e)cP(a) be-
cause cN(a)≥ cP(a)

� σcP (e)(u1).
+us, σcN (e)(u1)≥ σcP (e)(u1). Hence, σN⊆σP.

(3) Let u1 ∈ U1. If u1σ(e) � ∅, then σμN∩P (e)(u1) � 1 �

σμN (e)(u1)∩ σμP (e)(u1) and σcN∩P (e)(u1) � 0 �

σcN (e)(u1)∪ σcP (e)(u1). If u1σ(e)≠∅, then
(σμN ∩ σμP )(e)(u1) � σμN (e)(u1)∧σμP (e)(u1) �

(∧a∈u1σ(e) μN(a))∧(∧a∈u1σ(e)μP(a)) � ∧a∈u1σ(e)

(μN(a)∧ μP (a)) � ∧a∈u1σ(e)(μN∧μP) (a) � ∧a∈u1σ(e)

(μN∩P)(a) � σμN∩P (e)(u1).
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Also,
(σcN ∪ σcP )(e)(u1) � σcN (e)(u1)∨σcP (e)(u1) �

(∨a∈u1σ(e)cN(a))∨(∨a∈u1σ(e) cP(a)) � ∨a∈u1σ(e)

(cN(a)∨ cP(a)) � ∨a∈u1σ(e)(cN∨cP) (a) � ∨a∈u1σ(e)

(cN∩P)(a) � σcN∩P (e)(u1).
+is shows that σN ∩ σP � σN∩P.

(4) Since N∩P⊆N and N∩P⊆P, we have from part (2)
σN∩P⊆σN and σN∩P⊆σP. +us, σN∩P⊆σN ∩ σP.

(5) Since N∪P⊇N and N∪P⊇P, we have from part (1)
σN∪P⊇σN and σN∪P⊇σP. +us, σN∪P⊇σN ∪ σP.

(6) Let u1 ∈ U1. If u1σ(e) � ∅, then σμN∪P (e)(u1) � 0 �

σμN (e)(u1)∪ σμP (e)(u1) and σcN∪P (e)(u1) � 1 �

σcN (e)(u1)∩ σcP (e)(u1). If u1σ(e)≠∅, then
(σμN ∪ σμP )(e)(u1) � σμN (e)(u1)∨σμP (e)(u1) �

(∨a∈u1σ(e)μN(a))∨ (∨a∈u1σ(e)μP(a)) � ∨a∈u1σ(e) (μN

(a)∨μP(a)) � ∨a∈u1σ(e)(μN∨μP)(a) � ∨a∈u1σ(e)

(μN∪P)(a) � σμN∪P (e)(u1).
Also,

(σcN ∩ σcP )(e)(u1) � σcN (e)(u1)∧ σcP (e)(u1) �

(∧a∈u1σ(e)cN(a))∧ (∧a∈u1σ(e)cP(a)) � ∧a∈u1σ(e)

(cN(a)∧cP(a)) � ∧a∈u1σ(e) (cN∧cP)(a) � ∧a∈u1σ(e)

(cN∪P)(a) � σcN∪P (e)(u1).
+is shows that σN ∪ σP � σN∪P.

(7) Consider σ1(e)(u1) � ∧a∈u1σ(e)1(a) � ∧a∈u1σ(e)

(1) � 1, because u1σ(e)≠∅
and σ0(e)(u1) � ∨a∈u1σ(e)0(a) � ∨a∈u1σ(e)(0) � 0,
because u1σ(e)≠∅.
+us, σ1U2 � 1U1

.
(8) +e proof is similar to the proof of part (7).
(9) Let M � < μM, cM > be an IFS on U2. +en,

Mc � < μMc , cMc > � < cM, μM > , that is,
μMc � cM and cMc � μM. Now,
σMc

� (σμMc , σcMc ) � (σcM , σμM ). +us, σμMc (e)

(u1) � ∨a∈u1σ(e)μMc (a) � ∨a∈u1σ(e)cM(a) �

σcM (e)(u1) and σcMc (e)(u1) � ∧a∈u1σ (e)cMc (a) �

∧a∈u1σ(e)μM(a) � σμM (e)(u1). Hence, σMc

� (σμMc ,

σcMc ) � (σcM , σμM ) � (σμM , σcM )c, that is, (σMc

)c �

σM.
(10) follows from part (9).
(11) Straightforward.

+eorem 1 describes the properties of newly defined
IFRS model based on soft relations. It shows that if an IFS N

is the subset of IFS P, then the lower approximation of N is
also a subset of the lower approximation of P, and if an IFS
N is subset of IFS P, then the upper approximation of N is
also a subset of the upper approximation of P. Similarly, the
empirical relations among the operations union, intersec-
tion, and complement have been described. □

Theorem 2. Let (σ, A) be a soft binary relation from U1 to
U2, that is, σ: A⟶ P(U1 × U2). For any IFSs,
M � 〈μM, cM〉, N � 〈μN, cN〉, and P � 〈μP, cP〉 of U1, the
following are true:

(1) If N⊆P, then N σ ⊆P σ;
(2) If N⊆P, then Nσ⊆Pσ;
(3) N σ ∩ P σ �N∩P σ;
(4) Nσ ∩ Pσ⊇N∩Pσ;
(5) N σ ∪ P σ ⊆N∪P σ;
(6) Nσ ∪ Pσ�N∪Pσ;
(7) σ1U1 � 1U2

if u1σ(e)≠∅;
(8) σ1U1 � 1U2

if u1σ(e)≠∅;
(9) M σ � (Mcσ)c if u1σ(e)≠∅;
(10) Mσ � (Mc σ)c if u1σ(e)≠∅;
(11) 0U1 σ � 0U2

�0U1σ.

Proof. +e proof is similar to the proof of +eorem 1.
+e following example shows that equality does not hold

in (4) and (5) assertions of above theorems in general. □

Table 3: Upper approximation of intuitionistic fuzzy set M.

σM e1 e2 e3

d1 (0.9, 0) (0.4, 0.5) (0, 1)

d2 (0.8, 0.2) (0.4, 0.5) (0, 0.8)

d3 (0, 1) (0, 1) (0.9, 0)

d4 (0.8, 0.2) (0.9, 0) (0, 1)

d5 (0.4, 0.5) (0.9, 0) (0.4, 0.5)

d6 (0.9, 0) (0.8, 0.2) (0, 1)

Table 4: Lower approximation of intuitionistic fuzzy set N.
Nσ e1 e2 e3

c1 (0.4, 0.5) (0, 1) (0.5, 0.5)

c2 (0.1, 0.7) (0.4, 0.5) (1, 0)

c3 (0, 1) (0.4, 0.5) (0, 1)

c4 (0, 1) (1, 0) (0, 1)

Table 5: Upper approximation of intuitionistic fuzzy set N.
Nσ e1 e2 e3

c1 (1, 0) (0.1, 0.7) (0.5, 0.5)

c2 (1, 0) (0.4, 0.5) (0, 1)

c3 (1, 0) (1, 0) (0.5, 0.5)

c4 (0.7, 0.2) (0, 1) (0.7, 0.2)

Table 2: Lower approximation of intuitionistic fuzzy set M.

