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RoboticMobile Fulfillment System (RMFS) is a new type of parts-to-picker order picking system and has become the development trend
of e-commerce logistics distribution centers. ,ere are usually a large number of tasks need to be allocated to many robots and the
picking time for e-commerce orders is usually very tight, which puts forward higher requirements for the efficiency of multirobot task
allocation (MRTA) in e-commerce RMFS. Current researches on MRTA in RMFS seldom consider task correlation and the balance
among picking stations. In this paper, a task time cost model considering task correlation is built according to the characteristics of the
picking process.,en, amultirobot task allocationmodelminimizing the overall picking time is established considering both the picking
time balance of picking stations and the load balance of robots. Finally, a four-stage balanced heuristic auction algorithm is designed to
solve the task allocationmodel and the tasks with execution sequence for each robot are obtained. By comparing with the traditional task
time cost model and the algorithm without considering the balance among picking stations, it is found that the proposed model and
algorithm can significantly shorten the overall picking time.

1. Introduction

,e e-commerce logistics distribution center is an important
part of the e-commerce supply chain, which greatly affects
the operation efficiency of e-commerce. ,ere are usually a
large number of stock-keeping units (SKUs) in the
e-commerce logistics distribution center, and e-commerce
orders have the characteristics of small batch, high-fre-
quency, strong randomness, and tight distribution time,
which puts forward higher requirements for order picking
efficiency [1].,e traditional manual picking mode is unable
to meet the demand because of its high error rate and low
picking efficiency. In recent years, a new picking system
Robotic Mobile Fulfillment System (RMFS) has become the
development trend of e-commerce logistics picking system
because of its high efficiency, intelligence, and flexibility [2].
,e deployment of the KIVA logistics robot by Amazon in
2012 triggered the application market of RMFS [3]. In
RMFS, shelves are carried by robots to picking stations,
where pickers pick goods (parts) from shelves, so it is a kind

of parts-to-picker picking system. Because of the significant
difference between the new picking mode and the traditional
manual picking mode, many decision-making problems in
this new picking mode need to be studied in depth, such as
storage assignment [4], order batching [5], multirobot task
allocation [6], and path planning [7]. ,is paper mainly
studies how to assign a batch of picking tasks to multiple
robots, which belongs to multirobot task allocation (MRTA)
problem.

Multirobot task allocation (MRTA) refers to the
assigning of a series of tasks to multiple robots with certain
constraints to achieve an objective, such as minimizing the
total travel distance of all robots or the average cost of each
task and so on [8]. ,e main methods for solving MRTA
problems include combinatorial optimization, market-based
approach, swarm intelligence approach, behavior-based
approach, and emotional recruitment approach [9]. Among
them, methods based on the market mechanism, such as the
auction method, have attracted wide attention because of
their high efficiency, good robustness, and easy expansion.
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In the market mechanism, robots negotiate with each other
through bidding and ultimately complete the task allocation
[10]. In a dynamic task allocation environment, using an
auction algorithm will contribute to the fairness and real-
time of task allocation and reduce the design complexity of
the system [11].

Zlot et al. [12] applied a market mechanism algorithm
to multirobot dynamic task allocation for the first time,
which can solve small-scale dynamic task allocation
problems. Elango et al. [13] used the K-means clustering
algorithm and auction mechanism to solve the dual-ob-
jective task allocation model, which considers both total
travel distance and robot efficiency. Lozenguez et al. [14]
proposed a sequential synchronous auction protocol to
coordinate the task allocation of robots. Heap and Pag-
nucco [15] designed a repetitive sequential single clustering
auction algorithm for multirobot dynamic task assignment.
For task allocation in an intelligent warehousing system,
Zhou et al. [16] proposed a balanced heuristic auction
algorithm balancing a load of robots to improve the effi-
ciency of task allocation in an intelligent warehousing
system. An important part of the auction algorithm is the
computation of task cost, which can be measured by
completion time or path length. Liu and Kroll [17] regarded
the time a robot takes to fulfill a task as the task cost for
MRTA. Dou et al. [18] took path length as task cost using
reinforcement learning. Lamballais et al. [19] established a
queueing model to measure the utility of logistics robots
and workers.

