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In this paper, the ant colony optimization (ACO) method is used to identify the parameters of a 3-DOF nonlinear vessel model.
Identifying the parameters is abstracted as a nonlinear optimization problem to solve through the ant colony optimization
algorithm. +e identification procedure is divided into two parts. +e first part of the identification procedure is to identify the
parameters related to surge motion.+e second part of the identification procedure is to identify the rest parameters of the vessel’s
kinetics model. In the surge model identification procedure, the transient motor speed is used to generate the training data, and in
the sway and yaw motion identification procedure, the zigzag maneuvering with different motor speeds is used to generate the
training data. All the parameters are identified by the ACO method and the least-square (LS) method based on the training data
and then validated on the validation data. +e prediction performance of parameters identified by different methods is compared
in the simulation to demonstrate the effectiveness of the ACO algorithm.

1. Introduction

Unmanned technology has developed rapidly in recent years
and attracted more and more attention from academia and
industry. Many kinds of unmanned products such as un-
manned vehicles, unmanned aerial vehicles, unmanned
surface vessel, and unmanned submersibles have been
widely deployed as a network in various situations such as
scientific research, environmental missions, ocean resource
exploration, military use, and other applications [1] to help
people improve work efficiency. As an intelligent device that
works on the water, the unmanned surface vessel can work
as a node of the overall unmanned network and extend the
working range of the entire unmanned network to the
surface of the water and underwater.+e level of intelligence
of the unmanned network is related to the level of intelli-
gence of every node in the network. A sufficiently intelligent
unmanned surface vessel contains a lot of techniques such as
navigation techniques [2, 3], guidance techniques [4, 5], and
control techniques [6–8].

+e modeling of the unmanned surface vessel is im-
perative for both control method design and simulation
study purposes [1]. To describe the vessel motion in the
surge, sway, and heave, a nonlinear 6-DOF model with
different dimension motions coupled together is imperative.
However, the nonlinear 6-DOFmodel has lots of parameters
which are very difficult to identify, the vessel algorithms
designed based on the nonlinear model are very difficult, and
the real-time performance of the algorithms is hard to
guarantee. For algorithm design, some simple models such
as the first-order Nomoto model proposed by Nomoto in
1957 [9, 10] are used. +e Nomoto model describes vessel
motion approximately under the assumption that the for-
ward speed of the vessel changes slowly. Except for the
Nomoto model, the 3-DOF model, including surge velocity,
sway velocity, and yaw angular velocity, is also widely used in
vessel control [11–13].

+e prediction results of the Nomoto model and 3-DOF
model cannot meet the requirements of the simulation
study. How to identify the parameters of the nonlinear 6-
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DOF model is a challenging problem. +e towing carriage
can identify the parameters of the vessel model such as
CyberShip II [14], but the size of the towing carriage limits
the size of the identified vessel. Some research use CFD [15]
to simulate the ship motion and to identify the parameters
[16], but the accuracy of the CFD in a complex situation is
still worthy of further research. Many research studies
choose full-scale vessel trials to identify the vessel model; the
approach to model identification involved adapting model
parameter value which was proposed in [17]. In [18], a new
transformed multi-innovation least-squares (TMILS) algo-
rithm is developed; the model structure is identified first and
then the parameters are identified with full-scale trial data.
An artificial neural network was used in [19] to model a
high-speed craft with sea trial data.

As for the identify method, the least-squares method
[20–23] has been a widely used method in system identi-
fication procedure, but the least-squares method can only
deal with the linear problem; some identified procedure are
abstracted as a nonlinear optimization problem. Support
vector machines have the advantage in solving the nonlinear
optimization problem, and it was used to identify the pa-
rameters of the vessel in [24–27]. Except for the least-square
method and support vector machines method, some other
methods are also used to identify the parameters. In [28], the
identification procedure was divided into two steps: the first
step was to determine the structure of the nonlinear model
and the second step was parameter estimation refinement by
using a nonlinear prediction error method with the un-
scented Kalmen filter. In [29], a sensitivity analysis and SQP
method were used to identify the hydrodynamic coefficients
of the Esso Bernicia tanker.