σM e1 e2 e3

d1 (0.4, 0.5) (0.4, 0.5) (1, 0)

d2 (0, 0.8) (0.4, 0.5) (0, 0.8)

d3 (1, 0) (1, 0) (0.4, 0.5)

d4 (0.4, 0.5) (0.9, 0) (1, 0)

d5 (0, 0.8) (0.9, 0) (0, 0.8)

d6 (0.9, 0) (0.4, 0.5) (1, 0)
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Example 3. Consider Example 2. Let P � 〈μP, cP〉:

U2⟶ [0, 1] (given in Table 6).
Table 6 simply shows the degree of membership and

degree of nonmembership of IFS P.
+en, M∪P � 〈μM∪P, cM∪P〉 � 〈μM ∪ μP, cM ∩ cP〉

(given in Table 7) and M∩P � 〈μM∩P, cM∩P〉 �

〈μM ∩ μP, cM ∪ cP〉 (given in Table 7).
Table 7 shows the calculations of union and intersection

of two IFSs M and P, respectively.
Now, σP � (σμP , σcP ) (given in Table 8) and

σM∪P � (σμM∪P , σcM∪P ) (given in Table 9).
Now, σM ∪ σP (given in Table 10).
In Table 10, we calculated σM ∪ σP. Tables 9 and 10 show

that σM ∪ σP ≠ σM∪P.
Now, σP � (σμP , σcP ) (given in Table 11).
In Table 11, we calculated upper approximation of P.
Now, σM∩P � (σμM∩P , σcM∩P ) (given in Table 12).
Now, σM ∩ σP (given in Table 13).
In Table 12, we calculated upper approximation of

M∩P. In Table 13, we calculated the intersection of upper
approximations of M and P. Tables 12 and 13 show that
σM ∩ σP ≠ σM∩P.

Theorem 3. Let (σ1, A) and (σ2, A) be two soft binary re-
lations from U1 to U2, such that (σ1, A)⊆(σ2, A), that is,
σ1(e)⊆σ2(e) for all e ∈ A. ?en, for any IFS M � 〈μM, cM〉 of
U2, the following are true:

(i) σ2 M⊆σ1 M;

(ii) σM
1 ⊆σ

M
2 .

Proof

(1) Let u1 ∈ U1. If u1σ1(e) � ∅, then
σ1 μM (e)(u1) � 1≥ σ2 μM (e)(u1) and
σ1 cM (e)(u1) � 0≤ σ2 cM (e)(u1). If u1σ1(e)≠∅, then
u1σ2(e)≠∅, we have
σ1 μM (e)(u1) � ∧a∈u1σ1(e)μM(a)≥∧a∈u1σ2(e)μM(a) be-
cause u1σ1(e)⊆u1σ2(e) � σ2 μM (e)(u1).
Also,
σ1 cM (e)(u1) � ∨a∈u1σ1(e)cM(a)≤∨a∈u1σ2(e)cM(a) be-
cause u1σ1(e)⊆u1σ2(e)

� σ2 cM (e)(u1).
Hence, σ2 M⊆σ1 M.

(2) Let u1 ∈ U1. If u1σ1(e) � ∅, then
σ1

μM (e)(u1) � 0≤ σ2
μM (e)(u1) and σcM

1 (e)(u1) �

1≥ σ2
cM (e)(u1). If u1σ1(e)≠∅, then u1σ2(e)≠∅,

and we have
σ1

μM (e)(u1) � ∨a∈u1σ1(e)μM(a)≤∨a∈u1σ2(e)μM(a) be-
cause u1σ1(e)⊆u1σ2(e) � σ2

μM (e)(u1).

Also,
σ1

cM (e)(u1) � ∧a∈u1σ1(e)cM(a)≥∧a∈u1σ2(e)cM(a) be-
cause u1σ1(e)⊆u1σ2(e)

� σ2
cM (e)(u1).

Hence, σ1
M⊆σ2

M.

+eorem 3 shows that if any soft relation
(σ1, A)⊆(σ2, A), then for any IFS M in U2, the lower ap-
proximation associated with (σ2, A) is a subset of (σ1, A).
Similarly, if any soft relation (σ1, A)⊆(σ2, A), then for any

Table 6: Intuitionistic fuzzy set P.

c1 c2 c3 c4

μP 0.1 0.6 0.5 1
cP 0.9 0.1 0.5 0

Table 7: Intuitionistic fuzzy sets M∪P, M∩P.

c1 c2 c3 c4

M∪P (0.9, 0) (0.8, 0.1) (0.5, 0.5) (1, 0)

M∩P (0.1, 0.9) (0.6, 0.2) (0.4, 0.5) (0, 0.8)

Table 8: Lower approximation of P.

σP e1 e2 e3

d1 (0.1, 0.9) (0.5, 0.5) (1, 0)

d2 (0.6, 0.1) (0.5, 0.5) (1, 0)

d3 (1, 0) (1, 0) (0.1, 0.9)

d4 (0.5, 0.5) (0.1, 0.9) (1, 0)

d5 (0.5, 0.5) (0.1, 0.9) (0.5, 0.5)

d6 (0.1, 0.9) (0.5, 0.5) (1, 0)

Table 9: Lower approximation of M∪P.

σM∪P e1 e2 e3

d1 (0.5, 0.5) (0.5, 0.5) (1, 0)

d2 (0.8, 0.1) (0.5, 0.5) (1, 0)

d3 (1, 0) (1, 0) (0.5, 0.5)

d4 (0.5, 0.5) (0.9, 0) (1, 0)

d5 (0.5, 0.5) (0.9, 0) (0.5, 0.5)

d6 (0.9, 0) (0.5, 0.5) (1, 0)

Table 10: Union of lower approximations of M and P.

σM ∪ σP e1 e2 e3

d1 (0.4, 0.5) (0.5, 0.5) (1, 0)

d2 (0.6, 0.1) (0.5, 0.5) (1, 0)

d3 (1, 0) (1, 0) (0.4, 0.5)

d4 (0.5, 0.5) (0.9, 0) (1, 0)

d5 (0.5, 0.5) (0.9, 0) (0.5, 0.5)

d6 (0.9, 0) (0.5, 0.5) (1, 0)

Table 11: Upper approximation of P.