Although there are many literature on MRTA, few
studies are about the MRTA problems in e-commerce
RMFS. In an e-commerce order picking environment, there
are a large number of picking tasks and mobile robots. So,
the task allocation problem is a complex NP-hard opti-
mization problem. Furthermore, the picking time for
e-commerce orders is usually very tight, which requires
higher efficiency of task allocation.,erefore, it is necessary
to propose an efficient task allocation method based on the
application characteristics. Former research studies on
MRTA mainly consider task completion time or the total
travel length of robots but seldom consider the workload
balance among picking stations and robots. Because of the
parallel operation mode of multiple picking stations, the
picking time of the whole system is determined by the
picking station with the longest picking time. In the process
of task allocation, the balance among picking stations
should be fully considered. Uneven idleness among picking
stations, e.g., robots wait in line at some picking stations
while other picking stations are idle, certainly will reduce
the efficiency of the system. ,erefore, balancing the
picking time among picking stations plays an important
role in improving the picking efficiency. In addition, the
correlation among tasks was not fully taken into account in
the previous task cost model. For example, if two tasks of
one picking station are on the same shelf, by assigning the
two tasks to the same robot and arranging their execution
sequence adjacent to each other, the two tasks can be
completed through one shelf visit and the cost for com-
pleting the tasks can be greatly reduced.

,e innovations of this paper are as follows: (1) based on
the real operation mode that a robot can serve multiple
picking stations at one time, the correlation between tasks is
refined and a new task time cost model is proposed
according to different types of task correlation. (2) Because
of the parallel operation mode of multiple picking stations,
the picking time of the whole system is determined by the
picking station with the longest picking time. So the balance
among picking stations as well as the load balance of robots
is considered to improve picking efficiency. (3) A four-stage
balanced heuristic auction algorithm is designed to solve the
task allocation model, which achieves the goal of balancing
picking time among picking stations by controlling the
sequence of task assignments.

,e remainder of this paper is organized as follows. In
Section 2, the task assignment problem of logistics robots in
e-commerce RMFS is described in detail, and the parameters
for model formulation are given. In Section 3, a new task cost
calculation method considering the correlation between
tasks is described, and the multiple logistics robot task al-
location model considering the balance of picking stations is
established. In Section 4, a four-stage balanced heuristic
auction algorithm is designed to solve the task allocation
model. In Section 5, simulation experiments are conducted,
and the results are analyzed to verify the proposed model
and algorithm. Section 6 concludes the paper and presents
the limitations and prospects of the research.

2. Problem Description

2.1. &e Operation Process of e-Commerce RMFS.
E-commerce orders have the characteristics of many varieties,
small batch, and high frequency. In order to improve order
picking efficiency, multiple orders arrived in a certain period
of time are usually combined into one batch for picking,
which is called wave-picking [20]. ,at is, the continuously
arriving orders are placed in an order pool, and then, a certain
number of orders are selected from the order pool as a wave of
orders for picking. After that, orders are allocated to picking
stations, and the items to be picked in the orders of each
picking station are merged to generate a picking list, which
consists of many picking tasks. Each item in the picking lists
corresponds to a picking task. Finally, these picking tasks are
assigned to robots according to some rules, and these robots
cooperate to complete these picking tasks.

An e-commerce RMFS is depicted in Figure 1, which is
similar to the typical KIVA Systems [21, 22]. ,e picking
system consists of movable shelves, picking stations, mobile
robots, conveyor belts, etc. ,e storage area is composed of
neatly distributed movable shelves. Different kinds of goods
can be placed on the same shelf. Each of the picking stations
on the left side is equipped with a picker to pick items from
shelves and a buffer area, where shelves carried by logistics
robots can queue and wait for picking. Next to the picking
stations is a conveyor belt, which is used to transport the
picked items.