In this paper, the ant colony optimization method is used
to identify the parameters of the vessel kinetics model. +e
parameter-identified problem is summarized as a nonlinear
least-square problem, and the ant colony optimization
method is used to solve the nonlinear least-square problem.
+e solution to the problem is the parameters to be identified.
+e identification procedure is divided into two parts [23]: the
parameters related to surge motion were identified first by an
experiment and then the rest of the parameters related to sway
and yaw motion were identified by the zigzag test.

+e organization of this paper is as follows. In Section 2,
a nonlinear discrete 3-DOF state-space model of USV with
surge speed, lateral speed, and yaw angle as state variables is
established. Section 3 discusses the ant colony optimization
method. Section 4 illustrates and analyzes the identification
results. Section 5 summarizes the conclusions.

2. Problem Formulation

2.1. 3-DOF Nonlinear Model. In this section, the 3-DOF
nonlinear symmetric model is established. By neglecting the
heave, roll, and pitch motion, we consider the maneuvering
models proposed by [17, 30]

M _] + C(ν)ν + D(ν)ν � τ + τwind + τwave. (1)

(i) Vector ] � u v r 
⊤ denotes vessel surge velocity,

sway velocity, and yaw angular velocity,
respectively.

(ii) Matrix M accounts for inertial effects:

M �

m − X _u 0 0

0 m − Y _v mXg − Y _r

0 mXg − Y _r Iz − N _r

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2)

(iii) Matrix C(]) accounts for centrifugal and Coriolis
effects:

C(ν) �

0 0 c13

0 0 c23

c13 − c23 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (3)

where

c13 � − m Xgr + v  + Y _vv +
1
2

N _v+Y _r
 r,

c23 � mu − X _uu.

(4)

(iv) Matrix D(]) accounts for viscous and dissipative
effects:

D(ν) �

d11 0 0

0 d22 d23

0 d32 d33

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (5)

where

d11 � − Xu − X|u|u|u| − Xuuuu
2
,

d22 � − Yv − Y|v|v|v| − Y|r|v|r|,

d23 � − Yr − Y|v|r|v| − Y|r|r|r|,

d32 � − Nv − N|v|v|v| − N|r|r|r|,

d33 � − Nr − N|v|r|v| − N|r|r|r|.

(6)

(v) Vector τ denotes the force and torques generated by
actuators.

(vi) τwind denotes force and torques caused by wind
(vii) τwave denotes force and torques caused by wave.

+e vessel model used in this paper is CyberShip II [14],
which has a bow thruster, two thrusters, and two rudders.
For the convenience of modeling force and torques, the bow
thruster is excluded from the actuator model, and two
thrusters and rudders are equivalent to one. +us, the ac-
tuator model can be written as

τ � Bτact(ν,n, δ), (7)

where matrix B is the actuator configuration matrix and
vector τact(], n, δ) is the force and torques related to speed of
the motor n and rudder angle δ:
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B(]) �

2 0

0 2

0 − 2 lxR




⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, τact(ν,n, δ) � T L 
⊤

, (8)

with

T � T|n|n|n|n − T|n|u|n|u,

L � Lδδ − Lδδ|δ|δ( |u|u.
(9)

2.2. DiscreteNonlinearModel. In the vessel experiments, the
experiment data are collected in the discrete form. Also,

vessel motion controllers are usually designed in the discrete
zone. +erefore, the continuous-time model equation (1) is
approximated as a discrete model, and the parameters of the
discrete model are identified in this paper.+e external force
is all ignored for the convenience of discretizing the con-
tinuous-time model, and equation (1) can be rewritten as

M _] � Acα, (10)

where the matrix Ac and vector α denote the time-varying
terms and constant parameters in the vessel model:

Acα � − C(ν)ν − D(ν)ν + Bτact(ν,n, δ),

α �

u |u|u u3 r2 vr n2 nu 0 0 0

uv ur v r |v|v |v|r |r|v |r|r |u|uδ |u|u|δ|δ

uv ur v r |v|v |v|r |r|v |r|r |u|uδ |u|u|δ|δ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⊤

,

Ac �

Xu X|u|u Xuuu mxg −
1
2

N _v + Y _r(  m − Y _v 2T|n|n − 2T|n|u 0 0 0

0 X _u − m Yv Yr |Y|v|v |Y|v|r |Y|r|v Y|r|r 2Lδ − 2L|δ|δ

Y _v − X _u

1
2

N _v+Y _r
  − mxg Nv Nr N|v|v N|v|r N|r|v N|r|r − 2 lxR


Lδ 2 lxR


L|δ|δ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⊤

.

(11)

+e sample time of collecting data in simulation is
denoted as Ts; equation (10) can be approximated by the
back Euler integration method at time k as

ν(k + 1) � ν(k) + TsM
− 1Acα(k)

� Bcα(k) + TsM
− 1Acα(k),

(12)

where Bc �

1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦

⊤

.

Because the matrix Bc and TsM− 1Ac are both constant
matrix, thus, equation (12) can be rewritten as

u(k + 1) � a1u(k) + a2|u(k)|u(k) + a3u(k)
3

+ a4r(k)
2

+ a5v(k)r(k) + a6n(k)
2

+ a7n(k)u(k),

(13)

v(k + 1) � b1u(k)v(k) + b2u(k)r(k) + b3v(k)

+ b4r(k) + b5|v(k)|v(k) + b6|v(k)|r(k)

+ b7|r(k)|v(k) + b8|r(k)|v(k)

+ b9|u(k)|u(k)δ(k) + b10|u(k)|u(k)|δ(k)|δ(k),

(14)

r(k + 1) � c1u(k)v(k) + c2u(k)r(k) + c3v(k)

+ c4r(k) + c5|v(k)|v(k) + c6|v(k)|r(k)

+ c7|r(k)|v(k) + c8|r(k)|v(k)

+ c9|u(k)|u(k)δ(k) + c10|u(k)|u(k)|δ(k)|δ(k).

(15)

+e parameters a1, . . . , a7, b1, . . . , b10, and c1, . . . , c10 are
unknown parameters. In Section 3, an ACO method is used
to identify parameters of equations (13)–(15).

3. Parameter Identification Based on the
ACO Method

In this section, the parameter of discrete vessel nonlinear
model equations (13)–(15) is identified based on the ACO
method.

3.1. Parameter Identification Formulation. Consider that the
vessel has two main motion states: one is the straight-line
surge motion and the other is the turning motion.+erefore,
parameter identification includes two steps: the first step is
to identify the parameters related to surge motion and the
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second step is to identify the residual parameters. In the
straight-line surge motion, the lateral velocity and yaw
angular velocity are both close to zero. +us, the surge
motion can be decoupled from the other motion, the pa-
rameters related to straight-line motion and thrust force can
be identified. By ignoring the terms related to the lateral and
yaw motion, equation (13) can be simplified as

u(k + 1) � a1u(k) + a2|u(k)|u(k) + a6n(k)
2

+ a7n(k)u(k)

� θβ(u(k), n(k))
⊤

,

(16)

where θ � a1 a2 a6 a7 
⊤ and β(u(k), n(k))⊤ �

u(k) |u(k)|u(k) n(k)2 n(k)u(k) 
⊤
.

Based on equation (16), the predicted vessel surge ve-
locity at time k + n, denoted as u(k + n + 1), can be calcu-
lated by the motor speed at time k + n, denoted as n(k + n),
and predicted as surge velocity u(k + n). +en, the surge
motion model identification problem can be described as a
nonlinear optimization problem:

minf(θ) �
1
2



N

k�1
‖u(k) − u(k)‖2,

s.t. u(1) � u(1),

u(k) � θβ(u(k − 1), n(k − 1))
⊤

, k≥ 2,

(17)

where u denotes the predicted surge speed based on the
parameter θ and u denotes the surge speed collected in the
experiments.