σP e1 e2 e3

d1 (0.6, 0.1) (0.5, 0.5) (0, 1)

d2 (1, 0) (0.5, 0.5) (1, 0)

d3 (0, 1) (0, 1) (0.5, 0.5)

d4 (0.6, 0.1) (0.1, 0.9) (0, 1)

d5 (1, 0) (0.1, 0.9) (1, 0)

d6 (0.1, 0.9) (0.6, 0.1) (0, 1)
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IFS M in U2, the upper approximation associated with
(σ1, A) is a subset of (σ2, A). □

Theorem 4. Let (σ1, A) and (σ2, A) be two soft binary re-
lations from U1 to U2, such that (σ1, A)⊆(σ2, A), that is,
σ1(e)⊆σ2(e) for all e ∈ A. ?en, for any IFS M � 〈μM, cM〉 of
U1, the following are true:

(1) M σ2 ⊆M σ1
(2) Mσ1⊆Mσ2

Proof

(1) Let u2 ∈ U2. If σ1(e)u2 � ∅, then
μM σ1 (e)(u2) � 1≥ μM σ2 (e)(u2) and γMσ1 (e)(u2) �

0≤ cMσ2 (e)(u2). If σ1(e)u2 ≠∅, then σ2(e)u2 ≠∅,
we have
μMσ1 (e)(u2) � ∧a∈σ1(e)u2

μM(a)≥∧a∈σ2(e)u2
μM(a) be-

cause σ1(e)u2⊆σ2(e)u2 � μMσ2 (e)(u2).
Also,
γMσ1 (e)(u2) � ∨a∈σ1(e)u2

cM(a)≤∨a∈σ2(e)u2
cM(a) be-

cause σ1(e)u2⊆σ2(e)u2

� cMσ2 (e)(u2).
Hence, Mσ2 ⊆Mσ1 .

(2) Let u2 ∈ U2. If σ1(e)u2 � ∅, then μMσ1(e)(u2) �

0≤ μMσ2(e)(u2) and γMσ1(e)(u2) � 1≥ cMσ2(e)(u2).
If σ1(e)u2 ≠∅, then σ2(e)u2 ≠∅, and we have
μMσ1(e)(u2) � ∨a∈σ1(e)u2

μM(a)≤∨a∈σ2(e)u2
μM(a) be-

cause σ1(e)u2⊆σ2(e)u2 � μMσ2(e)(u2).
Also,
γMσ1(e)(u2) � ∧a∈σ1(e)u2

cM(a)≥∧a∈σ2(e)u2
cM(a) be-

cause σ1(e)u2⊆σ2(e)u2

�cMσ2(e)(u2).
Hence, Mσ1⊆Mσ2. □

Theorem 5. Let (σ1, A) and (σ2, A) be two soft binary re-
lations from U1 to U2. ?en, for any IFS M � 〈μM, cM〉 of U2,
the following are true:

(1) σ1 M⊆(σ1 ∩ σ2)
M;

(2) σ2 M⊆(σ1 ∩ σ2)
M;

(3) (σ1 ∩ σ2)
M⊆σM

1 ;

(4) (σ1 ∩ σ2)
M⊆σM

2 .

Proof

(1) As σ1 ∩ σ2⊆σ1, therefore from +eorem 3 part (1),
σ1 M⊆(σ1 ∩ σ2)

M.
(2) As σ1 ∩ σ2⊆σ2, therefore from+eorem 3 part (1),
σ2 M⊆(σ1 ∩ σ2)

M.
(3) As σ1 ∩ σ2⊆σ1, therefore from+eorem 3 part (2),
(σ1 ∩ σ2)

M⊆σM
1 .

(4) As σ1 ∩ σ2⊆σ2, therefore from+eorem 3 part (2),
(σ1 ∩ σ2)

M⊆σM
2 . □

Theorem 6. Let (σ1, A) and (σ2, A) be two soft binary re-
lations from U1 to U2. ?en, for any IFS M � 〈μM, cM〉 of U1,
the following are true:

(1) Mσ1 ⊆M (σ1 ∩ σ2) ;
(2) M σ2 ⊆M (σ1 ∩ σ2) ;

(3) M(σ1 ∩ σ2)⊆Mσ1;
(4) M(σ1 ∩ σ2)⊆Mσ2.

Proof

(1) As σ1 ∩ σ2⊆σ1, therefore from +eorem 4 part (1),
M σ1 ⊆M (σ1 ∩ σ2) .

(2) As σ1 ∩ σ2⊆σ2, therefore from +eorem 4 part (1),
M σ2 ⊆M (σ1 ∩ σ2) .

(3) As σ1 ∩ σ2⊆σ1, therefore from +eorem 4 part (2),
M(σ1 ∩ σ2)⊆Mσ1.

(4) As σ1 ∩ σ2⊆σ2, therefore from +eorem 4 part (2),
M(σ1 ∩ σ2)⊆Mσ2.

In+eorems 5 and 6, some empirical relations have been
discussed about union and intersection of two soft relations
(σ1, A) and (σ2, A) with respect to the aftersets and with
respect to the foresets, respectively. □

Definition 4. If (σ, A) is a soft set over U × U, then (σ, A) is
called a soft binary relation on U.

In fact, (σ, A) is a parameterized collection of binary
relations on U. +at is, for each parameter e ∈ A, we have a

Table 12: Upper approximation of M∩P.

σM∩P e1 e2 e3

d1 (0.6, 0.2) (0.4, 0.5) (0, 1)

d2 (0.6, 0.2) (0.4, 0.5) (0, 0.8)

d3 (0, 1) (0, 1) (0.4, 0.5)

d4 (0.6, 0.2) (0.1, 0.9) (0, 1)

d5 (0.4, 0.5) (0.1, 0.9) (0.4, 0.5)

d6 (0.1, 0.9) (0.6, 0.2) (0, 1)

Table 13: Intersection of upper approximations of M and P.

σM ∩ σP e1 e2 e3

d1 (0.6, 0.1) (0.4, 0.5) (0, 1)

d2 (0.8, 0.2) (0.4, 0.5) (0, 0.8)

d3 (0, 1) (0, 1) (0.5, 0.5)

d4 (0.6, 0.2) (0.1, 0.9) (0, 1)

d5 (0.4, 0.5) (0.1, 0.9) (0.4, 0.5)

d6 (0.1, 0.9) (0.6, 0.2) (0, 1)
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binary relation σ(e) on U. A soft binary relation (σ, A) on U

is said to be soft reflexive relation on U if σ(e) is a reflexive
relation on U for all e ∈ A. If (σ, A) is a soft reflexive binary
relation on U, then uσ(e)(resp.σ(e)u) is nonempty and
u ∈ uσ(e)(resp.u ∈ σ(e)u). It is not necessary that
uσ(e) � σ(e)u. A soft binary relation (σ, A) on U is said to
be soft symmetric relation on U if σ(e) is a symmetric re-
lation on U for all e ∈ A. A soft binary relation (σ, A) on U is
said to be soft transitive relation on U if σ(e) is a transitive
relation on U for all e ∈ A.

A soft binary relation (σ, A) over U is soft equivalence
relation over U if it is soft reflexive, soft symmetric, and soft
transitive relation over U. A soft binary relation (σ, A) over
U is a soft equivalence relation over U if σ(e) for all e ∈ A is
an equivalence relation over U. In this case, uσ(e) � σ(e)u

and uσ(e): u ∈ U{ } is a partition of U. Also, in this case,
Mσ(e) � σM(e) and Mσ(e) � σM(e), for any IFS
M � 〈μM, cM〉 of U.