,e process of goods picking is as follows: a robot runs
from the current location to the shelf where the required
goods are located (Figure 1 ①); then the logistics robot
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carries the shelf to the corresponding picking station
(Figure 1②). After the picker picks the required goods from
the shelf, the logistics robot either carries the shelf to the next
picking station (Figure 1 ③) or returns the shelf back to its
original position in the storage area (Figure 1④). ,en, the
robot goes on to the next task (Figure 1⑤). All robots work
together to complete the picking tasks. When all the orders
assigned to the picking stations are fulfilled, this wave of
picking is finished.

2.2. Parameter Definition of MRTA in RMFS. ,rough the
operation process analysis, we find that a robot can perform
multiple tasks at one time (may be multiple goods located on
the same shelf ), and one task can only be performed by one
robot. ,e MRTA problem in RMFS can be classified as
multitask robots and single-robot tasks (MT-SR) problem
[23].

Since a robot can serve one or more picking stations and
perform one or more tasks at one shelf visit, the time cost of
each task should be calculated in different ways. In this
paper, the time cost of robots to perform different tasks is
distinguished through refining the task allocation process,
especially considering the situation that robots can transport
a shelf to serve multiple picking stations at one time. Due to
the parallel operating mode of multiple picking stations, the
picking station with the longest picking time will determine
the total picking time of the orders. So, the picking time
among picking stations is balanced by controlling the task
allocation sequence in this paper.

Before the task allocation model formulation, the fol-
lowing assumptions are needed:

(1) ,e picking time for each item is the same, which is a
constant.

(2) Several different goods can be placed on the same
shelf and one kind of goods can only be placed on
one shelf. ,erefore, the location of each goods is
known.

(3) Logistics robots are isomorphic and travel at the
same speed, without considering the interaction of
logistics robots.

Due to the road layout of the RMFS (see Figure 1) and
the kinematic constraints of robots, Manhattan distance is
adopted and the grid map method is used to model the
environment. ,e parameters and variables used in the
model formulation are defined as follows:

A � a1, a2, . . . , am  is a set of picking tasks, and m is
the total number of the picking tasks of this wave.
R � r1, r2, . . . , rn  is a set of mobile robots, and n is the
total number of the robots.
S � s1, s2, . . . , sh  is a set of picking stations, and h is
the total number of picking stations.
O � O1, O2, . . . , On  is a collection of the task as-
signment schemes for all robots, where

Oj � aj1⟶ aj2⟶ · · ·⟶ aj|Oj|  represents the

task assignment scheme for the robot rj, which is an
orderly set of tasks assigned to rj. ajl is the task per-
formed by rj in order l, and |Oj| represents the total
number of tasks assigned to rj.
sai

represents the picking station where task ai was
assigned, which is already known before allocating
tasks to robots.
dai

represents theManhattan distance between the shelf
of task ai and its picking station.
daiai′

represents the Manhattan distance between the
shelves of task ai and task ai′ .
dsks

k′
represents the Manhattan distance between

picking stations sk and sk′ .
drjai

represents the Manhattan distance between the
initial location of the robot rj and the shelf of the task ai.
v′ is a constant, which represents the moving speed of
logistics robots.

Conveyor belt Logistics robot

picker

Picking stations Moveable shleves

1
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Figure 1: ,e typical layout of an e-commerce RMFS.
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t′ is a constant, which represents the picking time for
one item.
l’jk is the order of the last task of picking station sk

fulfilled by robot rj.

xijl �
1, if ajl � ai,

0, else, , which means that only if task ai

is the lth task allocated to robot rj, xijl equals 1.
tijl is the time cost, which means the time used of
fulfilling the task ai by robot rj in the lth order.