Since the parameters θ are identified in equation (17),
then the rest parameters can also be described as a nonlinear
optimization problem to identify. Based on equations
(13)–(15), the vessel state can be predicted by

ν(k + 1) � θ2α1(u(k), v(k), r(k), n(k), δ(k))
⊤

+ α2(u(k), n(k))
⊤

,
(18)

where

θ2 �

0 0 0 a4 a5 0 0 0 0 0

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

α2(u(k), n(k))
⊤

�

θβ(u(k), n(k))
⊤

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

α1 �

0 0 0 r2 vr 0 0 0 0 0

uv ur v r |v|v |v|r |r|v |r|r |u|uδ |u|u|δ|δ

uv ur v r |v|v |v|r |r|v |r|r |u|uδ |u|u|δ|δ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⊤

.

(19)

Based on equation (18), the predicted vessel state at time
k + n, denoted as ](k + n + 1), can be calculated by the
motor speed n(k + n), rudder angle δ(k + n), the predicted
surge velocity u(k + n), the predicted lateral velocity
v(k + n), and the predicted yaw angular velocity r(k + n).
+en, the parameters’ identification problem can be de-
scribed as a nonlinear optimization problem:

minf θ2(  �
1
2



N

k�1
‖](k) − ν(k)‖,

s.t. ](1) � ν(1),

](k + 1) � θ2α1(u(k), v(k), r(k), n(k), δ(k))
⊤

+ α2(u(k), n(k))
⊤

, k≥ 2.

(20)

+e parameters now can be identified by solving two
nonlinear optimization problem equations (17) and (20).

3.2. ACO Formulation. As mentioned above, the key to
identify the model parameters is solving an optimization
problem as equation (17) or equation (20). Generally, the
typical unconstrained continuous optimization problem is
shown in equation (21), where f(x) is the objective function
and X is the decision variable (D.V) in the form of an N-
dimensional vector in which the member changes
continuously:

Minf(x), X � x1 x2 · · · xN . (21)

As far as equations (17) and (20) are concerned, f(θ)

and f(θ2) are objective functions of the two identification
problems, respectively. Accordingly, θ and θ2 are high-di-
mensional D.Vs.

Traditional optimization algorithms find it difficult to
solve the nonlinear high-dimensional optimization prob-
lems described in equations (17) and (20). A new compu-
tational paradigm called “Ant System” is proposed in [31],
which is used for stochastic combinatorial optimization and
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motivated amounts of interrelated solutions to improve the
performances. +e representative one is Ant Colony Opti-
mization (ACO). +e parameter identification problem we
focused on, however, is a typical optimization problem of
which decision variables (D.V) vary in continuous domains.

Despite the method that discretizes, the feasible region
takes the effect to a certain extent; the accuracy and efficiency
are severely restricted. Socha and Dorigo [32] extend ACO
to continuous domains and keep the relevant conceptual
structure invariable. +e complete flowchart of the CACO is
shown in Figure 1. In CACO, the fundamental work is
initializing the elementary data structures and parameters to
abstract the actual optimization problem and determine the
initial state. Pheromone, inspired by the natural behavior of

ants, which records the excellent solutions, is the significant
feature of ACO. Different from the ACO which uses a high-
dimensional matrix to represent the pheromone, CACO
applies the continuous probability density function (CPDF),
such as the Gaussian function. Furthermore, CACO
maintains a solution archive of capacity k composed of k n-
dimensional decision variables (S1j , S2j , . . . , Sn

j), which are
constructed by ants, and the corresponding fitness f(Sj) is
to memorize the several former solutions. For the surge
model identification problem, the variable n is 4 and the
fitness is given by f(θ). As for the remaining parameters
identification problem, the variable n is determined by θ2,
that is, 22, and the fitness is calculated by f(θ2). Moreover,
the solution vectors are supposed to be initialized using

Initialize the parameters
G , f (•), m, n, k , ξ , q , i , j

Calculate and order the fitness
Calculate the weight by Eq. (17)

Iteration < G?

i ≤ m?