+e approximation operators have additional properties
with respect to soft reflexive binary relation as follows.

Theorem 7. Let (σ, A) be a soft reflexive binary relation on
U. ?en, for any IFS M � 〈μM, cM〉 of U, the following are
true:

(1) σμM (e)≤ μM for all e ∈ A;
(2) μM ≤ σμM (e) for all e ∈ A;
(3) σμM (e)≤ σμM (e) for all e ∈ A;
(4) σcM (e)≥ cM for all e ∈ A;
(5) cM ≥ σcM (e) for all e ∈ A;
(6) σcM (e)≥ σcM (e) for all e ∈ A.

Proof

(1) Let u ∈ U. +en,
σμM (e)(u) � ∧a∈uσ1(e)μM(a)≤ μM(u) because u ∈ uσ
(e).

(2) Hence, σμM (e)≤ μM.
Let u ∈ U. +en,
σμM (e)(u) � ∨a∈uσ1(e)μM(a)≥ μM(u) because u ∈ uσ
(e)

Hence, μM ≤ σμM (e).
(3) It follows from part (1) and part (2).
(4) Let u ∈ U. +en,

σcM (e)(u) � ∨a∈uσ1(e)cM(a)≥ cM(u) because u ∈ uσ
(e)

Hence, σcM (e)≥ cM.
(5) Let u ∈ U. +en,

σcM (e)(u) � ∧a∈uσ1(e)cM(a)≤ cM(u) because
u ∈ uσ(e)

Hence, cM ≥ σcM (e).
It follows from part (4) and part (5).

+eorem 7 shows the empirical relations between IFS M

and a soft reflexive relation (σ, A). □

Theorem 8. Let (σ, A) be a soft reflexive binary relation on
U. ?en, for any IFS M � 〈μM, cM〉 of U, the following are
true:

(1) μM σ(e)≤ μM for all e ∈ A;
(2) μM ≤ μMσ(e) for all e ∈ A;
(3) μM σ(e)≤ μMσ(e) for all e ∈ A;
(4) cM σ(e)≥ cM for all e ∈ A;
(5) cM ≥ cMσ(e) for all e ∈ A;
(6) cM σ(e)≥ cMσ(e) for all e ∈ A.

Proof

(1) Let u ∈ U. +en,
μMσ(e)(u) �∧a∈σ1(e)uμM(a)≤μM(u) because u ∈ σ
(e)u.

Hence, μMσ(e)≤ μM.
(2) Let u ∈ U. +en,
μMσ(e)(u) � ∨a∈σ1(e)uμM(a)≥ μM(u) because u ∈
σ(e)u

Hence, μM ≤ μMσ(e).
(3) It follows from part (1) and part (2).
(4) Let u ∈ U. +en,

γMσ(e)(u) � ∨a∈σ1(e)ucM(a)≥ cM(u) because u ∈ σ
(e)u

Hence, cM σ(e)≥ cM.
(5) Let u ∈ U. +en,

cMσ(e)(u) � ∧a∈σ1(e)ucM(a)≤ cM(u) because u ∈ σ
(e)u

(i) Hence, cM ≥ cMσ(e).
(6) It follows from part (4) and part (5). □

4. Similarity Relations

In this section, we define some relations between IFS of U2
with the help of a soft relation from U1 to U2. We say that
two intuitionistic fuzzy sets in U2 are related if the lower
(upper) approximations in U1 are equal. Similarly, we define
relations between intuitionistic fuzzy sets of U1.

Definition 5. Let (σ, A) be a soft binary relation from U1 to
U2. +en, for any IFS N � 〈μN, cN〉 and P � 〈μP, cP〉 of U2,
we define

N≃AP if and only if σN � σP N≂AP if and only if σN �

σP N ≈ AP if and only if σN � σP and σN � σP.

Definition 6. Let (σ, A) be a soft binary relation from U1 to
U2. +en, for any IFS N � 〈μN, cN〉 and P � 〈μP, cP〉 of U1,
we define
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N≃σP if and only if Nσ � PσN≂σP if and only if Nσ �
PσN ≈ σP if and only if N σ � Pσ and Nσ � Pσ.

+ese binary relations may be called the lower similarity
relation, upper similarity relation, and similarity relation,
respectively.

Definitions 5 and 6 show that if an IFS N has
upper(lower) similarity relation with an IFS P, then its
associated lower(upper) approximation has also upper(-
lower) similarity relation.

Proposition 1. ?e relations ≃A, ≂A, and ≈ A are equiva-
lence relations on IF(U2).

Proof. ≃Ais reflexive: let N be an IFS of U2. Since σN � σN,
so we have N≃N. ≃Ais symmetric: let N and P be IFSs of U2
such that N≃P; this implies σN � σP, so σP � σN; this im-
plies P≃N.
≃Ais transitive: let N, P and Q be IFSs of U2 such that

N≃P and P≃Q; this implies σN � σP and σP � σQ, so
σN � σQ; this implies N≃Q.

+us, ≃Ais an equivalence relation on IF(U2).
Similarly, ≂Aand ≈ Aare equivalence relations on

IF(U2). □

Proposition 2. ?e relations ≃σ , ≂σ, and ≈ σ are equivalence
relations on IF(U1).

Proof. ≂σ is reflexive: let N be an IFS of U1. Since N σ �N σ, so
we have N≃N.
≂σ is symmetric: let N and P be IFSs ofU1 such thatN≃P;

this implies N σ �P σ, so P σ �N σ; this implies P≃N.
≂σ is transitive: let N, P, and Q be IFSs of U1 such that

N≃P and P≃Q; this implies N σ �P σ and P σ �Q σ, so
N σ �Q σ; this implies N≃Q.

+us, ≂σ is an equivalence relation on IF(U1).
Similarly, ≂σand ≈ σare equivalence relations on

IF(U1). □

Theorem 9. Let (σ, A) be a soft binary relation from U1 to
U2. Let N, P, Q, and T be IFSs of U2. ?en, the following are
true:

(1) N≂AP if and only if N≂A(N∪P)≂AP;
(2) N≂AP and Q≂AT imply that (N∪Q)≂A(P∪T);
(3) N⊆P and P≂A0U2

imply that N≂A0;
(4) (N∪P)≂A0U2

if and only if N≂A0U2
and P≂A0U2

;
(5) N⊆P and N≂A1U2

imply that P≂A1;
(6) If (N∩P)≂A1U2

, then N≂A1U2
and P≂A1U2

.

Proof

(1) Let N≂AP. +en, σN � σP. By +eorem 1, we get
σN∪P � σN ∪ σP � σN � σP. +is implies that
N≂A(N∪P)≂AP. Conversely, it holds due to tran-
sitive property of relation ≂A.

(2) Let N≂AP and Q≂AT. +en, σN � σP and σQ � σT.