3. Model Formulation

3.1. &e Time Cost of Tasks considering Task Correlation.
From the previous analysis, it is known that when tasks are
fulfilled by different robots in a different order, the time costs
of the tasks are different. If task ai is fulfilled by robot rj and
the order of execution is l, that is ajl � ai, the time cost of
task ai is represented by tijl. When l � 1 , ai is the first task
fulfilled by the robot rj and has no preceding task. When
l≥ 2, tijl is relevant with the preceding task aj(l−1). For the
convenience of representation, let α � aj(l−1). ,e time cost
tijl of completing task ai is expressed as follows:

tijl �

drjai
+ 2dai

v′
+ t′, l � 1,

dαai
+ 2dai

v′
+ t′, l≥ 2 andBαai

� 0,

dsαsai
+ dai

− dα

v′
+ t′, l≥ 2 andBαai

� 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

Bαai
is a 0-1 variable. Its value is 1 when task ai is fulfilled

by robot rj and located on the same shelf as its preceding
task α. Otherwise, its value is 0. ,e time cost of completing
one task includes the travel time of the logistics robot and the
picking time of the picker. ,e picking time is a constant,
and the travel time of the logistics robot is related to the
travel distance. When l � 1, ai is the first task of robot rj, and
the travel distance of rj includes the distance rj moving from
its initial location to the shelf where task ai is located ( drjai

),
carrying the shelf to the picking station and returning the
shelf to its original location (2dai

). So, the total distance that
rj travels is drjai

+ 2dai
. When l≥ 2 andBαai

� 0, task ai and
its preceding task α are not located on the same shelf, and
the travel distance of rj consists of three parts: the distance
robot rj traveling from the shelf of the preceding task to the
shelf of task ai (dαai

, because rj should send back the pre-
ceding task α to its original location, so when rj begins to
perform task ai, it starts from there), and the distance rj

carrying the shelf to the picking station and returning the
shelf to its original location (2dai

). So, the total distance rj

that travels is dαai
+ 2dai

. When l≥ 2 andBαai
� 1, task ai and

its preceding task α are located on the same shelf. Robot rj

does not need to send the shelf of the preceding task to its
original location but to send the shelf to the picking station
sai

from the picking station sα, and the travel distance is dsαsai
.

After picking ai, rj needs to send the shelf to its original
location and the travel distance is dai

. So, the total distance rj

that travels is dsαsai
+ dai

− dα.
It can be seen from equation (1) that when Bαai

� 1, the
time cost of the task ai will be greatly reduced. In this case,
task ai and task α are called correlated tasks. Assuming that
α � aj(l−1) and β � ajl are two tasks fulfilled by the robot rj

in adjacent sequence, the correlation between these two tasks
can be divided into the following categories:

(1) Strongly correlated tasks: when Bαβ � 1 and sα � sβ,
it means that task α and task β are located on the
same shelf and belong to the same picking station. In
this case, the two tasks are called strongly correlated
tasks. According to equation (1), the time cost of task
β only consists of picking time t′, which is the
minimum time cost of task β.

(2) Weakly correlated tasks: whenBαβ � 1 and sα ≠ sβ, it
means that task α and task β are located on the same
shelf but belong to different picking stations. In this
case, the two tasks are called weakly correlated tasks.
According to equation (1), the time cost of task β is
only the travel time between two picking stations and
picking time, which is also greatly reduced.

(3) Uncorrelated tasks: when Bαβ � 0, it means that task
α and task β are located on different shelves. In this
case, the two tasks are called uncorrelated tasks.

As above, when the two tasks fulfilled sequentially by the
same robot are correlated, the time cost will be greatly re-
duced. ,erefore, when establishing the MRTA model, the
correlation between tasks should be fully considered.

3.2. &e Time Cost of Robots and Picking Stations. ,e total
time cost Tj of robot rj taking to fulfill assigned tasks is
expressed as equation (2), which means the total time used
by robot rj to fulfill all the tasks assigned to it.