Choose the target ant from the
archive by Eq. (18) and roulette

j ≤ n?

µi = Sj
x and calculate by Eq. (20)

Update the jth dim of the ith
solution by Eq. (19)

j = j + 1

i = i + 1

End

No

No

No

Sort k + m solutions
according to the fitness

Discard the worst m solutions
and remain the others

Calculate new weights by Eq. (17)

Iteration = Iteration + 1

Yes

Yes

Yes

Figure 1: ACO method flowchart.
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random values, sampling from the search spaceR. +e other
related parameters which will be discussed below are sup-
posed to be set reasonably at this stage.

As shown in Figure 1, once the initialization work is
accomplished, the algorithm will step into searching for
solutions in R and further instruct to update the phero-
mone. In the course of searching for solutions for an in-
dividual ant, the first step is choosing a target; that is, select a
solution from the archive based on the selected probability
following equations (22) and (23) and the roulette method.
+e value l is the rank of the corresponding solution, k is the
size of the archive, and q is an extra parameter to adjust the
standard deviation, which has an effect on the shot prob-
ability of different ranks. Namely, q is a trade-off factor
between the global and local optimal solutions:

ω1 �
1

qk
���
2π

√ e
− (l− 1)2/2q2k2( ), (22)

pl �
ω1


k
r�1 ωr

. (23)

It is worth noting that the ants in ACO or CACO are not
a container (i.e., a vector composed of decision variables) but
a solution builder (i.e., a pathfinder in the search space to
construct the solution vector). For an n-dimensional deci-
sion variable, an ant needs n steps to accomplish the con-
struction per iteration. Once the target is selected, the
destination of the ith dimension variable is assigned by
Gaussian sampling using the function described as

g
i
l x, μi

l, σ
i
l  �

1
σi

l

���
2π

√ e
− x− μi

l( )/2μi2
l

( 
. (24)

+e parameter μi
l � si

l, and σi
l is calculated as equation

(25), where ξ has equivalent effect with the pheromone
evaporation rate which can influence the speed of
convergence:

σi
l � ξ 

k

j�1

s
i
j − s

i
l





k − 1
. (25)

On account of the pheromone reflects on the solution
archive, an update-pheromone operation may be accom-
plished by renewing the table. After all of the ants complete the
construction of solutions, there will bem + k solutions. For the
sake of the superior solution to maintain the archive, all so-
lutions should be ordered according to the evaluation index
(e.g., the root mean square error between predicting results
and sample data). In the subsequent step, the worst m solu-
tions would be discarded and the others remain in the archive.

After updating the archive, the algorithm tests’ termi-
nation conditions (such as the maximum iterations and
convergence precision) are in accordance with the optimi-
zation results of the current generation. If the termination
condition is not met, the optimization problem will repeat
the searching, evaluating, and renewing process mentioned
above until the condition is satisfied. Otherwise, the iteration
should be broken up and the optimization results should be
output, which are the optimized model parameters θ and θ2
and the corresponding model performance.

4. Simulation Results

In this paper, the CyberShip II is used as a study example.
+e kinetics model structure of the vessel is already known,
and the parameters of the kinetics model are unknown. +e
parameters are identified by the ACO method and the LS
method, respectively, and the identification results are
compared to demonstrate the effectiveness of the ACO
method. Normally, in the vessel identification experiments,
the vessel states and actuator states such as velocity, angular
velocity, motor speed, and rudder angle are collected by the
sensor with noise. +erefore, the Gaussian white noise is
added in the whole identification simulations to simulate the
sensor noise. +e whole identification procedure is divided
into two steps, the first step is to identify the parameters
related to the surge motion and the second step is to identify
the parameters related to the sway and yaw motion.