By +eorem 1, we get σN∪Q � σN ∪ σQ �

σP ∪ σT � σP∪T. +is implies that (N∪Q)≂A(P∪T).
(3) Let N⊆P and P≂A0U2

. +en, σP � σ0U2 .
Also, by+eorem 1, N⊆P implies that σN⊆σP � σ0U2 .
But σ0U2⊆σN. +us, σN � σ0U2 . +is implies that
N≂A0.

(4) If N≂A0U2
and P≂A0U2

, then σN � σ0U2 and
σP � σ0U2 . Now, by +eorem 1, we have
σN∪P � σN ∪ σP � σ0U2 ∪ σ0U2 � σ0U2 . +is implies
that (N∪P)≂A0U2

. Conversely, if (N∪P)≂A0U2
,

then by part (3), we have N≂A0U2
and P≂A0U2

.
(5) Suppose N≂A1U2

. +en, σN � σ1U2 . As
N⊆P, we have σP⊇σN � σ1U2 . On the other hand,
P⊆1U2

, so we have σP⊆σ1U2 . +is implies that
σP � σ1U2 , that is, P≂A1U2

.
(6) It follows from (5).

+eorem 9 shows some lower similarity relations of
union and intersection of IFSs N, P, Q, and T in U2 with
respect to the aftersets. □

Theorem 10. Let (σ, A) be a soft binary relation from U1 to
U2. Let N, P, Q, and T be IFSs of U1. ?en, the following are
true:

(1) N≂σP if and only if N≂σ(N∪P)≂σP;
(2) N≂σP and Q≂σT imply that (N∪Q)≂σ(P∪T);
(3) N⊆P and P≂σ0U1

imply that N≂σ0U1
;

(4) (N∪P)≂σ0U1
if and only if N≂σ0U1

and P≂σ0U1
;

(5) N⊆P and N≂σ1U1
imply that P≂σ1U1

;
(6) If (N∩P)≂σ1U1

, then N≂σ1U1
and P≂σ1U1

.

Proof

(1) Let N≂σP. +en, Nσ�Pσ. By +eorem 2, we get
N∪Pσ�Nσ ∪ Pσ�Nσ�Pσ. +is implies that
N≂σ(N∪P)≂σP. Converse holds by the transitivity
of the relation ≂σ .

(2) Let N≂σP and Q≂σT. +en, Nσ�Pσ and Qσ�Tσ.
By +eorem 2, we get N∪Qσ�Nσ ∪ Qσ�Pσ ∪ Tσ�P∪Tσ.
+is implies that (N∪Q)≂σ(P∪T).

(3) Let N⊆P and P≂σ0U1
. +en, Pσ�0U1σ.

Also, by +eorem 2, N⊆P implies that Nσ⊆Pσ�0U1σ.
But, 0U1σ⊆Nσ.+us, Nσ�0U1σ.+is implies that N≂σ0.

(4) If N≂σ0U1
and P≂σ0U1

, then Nσ�0U1σ and Pσ�0U1σ.
Now, by +eorem 2, we have
N∪Pσ�Nσ ∪ Pσ�0U1σ ∪ 0U1σ�0U1σ. +is implies that
(N∪P)≂σ0U1

. Conversely, if (N∪P)≂σ0U1
, then by

part (3), we have N≂σ0U1
and P≂σ0U1

.

(5) Suppose N≂σ1U1
. +en, Nσ�1U1σ. As

N⊆P, we have Pσ⊇Nσ�1U1σ. On the other hand,
P⊆1U1

, so we have Pσ⊆1U1σ.+is implies that Pσ�1U1σ,
that is, P≂σ1U1

.
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(6) It follows from (5).

+eorem 10 shows some lower similarity relations of
union and intersection of IFSs N, P, Q, and T in U1 with
respect to the foresets. □

Theorem 11. Let (σ, A) be a soft binary relation from U1 to
U2. Let N, P, Q, and T be IFSs of U2. ?en, the following are
true:

(1) N≃AP if and only if N≃A(N∩P)≃AP;
(2) N≃AP and Q≃AT imply that (N∩Q)≃A(P∩T);
(3) N⊆P and P≃A0U2

imply that N≃A0U2
;

(4) (N∩P)≃A0U2
if and only if N≃A0U2

and P≃A0U2
;

(5) N⊆P and N≃A1U2
imply that P≃A1U2

;
(6) If (N∩P)≃A1U2

, then N≃A1U2
and P≃A1U2

.

Proof

(1) Let N≃AP. +en, σN � σP. By +eorem 1, we get
σN∩P � σN ∩ σP � σN � σP. +is implies that
N≃A(N∩P)≃AP. Converse holds by the transitivity
of the relation ≃A.

(2) Let N≃AP and Q≃AT. +en, σN � σP and σQ � σT.
By +eorem 1, we get σN∩Q � σN ∩ σQ � σP ∩ σT �

σP∩T. +is implies that (N∩Q)≃A(P∩T).
(3) Let N⊆P and P≃A0U2

. +en, σP � σ0U2 .
Also, by+eorem 1, N⊆P implies that σN⊆σP � σ0U2 .
But, σ0U2⊆σN. +us, σN � σ0U2 . +is implies that
N≃A0U2

.
(4) If N≃A0U2

and P≃A0U2
, then σN � σ0U2 and

σP � σ0U2 . Now, by +eorem 1, we
have σN∩P � σN ∩ σP � σ0U2 ∩ σ0U2 � σ0U2 , so σN∩P �

σ0U2 +is implies that (N∩P)≃A0U2
. Conversely, if

(N∩P)≃A0U2
, then by part (3), we have N≃A0U2

and
P≃A0U2

.
(5) Suppose N≃A1U2

. +en, σN � σ1U2 . As N⊆P, we have
σP⊇σN � σ1U2 . On the other hand, P⊆1U2

, so we have
σP⊆σ1U2 . +is implies that σP � σ1U2 , that is, P≃A1U2

.
(6) It follows from (5).

+eorem 11 shows some upper similarity relations of
union and intersection of IFSs N, P, Q, and T in U2 with
respect to the aftersets. □

Theorem 12. Let (σ, A) be a soft binary relation from U1 to
U2. Let N, P, Q, and T be IFSs of U1. ?en, the following are
true:

(1) N≃σP if and only if N≃σ(N∩P)≃σP;
(2) N≃σP and Q≃σT imply that (N∩Q)≃σ(P∩T);
(3) N⊆P and P≃σ0U1

imply that N≃σ0U1
;

(4) (N∩P)≃σ0U1
if and only if N≃σ0U1

and P≃σ0U1
;

(5) N⊆P and N≃σ1U1
imply that P≃σ1U1

;
(6) If (N∩P)≃σ1U1

, then N≃σ1U1
and P≃σ1U1

.

Proof

(1) Let N≃σP. +en, N σ �P σ. By +eorem 2, we get
N∩Pσ � Nσ ∩ Pσ � Nσ � Pσ. +is implies that
N≃σ(N∩P)≃σP. Converse holds by the transitivity
of the relation ≃σ .