Tj � 

m

i�1


oj




l�1
xijl × tijl . (2)

,e total picking time Tk
′ of picking station sk is shown in

the following equation:

Tk
′ � max

j


m

i�1


ljk
′

l�1
tijl × xijl

⎛⎜⎜⎝ ⎞⎟⎟⎠. (3)

In equation (3), ljk
′ represents the last task of picking

station sk assigned to robot rj. Tk
′ represents the longest time

the robots take to complete the tasks of picking station sk.
Because the tasks of a picking station are fulfilled by the
cooperation of multiple robots, the total picking time of a
picking station is determined by the logistics robot that uses
the longest time to complete the tasks of the picking station.

3.3. Multirobot Task Allocation Model. Considering the
balance of picking time among picking stations, the first
objective function f1 is to find the picking station with the
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shortest picking time, which is the picking station the next
task to be assigned.

f1 � min
k

Tk
′. (4)

After determining the tasks to be assigned next, which
robots these tasks should be assigned to are further deter-
mined. ,e objective of task allocation is to minimize the
total picking time of all tasks in this wave. Because of the
parallel operation mode of logistics robots, the total picking
time of this wave depends on the robot with the longest
picking time. An integer linear programming model is
established to minimize the picking time of the logistics
robot with the longest picking time.

f2 � min max
j

Tj , (5)

s.t.



n

i�1


oj




l�1
xijl � 1, (6)



n

j�1
oj



 � m. (7)

Equation (6) means that a task can only be fulfilled by
one robot, and the execution sequence is unique. Equation
(7) means that the sum of tasks assigned to all robots is equal
to the total number of tasks.

4. Algorithm Design

According to the characteristics of MRTA problem in
e-commerce RMFS, this paper designs a four-stage balanced
heuristic algorithm using parallel single-task auction [24] to
solve the task allocation model. Parallel single-task auction is
faster andmore robust than other auction algorithms [25]; so, it
is more suitable for task allocation of large-scale order picking
robots. ,e algorithm is divided into four stages: (1) set the
initial task allocation rules to decide the first task for each robot;
(2) set the next task allocation rules using the correlation
between tasks and considering the situation when one shelf can
serve multiple picking stations at one time; (3) use the se-
quential auction algorithm to determine the picking station
where the next to-be-assigned task is located, which reduces the
range of the next task and balances the picking time of picking
stations; then, the parallel single-task auction algorithm is used
to determine the next task to be assigned and the robot to
complete the task; (4) perform a dynamic adjustment on the
calculation results to handle congestion and delay of robots
during the process of fulfilling tasks. ,e specific steps of the
algorithm are explained in detail in Sections 4.1–4.4 and the
flowchart is shown in Figure 2.

4.1. Step 1: Initial Task Allocation for Each Robot.

(1) Define a set UnallocatedSk
for each picking station sk,

which is used to store tasks that have not been

assigned on picking station sk and each set is updated
once after a task of the set has been assigned.

(2) Define a set Oj for each robot rj to store tasks that
have been assigned to logistics robot rj and their
specific execution sequence. ,e initial state of the
set is empty.

(3) For robot rj, traverse tasks are not assigned on all the
picking stations to find the task with the shortest
distance from the initial location of robot rj and put
the task into set Oj as the first task aj1 of robot rj. At
the same time, update the set UnallocatedSk

.
(4) When there is one and only one task in each set Oj,

the initial task allocation of all robots is completed.
,en, proceed to Step 2.

4.2. Step 2: Task Allocation of the lth (l≥ 2) Task of Robots
considering Task Correlation.

(1) For robot rj, denote the last task in Oj at present as
αj.

(2) Find all the strongly correlated tasks with αj and add
them into set Oj. Traverse the tasks in the set
UnallocatedSαj

. If there are strongly correlated tasks
with αj, add them in turn to set Oj, and update
UnallocatedSαj

; then, turn to (3); otherwise, turn to
(3) directly.

(3) Find all the weakly correlated tasks with αj and add
them into set Oj. Traverse all the to-be-assigned tasks
in other stations except sαj

. If there are weakly
correlated tasks with αj, add them to set Oj in proper
order according to the distance between sαj

and the
picking stations where the tasks are located, and
update the unallocated task set of the related picking
stations.