4.1. Surge Model Identification. In the vessel surge motion,
sway velocity and yaw angular velocity are approximately
equal to zero. +erefore, the couple terms of the vessel ki-
netics model related to sway and yawmotion can be ignored.
+e purpose of the surge model identification is to identify
the parameters a1, a2, a3, a5, and a6 in equation (13).

+e vessel motor speed is used as the excitation input
which varies randomly between 5 rpm and 25 rpm, and the
vessel surge velocity as the response to the excitation input
varies between 0.2m/s and 0.8m/s, as shown in Figure 2.+e
transient motor speed and surge speed are used as training
data to identify the parameters.+e parameters related to the
ACO method in solving surge model identification problem
are shown Table 1, and the ACO method convergence curve
are shown in Figure 3. From Figure 3, we can see the fitness
which is the value of f(θ) in equation (17) gradually de-
creases and becomes stable after 450 iterations. +e iden-
tified results of the ACO method and LS method are shown
in Table 2.

In Figure 2, the prediction results of parameters iden-
tified by the different methods are very close. In addition,
another two different surge motions are used as validation
data to compare the performance of different algorithms, as
shown in Figures 4 and 5. In Figure 4, the input motor speed
is a PRBS sequence. From the results, we can see the pre-
diction results of different methods are very close, except
that the prediction results of the LS method are slower than
the simulation data when the surge speed is larger than
0.9m/s.

In Figure 5, the input motor speed is maintained at
5 rpm, 10 rpm, and 20 rpm, so the surge speed can finally be
maintained at around 0.16m/s, 0.36m/s, and 0.67m/s. We
can see from the results that the prediction results of dif-
ferent methods are almost the same when the motor speed is
kept at 5 rpm and 10 rpm. However, the prediction surge
speed of the LS method is larger than the simulation results
when the motor speed is kept at 10 rpm.

In order to quantify the comparison result of different
methods, the R-square is used as an index function. +e
closer the R-square to 1, the better the identified results, and
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in some situations, the R-square may be negative; then, we
use the symbol − to indicate it. From the R-square results of
different methods in Table 3, we can see the R-square values
of the ACO method and the LS method are very close.
However, the R-square value of the ACO method is better
than the LS method in training data and validation data, so
the ACO method has better performance than the LS
method in the surge model parameters’ identification
simulation experiments.

4.2. Lateral and Yaw Model Identification. In the sway and
yaw model identification simulation experiments, the rest
parameters related to the sway and yaw motion in equations
(13)–(15) are identified. Zigzag tests are widely used in vessel
parameters’ identification experiments [16, 24]. In this paper, a
20°/20° zigzag test contains constantmotor speedwhich is used
to generate the training data, as shown in Figure 6 and Table 4.

+e convergence process of the ant colony algorithm is
shown in Figure 7.+e result shows that the optimal solution
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Figure 2: Identification data of the surge model.

Table 1: Parameters of the ACO method in surge model identification.

Parameters n m k q ξ G

Value 5 20 10 1e − 03 0.75 500
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Figure 3: ACO-method convergence curve.

Table 2: Parameters of the surge model.

Parameters a1 a2 a3 a6 a7

LS 0.9953 − 0.0060 − 0.0388 2.6357e − 05 5.6225e − 04
ACO 0.9972 − 0.0051 − 0.0227 2.8218e − 05 − 2.8661e − 06
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Table 3: R-square values of different methods on the surge model.

R-square Training data Validation data 1 Validation data 2
LS method 0.9953 0.9959 0.9908
ACO method 0.9959 0.9982 0.9934
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Figure 4: Validation data 1 (results of the surge model under PRBS motor speed).
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Figure 5: Validation data 2 (results of the surge model under different constant motor speeds).
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Figure 6: Continued.
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almost converges to the expected range after 1000 genera-
tions. +e parameters identified by the LS method and ACO
method are shown in Table 5.