(2) Let N≃σP and Q≃σT. +en, N σ �P σ and Q σ �T σ.
By +eorem 2, we get N∩Q σ �N σ ∩ Q σ �P

σ ∩ T σ �P∩T σ. +is implies that (N∩Q)≃σ(P∩T).
(3) Let N⊆P and P≃σ0U1

. +en, P σ �0U1 σ.
Also, by +eorem 2, N⊆P implies that
N σ ⊆P σ �0U1 σ. But, 0U1 σ ⊆N σ. +us, N σ �0U1 σ. +is
implies that N≃σ0U1

.
(4) If N≃σ0U1

and P≃σ0U1
, then σN�0U1 σ and P σ �0U1 σ.

Now, by +eorem 2, we haveN∩P σ �N

σ ∩ P σ �0U1σ0U1 ∩ 0U1 σ �0U1 σ, so N∩P σ �0U1 σ. +is
implies that (N∩P)≃σ0U1

. Conversely, if
(N∩P)≃σ0U1

, then by part (3), we have N≃σ0U1
and P≃σ0U1

.
(5) Suppose N≃σ1U1

. +en, N σ �1U1 σ. As N⊆P, we have
P σ ⊇N σ �1U1 σ. On the other hand, P⊆1U1

, so we have
P σ ⊆1U1 σ. +is implies that P σ �1U1 σ, that is, P≃σ1U1

.
(6) It follows from (5). □

Theorem 13. Let (σ, A) be a soft binary relation from U1 to
U2. Let N, P, Q, and T be IFSs of U2. ?en, the following are
true:

(1) N⊆P and P ≈ A0U2
imply that N ≈ A0U2

;
(2) N⊆P and N ≈ A1U2

imply that P ≈ A1U2
;

(3) (N∪P) ≈ A0U2
, then N ≈ A0U2

and P ≈ A0U2
;

(4) (N∩P) ≈ A1U2
, then N ≈ A1U2

and P ≈ A1U2
;

(5) N ≈ AP if and only if N≂A(N∪P)≂AP and
N≃A(N∩P)≃AP.

Proof

(1) Suppose P ≈ A0U2
, this implies that σN � σ0U2 and

σP � σ0U2 . As N⊆P, we have σN⊆σP � σ0U2 and
σN⊆σP � σ0U2 . On the other hand, N⊇0U2

; this im-
plies that σN⊇σ0U2 and σN⊇σ0U2 . So,
σN � σ0U2 and σN � σ0U2 , thus N ≈ A0U2

.
(2) Suppose N ≈ A1U2

, this implies that σN � σ1U2 and
σP � σ1U2 . As N⊆P, we have σP⊇σN � σ1U2 and
σP⊇σN � σ1U2 . On the other hand, P⊆1U2

; this im-
plies that σP⊆σ1U2 and σP⊆σ1U2 . So,
σP � σ1U2 and σP � σ1U2 , thus P ≈ A1U2

.
(3) It follows from part (1).
(4) It follows from part (2).
(5) Let N ≈ AP. +en, σN � σP and σP � σN. By +eo-

rem 1, we get σN∩P � σN ∩ σP � σN � σP and
σN∪P � σN ∪ σP � σN � σP. +is implies that
N≃A(N∩P)≃AP and N≂A(N∪P)≂AP.
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Converse holds by the transitivity of the relation
≈ A.

+eorem 13 shows some similarity relations of union
and intersection of IFSs N, P, Q, and T in U2 with respect to
the aftersets. □

Theorem 14. Let (σ, A) be a soft binary relation fromU1 toU2.
Let N, P, Q, and T be IFSs of U1. ?en, the following are true:

(1) N⊆P and P ≈ σ0U1
imply that N ≈ σ0U1

;
(2) N⊆P and N ≈ σ1U1

imply that P ≈ σ1U1
;

(3) (N∪P) ≈ σ0U1
, then N ≈ σ0U1

and P ≈ σ0U1
;

(4) (N∩P) ≈ σ1U1
, then N ≈ σ1U1

and P ≈ σ1U1
;

(5) N ≈ σP if and only if N≂σ(N∪P)≂σP and
N≃σ(N∩P)≃σP.

Proof

(1) Suppose P ≈ σ0U1, this implies that Nσ � 0U1 σ and
Pσ � 0U1 σ. As N⊆P, we have Nσ⊆Pσ � 0U1 σ and
Nσ⊆Pσ � 0U1 σ. On the other hand, N⊇0U1

; this im-
plies that σ ⊇0U1 σ and Nσ⊇0U1 σ. So,
Nσ � 0U1 σ and Nσ � 0U1 σ, thus N ≈ σ0U1

.
(2) Suppose N ≈ σ1U1

, this implies that Nσ � 1U1 σ and
Pσ � 1U1 σ. As N⊆P, we have Pσ⊇Nσ � 1U1 σ and
Pσ⊇Nσ � 1U1 σ. On the other hand, P⊆1U1

; this im-
plies that Pσ⊆1U1 σ and Pσ⊆1U1 σ. So,
Pσ � 1U1 σ and Pσ�1U1σ, thus P ≈ σ1U1

.
(3) It follows from part (1).
(4) It follows from part (2).
(5) Let N ≈ σP. +en, N σ �P σ and Pσ�Nσ. By +eorem

2, we get N∩Pσ � Nσ ∩ Pσ � Nσ � Pσ and
N∪Pσ � Nσ ∪ Pσ � Nσ � Pσ. +is implies that
N≃σ(N∩P)≃σP and N≂σ(N∪P)≂σP.

Converse holds by the transitivity of the relation
≈ σ . □

5. Application in Decision-Making Problem

A major area of study in all kinds of data analysis is decision
making. Many experts and researchers introduced many
methods to find a wise decision. RS theory [7], SS theory [12],
and IFS theory [3] are the theories which are mostly used in the
decision-making problems. In the above sections, we develop a
rough set model using soft binary relations. We used soft binary
relation to approximate an IFS. We used score function defined
by Chen and Tan [57] and accuracy function defined by Hong
and Choi [58] to define order between objects. Now, we present
an algorithm for the approach to a decision-making problem
and this problem is depended on IF soft rough set theory based
on soft binary relations. +is algorithm extends the already
existing approach which is described by Kanwal and Shabir [51].
For our new approach, data information is only needed which is
provided by the decision-making problem and no need of any
additional information by any supplementary ways. So, the
decision results can be avoided by the effect of subjective in-
formation.+erefore, the outcomes could avoid the inconsistent
results for the same problem and could be better objective. +e
decision Algorithm 1 is as follows:

Now, we show this approach step by step to decision
making which is proposed by using the following example.
+e following example discusses algorithm to make wise
decision for the selection of a car.