(4) If there are still tasks unallocated in this round, go to
Step 3; otherwise, go to Step 4.

4.3. Step 3: Task Allocation Based on Sequential and Parallel
Single-Task Auction Algorithm.

(1) Use a sequential auction algorithm to decide the task
on which picking station is the next task to be
assigned. According to equation (3), the picking
station with the shortest picking time at present is
found, denoted as s′, from which the next task to be
assigned is selected. ,e purpose is to balance the
picking time among the picking stations, avoid
uneven workload, and also reduce the selection range
of the next to-be-assigned task. ,en, turn to (2).

(2) For the set Unallocated s′ found in (1), the parallel
auction algorithm is used to calculate the next to-be-
assigned task and the robot fulfilling the task.

(a) Each of the robots calculates the time cost of
fulfilling each task in set Unallocated s′ according
to equation (1), based on its tasks situation and
the position of its last task.
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(b) Find the task with the minimum fulfillment time
cost, which is the next task to be assigned, and
the corresponding robot is selected to fulfill this
task.

(c) If there are still tasks unallocated, go to Step 2;
otherwise, go to Step 4.

4.4. Step 4: Dynamic Adjustment and Update. In the real
operation process, task time errors may arise owing to
congestion, communication delay, or other faults of logistics
robots. However, the delay is not considered in the con-
struction of the model. Consequently, if the auction of all
tasks is conducted simultaneously, it may cause serious

Start

Define a set Unallocatedsk to store the unallocated tasks for each picking 
station and set the task set of each robot empty.

For each robot rj, find the task with the shortest distance from the initial 
location of robot rj and add it into Oj as the first task of robot rj

For each robot rj, denote the last task in Oj at present as αj.

Find all the strongly correlated tasks with αj and add them into set Oj

Find all the weakly correlated tasks with αj and add them into Oj in 
proper order according to the distance between sαj

 and the picking 
stations where the tasks are located

According to Equation (3),find the picking station with the shortest 
picking time at present and denote it as s'

Calculate the time cost of fulfilling each task in set 
Unallocateds' by each robot according to Equation 1.

Find the task with the minimum fulfillment time cost as the next task to 
be assigned and the corresponding robot is selected to fulfill this task 

After a set time 
interval, start a 
new round of 
task allocation

End

Y

N

Y

Step 1

Step 2

Step 3

Step 4

Y

N

If all tasks in this
round are allocated?

If all tasks in this 
round are allocated?

If all tasks are 
allocated?

N

Figure 2: Flowchart of the proposed algorithm.
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cumulative errors. So, in the paper, the auction is divided
into many rounds. ,e time node and the number of tasks
assigned in each round are set based on the total number of
tasks. Each round of auction is performed according to Step
2 and Step 3. Finally, the allocation of tasks to robots and the
sequence of tasks executed by each robot are obtained.

,e pseudocode of the main part of the algorithm is
expressed in Algorithm 1.

5. Simulation Analysis

,e effectiveness of the logistics robot task allocation model
and algorithm proposed in this paper is verified using the data
of an e-commerce company. In the experiment, there are 3
picking stations and 300 shelves placed in a warehouse with
an area of 800m2. ,e layout of the warehouse refers to the
layout in Figure 1.,ere aremore than 2,000 SKUs on sales in
the company. In order to avoid system congestion and im-
prove picking efficiency, a decentralized storage strategy is
adopted. ,at is, goods with high turnover rate are stored on
shelves in different areas (for specific storage allocation
methods, see [26]). Picking tasks are generated from the
historical order data of the company. Each item in an order
corresponds to a picking task. 15 mobile robots are employed
to fulfill these tasks. Other parameters used in the experiment
are given in Table 1.

,e location of the tasks and their picking stations are
known.,e location of robots can be known at any time, and
the distance between any two positions is calculated using the
Manhattan distance because of the kinematics constraints of
robots. ,e time interval between each round of task allo-
cation was set to 15 minutes. MATLAB 7.11 was used to
calculate the task allocation results. ,e proposed model and
algorithm are also compared with the traditional time cost
model and the algorithm without considering equilibrium.