From Figure 6 we can see that the LS method has better
prediction performance than the ACO method at the surge

model, sway model, and yaw model. To further verify the
effectiveness and the performance of the ACO method, we
use another two different excitation inputs to generate the
validation data which are shown in Figures 8 and 9, and for
the convenience of comparison, the heading angle is not
changed to the range from 0° to 360°. In addition, the R-
square value is used to quantitatively compare the prediction
performance for the two different methods, as shown
Table 6.

In Figure 8, the motor speed maintains at 10 rpm,
20 rpm, and 30 rpm at different times, and the rudder angle
is a PRBS sequence with different amplitudes. From the
results, we can see the prediction results of ACO are slightly
better than the LS method at a motor speed of 10 rpm, but
the prediction results of the two methods are similar at a
motor speed of 20 rpm and 30 rpm. +e R-square value of
the ACO method is closer to 1 than the LS method on the
surge model, sway model, yaw model, and heading model.

In Figure 9, the motor speed maintains at 10 rpm,
20 rpm, and 30 rpm at different times, and the rudder angle
maintains at 5°, − 15°, and 25° at different times. From the
results, we can see only at a motor speed of 5 rpm and rudder
angle of 5°; the two methods have similar prediction results.
From the R-square values, we can see the prediction results
of the ACO method have very good performance, but the
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Figure 6: Identification results of vessel dynamic.

Table 4: Parameters of the ACO method in lateral and yaw model identification.

Parameters n m k q ξ G

Value 22 30 15 1e − 03 0.75 1000
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Figure 7: ACO method convergence curve.
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Table 5: Parameters of lateral and yaw motion.

Parameters a3 a4 b1 b2

LS 0.0024 0.1292 − 3.6851e − 04 − 0.0789
ACO 0.0041 0.1302 0.0012 − 0.0780
Parameters b3 b4 b5 b6
Ls 0.9978 − 0.0206 − 0.1089 − 3.1260e − 4
ACO 0.9917 − 0.0262 − 0.1025 − 0.0030
Parameters b7 b8 b9 b10
Ls − 0.0026 − 0.0126 0.0238 0.0083
ACO − 0.0019 − 0.0090 0.0443 − 0.0287
Parameters c1 c2 c3 c4
Ls − 0.0413 0.0013 − 1.3609e − 04 0.9905
ACO − 0.0453 − 0.0013 3.2504e − 04 0.9864
Parameters c5 c6 c7 c8
Ls 0.0277 − 0.0017 0.0011 − 8.6515e − 04
ACO 0.0203 5.3517e − 04 7.6613e − 04 − 0.0039
Parameters c9 c10
Ls − 0.0243 − 0.0085
ACO − 0.0342 0.0251
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Figure 8: Continued.
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Figure 8: Validation results of vessel dynamic by the least-square method.
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Figure 9: Validation results of vessel dynamic by the least-square method.
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prediction results of the LS method are only valid at low
motor speed and small rudder angle.

In the identification results of the sway and yaw motion,
although the prediction results of the LS method are better
than the LS method in training data, the identified pa-
rameters of the LS method are invalid in predicting the
surge, sway, and yaw motion when the motor speed and
rudder angle maintain the constant value. However, the
parameters identified by the ACO method have a good
prediction result in the surge, sway, and yaw motion both in
the training data and validation data.

5. Conclusions

+is paper presents the parameters’ identification under the
known structure of the vessel kinetics model. +e param-
eters’ problem is summarized as a least-square problem; the
least-square method and the ant colony optimization
method are used to solve the least-square problem. +e
solution to the least-square problem is the parameters to be
identified. +e identification procedure is divided into two
parts. +e first part of the identification procedure is to
identify the parameters related to surge motion. +e second
part of the identification procedure is to identify the rest
parameters of the vessel kinetics model. In the identification
procedure, the transient excitation inputs are used to gen-
erate the training data; the constant excitation inputs and
different transient inputs are used to generate the validation
data. +e R-square value is used as an index function to
quantitatively compare the prediction results of the ACO
method and the LS method. +e comparison of the iden-
tification results and maneuvering predictions demonstrate
the effectiveness of the ACO method and reflect the per-
formance advantage of the ACO method.
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