Example 4. Suppose a person Mr. X wants to select a car out
of available models. Let U1 � the set of allmodels{

available in range} � m1, m2, m3, m4, m5, m6  and U2 �

the colors of all models{ } � c1, c2, c3, c4  and the set of at-
tributes be A � e1, e2, e3  � the set of brands{ }

� e1 � Suzuki, e2 � Toyota, e3 � Honda .
Define σ: A⟶ P(U1 × U2) by

σ e1(  �
m1, c1( , m1, c2( , m1, c3( , m2, c2( , m2, c4( ,

m4, c2( , m4, c3( , m5, c3( , m5, c4( , m6, c1( 
 ,

σ e2(  � m1, c3( , m2, c3( , m4, c1( , m5, c1( , m6, c2( , m6, c3(  ,

σ e3(  � m3, c3( , m3, c1( , m2, c4( , m5, c3( , m5, c4(  ,

(9)

which represents the relation between models and colors
available in brand ei for 1≤ i≤ 3. +en,

m1σ e1(  � c1, c2, c3 , m2σ e1(  � c2, c4 , m3σ e1(  � ∅,

m4σ e1(  � c2, c3 , m5σ e1(  � c3, c4 , m6σ e1(  � c1 ,

m1σ e2(  � c3 , m2σ e2(  � c3 , m3σ e2(  � ∅,

m4σ e2(  � c1 , m5σ e2(  � c1 , m6σ e2(  � c2, c3 ,

m1σ e3(  � ∅, m2σ e3(  � c4 , m3σ e3(  � c1, c3 ,

m4σ e3(  � ∅, m5σ e3(  � c3, c4 , m6σ e3(  � ∅,

(10)

where miσ(ej) represents the color of the model mi available
in the brand ej.

Also,

σ e1( c1 � m1, m6 , σ e1( c2 � m1, m2, m4 ,

σ e1( c3 � m1, m4, m5 , σ e1( c4 � m2, m5 ,

σ e2( c1 � m4, m5 , σ e2( c2 � m6 ,

σ e2( c3 � m1, m2 , σ e2( c4 � ∅,

σ e3( c1 � m3 , σ e3( c2 � ∅,

σ e3( c3 � m3, m5 , σ e3( c4 � m2, m5 ,

(11)
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where σ(ej)ci represents themodel of the color ci available in
the brand ej.

DefineM �〈μM, cM〉: U2⟶ [0, 1],which represents the preference of the

colors given byMr.X such that

μM c1(  � 0.9, μM c2(  � 0.8, μM c3(  � 0.4, μM c4(  � 0

cM c1(  � 0.0, cM c2(  � 0.2, cM c3(  � 0.5, cM c4(  � 0.8.

DefineN �〈μN, cN〉: U1⟶ [0, 1],which represents the preference of the

model given byMr.X such that

μN m1(  � 1, μN m2(  � 0.7, μN m3(  � 0.5, μN m4(  � 0.1,

μN m5(  � 0, μN m6(  � 0.4

cN m1(  � 0, cN m2(  � 0.2, cN m3(  � 0.5, cN m4(  � 0.7,

cN m5(  � 1, cN m6(  � 0.5.

(12)

+erefore, the lower and upper approximations (with
respect to the aftersets as well as with respect to the foresets)
are as follows (Tables 14 and 15, respectively):

σ
M

� σ
μM

, σ
cM

 ,

σM
� σμM , σcM( .

(13)

+e values of score function for car models are given in
Table 16.

Table 16 shows that S(m4) � S(m6), so we calculate
accuracy values for m4 and m6.

Hence, the values of accuracy function are given in
Table 17.

Table 17 shows that H(m4) � H(m6), so we can select
any one, m4 or m6.

Now, Nσ � (μN σ ,cN σ) (given in Table 18) and Nσ �

(μNσ,cNσ) (given in Table 19).
+e values of score function for colors of cars are given in

Table 20.
Table 20 shows that S(c3) � 0.5 is maximum, so he will

select color c4.
+e flow chart of our decision-making algorithm is given

in Figure 2.

(1) Compute the upper IF soft set approximation σM and lower IF soft set approximation σM of an IF set M � 〈μM, cM〉 with respect
to the aftersets;

(2) Compute the score values for each of the entries of the σM and σM and denote them by Sij(xi, ej) and Sij(xi, ej) for all i, j;
(3) Compute the aggregated score S(xi) � 

n
j�1 Sij(xi, ej) and S(xi) � 

n
j�1 Sij(xi, ej);

(4) Compute S(xi) � S(xi) + S(xi);
(5) +e best decision is xk � maxiS(xi);
(6) If k has more than one value, say k1, k2, then we calculate the accuracy values Hij(xi, ej) and Hij(xi, ej) for only those xk for which

S(xk) are equal;
(7) Compute H(xk) � 

n
j�1 Hkj(xk, ej) + 

n
j�1 Hkj(xk, ej) for k � k1, k2;

(8) If H(xk1
)>H(xk2

), then we select x;
(9) If H(xk1

) � H(xk2
), then select any one of xk1

and xk2
.

ALGORITHM 1: Procedural steps for better decision with the help of score function.

Table 14: Lower approximation of M.

(σμM , σcM ) m1 m2 m3 m4 m5 m6

σμM (e1) 0.4 0 1 0.4 0 0.9
σμM (e2) 0.4 0.4 1 0.9 0.9 0.4
σμM (e3) 1 0 0.4 1 0 1
σcM (e1) 0.5 0.8 0 0.5 0.8 0
σcM (e2) 0.5 0.5 0 0 0 0.5
σcM (e3) 0 0.8 0.5 0 0.8 0
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Table 17: Values of accuracy function.

Hij(e1) Hij(e2) Hij(e3) Hij(e1) Hij(e2) Hij(e3) H

m4 0.9 0.9 1 1 0.9 1 5.7
m6 0.9 0.9 1 0.9 1 1 5.7

Table 18: Lower approximation of N.

(μN σ ,cN σ) c1 c2 c3 c4
μNσ(e1) 0.4 0.1 0 0
μNσ(e2) 0 0.4 0.7 1
μNσ(e3) 0.5 1 0 0
γNσ(e1) 0.5 0.7 1 1
γNσ(e2) 1 0.5 0.2 0
γNσ(e3) 0.5 0 1 1

Table 20: Values of score function for colors of cars.

Sij(e1) Sij(e2) Sij(e3) Sij(e1) Sij(e2) Sij(e3) S(xi) S(xi) S(xi)

c1 −0.1 −1 0 1 −0.6 0 −1.1 0.4 −0.7
c2 −0.6 −0.1 1 1 −0.1 −1 0.3 −0.1 0.2
c3 −1 0.5 −1 1 1 0 −1.5 2 0.5
c4 −1 1 −1 0.5 −1 0.5 −1 0 −1

Table 15: Upper approximation of M.

(σμM , σcM ) m1 m2 m3 m4 m5 m6

σμM (e1) 0.9 0.8 0 0.8 0.4 0.9
σμM (e2) 0.4 0.4 0 0.9 0.9 0.8
σμM (e3) 0 0 0.9 0 0.4 0
σcM (e1) 0 0.2 1 0.2 0.5 0
σcM (e2) 0.5 0.5 1 0 0 0.2
σcM (e3) 1 0.8 0 1 0.5 1

Table 16: Values of score function for car models.

Sij(e1) Sij(e2) Sij(e3) Sij(e1) Sij(e2) Sij(e3) S(xi) S(xi) S(xi)

m1 −0.1 −0.1 1 0.9 −0.1 −1 0.8 −0.2 0.6
m2 −0.8 −0.1 −0.8 0.6 −0.1 −0.8 −1.7 −0.3 −2
m3 1 1 −0.1 −1 −1 0.9 1.9 −1.1 0.8
m4 −0.1 0.9 1 0.6 0.9 −1 1.8 0.5 2.3
m5 −0.8 0.9 −0.8 −0.1 0.9 0.3 −0.7 1.1 0.4
m6 0.9 −0.1 1 0.9 0.6 −1 1.8 0.5 2.3

Table 19: Upper approximation of N.

(μNσ,cNσ) c1 c2 c3 c4
μNσ(e1) 1 1 1 0.7
μNσ(e2) 0.1 0.4 1 0
μNσ(e3) 0.5 0 0.5 0.7
γNσ(e1) 0 0 0 0.2
γNσ(e2) 0.7 0.5 0 1
γNσ(e3) 0.5 1 0.5 0.2
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In Figure 2, the flow chart shows that if a person wants to
buy a car with his favourite design and color, then this
algorithm helps him to make best and suitable decision
according to his choice.

6. Comparison

First, we review existing approaches to intuitionistic fuzzy
rough set (IFRS) model-based decision making and then
finally we show that our newly proposed IFRS model is very
useful than other existing theories. Since the combination of
IFS with SS and RS is very helpful to deal with uncertainty
and impreciseness, Maji et al. [24] presented a useful model
of RS and SS. Chen et al. [20] used SS parameterization
reduction and improved SSs-based decision making in [24].
Cagman et al. [63] presented a uni-int decision-making
method by using redefined operations of soft sets. But all the
above work in decision making is about only crisp soft set.
+en, Roy et al. [46] solved recognition problems by using
their newly proposed algorithm of fuzzy SSs [64]. Later,
Kong et al. [65] modified Roy et al.’ algorithm and proved
that their algorithm was not able to obtain optimal choice

generally. Feng et al. [21] also worked on fuzzy soft set-based
algorithm. Later, Jiang et al. [66] discussed intuitionistic
fuzzy soft sets with an adjusted approach.

6.1. Maji and Roy’s Method and Its Limitation. Maji et al.
used concept of knowledge reduction in RSs with SSs to
solve decision-making problems. +is method consists of
two steps. In first step, find one reduct soft set of the original
SS based on the knowledge reduction of RSs, and then
calculate the choice values of all elements and select the
element with the maximum value as the optimum alter-
native. Chen et al. [20] claimed that soft set reduction in [24]
has incorrect results in Step 1.

6.2. Cagman’sMethod and Its Limitation. Cagman et al. [63]
proposed a soft max-min decision-making method. Opti-
mum alternatives are selected from the alternatives set by
this method. In this method, the noting point is that this
method has its constitutive limitation. An algorithm of this
method gets an empty optimum set.

1-�e Problem
To select a car with favorite

design/color 

2-Methodology
Applying roughness on
intuitionistic fuzzy set
based on so� relation

3-Analysis
Best decision: Selection of

a car with favourite
design/color

Established a so� binary
relation

Upper intuitionistic
fuzzy so� set

approximation

Lower intuitionistic
fuzzy so� set 

approximation

Compute the score
values of upper IF so�

set approximation

Compute the score
values of lower IF so�

set approximation

Compute the
aggregated score of

upper IF so� set
approximation

Compute the
aggregated score of

lower IF so� set
approximation

Compute the sum of aggregated scores of
upper IF so� set approximation

Figure 2: Flow chart of decision-making algorithm of IFRS proposed model.
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Dubious and Prade presented rough FSs [35] and Feng
et al. [1] extended their model in terms of SSs. Feng et al. [1]
approximated a FS in a soft approximation space and ex-
tended a concept called soft rough FSs. +e FSs and IF
relations-basedmodels are useful in many fields, but we used
soft binary relations in our proposed model. Soft binary
relation is the generalization of a binary relation and soft
binary relation is the parameterized collection of ordinary
binary relations. In soft binary relation, we can use different
parameters according to the nature of problem. +at is why
our proposed model is more useful to manage uncertainty in
different types of problems.

6.3. Advantages of Our Proposed IFRS Model

(1) In our IFRS model based on soft binary relations, we
also get information about what candidate is opti-
mum alternative and what candidate should not be
optimum alternative, whereas other existing theories
only get optimum alternatives.+at is why our newly
proposed IFRS model is more precise and flexible for
decision-making problems.

(2) Our proposed model also gives a solution IFRS-
based group decision making, whereas other existing
approaches have no directions to discuss the intui-
tionistic fuzzy set group decision making.

(3) +is IFRS model based on soft relations can be
applied to solve decision-making problems involving
intuitionistic fuzzy sets in real life [56].

In 2012, Zhang [56] proposed a RS model based on
ordinary binary relation induced by an IF relation over two
universes and presented a decision-making algorithm based
on RS model with IFSs. In 2020, Shabir et al. [51] proposed a
RS model of FSs based on soft relations and presented
decision-making algorithm. In comparison of these models,
we proposed a RS model of IFSs based on soft relations and
presented a decision-making algorithm based on IFRS which
is a better technique to manage uncertainty and impre-
ciseness. We used an IFS instead of a crisp set or a FS in our
proposed model due to its importance in scientific fields and
decision making, such as medical diagnosis, career deter-
mination, pattern recognition, and electoral system. An IFS
has degree of membership and also degree of nonmem-
bership which is helpful to make better decision in real-life
problems.

7. Conclusion

Since the combination of IFS with SS and RS is very helpful
to deal with uncertainty, Maji et al. presented a useful model
of RS and SS. Chen et al. used SS parameterization reduction
and improved SSs-based decision making. Cagman et al.
presented a uni-int decision-making method by using
redefined operations of SSs. But, all the above work in
decision making is about only crisp SS. +en, Roy et al.
solved recognition problems by using their newly proposed
algorithm of fuzzy SSs. Later, Kong et al. modified Roy et al.’s

algorithm and proved that their algorithm was not able to
obtain optimal choice generally. Feng et al. also worked on
fuzzy SS-based algorithm. Later, Jiang et al. discussed IF soft
sets with an adjusted approach. In our paper, we have given a
generalization of [51] and we have approximated an IFS by
soft binary relations. We used foresets and aftersets to ap-
proximate IFS. In this way, we get two pairs of intuitionistic
fuzzy soft sets, called the lower approximation and upper
approximation. Properties of these approximations are
studied. Similarity relations between IFS with respect to this
rough set model are also studied. Finally, we developed an
algorithm for intuitionistic fuzzy rough sets (IFRS) based on
decision making and an example is provided to illustrate the
developed algorithm. Further study can be performed to
investigate the roughness in interval-valued IFS and mul-
tigranulation roughness of IFS by using soft relations.
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