5.1. Task Allocation Scheme and Task Fulfillment Time.
,e task allocation scheme is the task allocation result of
robots. Based on the proposed task time cost model and the
designed auction algorithm, we first obtained the solution
for the allocation of 200 tasks, which are numbered from 1 to
200. ,e task allocation scheme, which includes the allo-
cation of tasks to robots and the task execution sequence,
and the time cost for each robot to perform the task are given
in Table 2. ,e fulfillment time of all tasks is the longest
picking time of all robots, which is 860 seconds in this case.

It can be seen from Table 2 that using the proposed task
time cost model and considering the time balance of picking
stations, we can get the reasonable assignment of tasks to
robots and the execution sequence of tasks. Furthermore, the
proposed algorithm can achieve the goal of load balance
among logistics robots, which is conducive to the parallel
operation mode of multiple robots.

5.2. Comparative Analysis between Different Task Time Cost
Models. ,en, task allocation with different numbers of tasks
(100, 200, 300, 400, 500) was used to compare the perfor-
mance of the task time cost model proposed in this paper and
the traditional task time cost model in [13].,e proposed time
cost model in this paper considers task correlation, and the
time cost of tasks with different types of correlation is cal-
culated differently. ,e traditional task time cost model does
not consider task correlation and the cost of a task is the time a
robot spent performing the task alone, that is, the cost of every
task is calculated according to equation (1) when l � 1. ,e
total picking time of all tasks using these two models under
different sizes of tasks is compared in Figure 3.

It can be seen from Figure 3 that the proposed task time
cost model reduces the total picking time compared with the
traditional task time cost model. Besides, with the increase of

Input: unallocated task set UnallocatedSk
, Time interval T

Output: task allocation result Oj for each robot
(1) # Initial task allocation
(2) for (j � 1; j≤ n; j++) do
(3) find the task with the shortest distance with rj and put it in to set Oj

(4) end
(5) #Task allocation considering task correlation
(6) for (j � 1; j≤ n; j++) do
(7) αj← the last task in Oj

(8) find the tasks strongly related to αj, add them into Oj

(9) find the tasks weakly related to αj, add them into Oj in proper order
(10) end
(11) #task allocation based on auction algorithm
(12) for (k � 1; k≤ h; k++) do
(13) calculate the picking time Tk

′ according to equation (3)
(14) end
(15) s′← the picking station with the smallest picking time
(16) for (j � 1; j≤ n; j++) do
(17) calculate the time cost of fulfilling each task in Unallocated s′ by rj according to equation (1)
(18) end
(19) find the task with the minimum fulfillment time cost and allocate it to the corresponding robot

ALGORITHM 1: ,e main part of the balanced heuristic algorithm.
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Table 1: Parameters setting.

Parameter Description Value
n Number of logistics robots 15
m Number of tasks [100, 500]
h Number of picking stations 3
v′ Moving velocity of robots (m/s) 2
t′ Picking time of one item (s) 4

Table 2: Task allocation scheme and time cost for each logistics robot.

Robot Task allocation scheme Time cost (s)
1 32⟶177⟶121⟶193⟶20⟶88⟶114⟶86⟶176⟶144⟶131⟶38⟶106⟶190 746.5
2 62⟶25⟶93⟶186⟶81⟶162⟶165⟶153⟶111⟶149⟶169⟶150⟶157 858.0
3 136⟶75⟶115⟶5⟶14⟶125⟶188⟶134⟶69⟶79⟶130⟶73⟶40 797.5
4 120⟶41⟶180⟶108⟶84⟶76⟶109⟶178⟶160⟶175⟶61⟶36⟶107⟶60 809.0
5 66⟶39⟶71⟶118⟶16⟶68⟶124⟶123⟶55⟶64⟶37⟶57 822.5
6 12⟶30⟶151⟶187⟶17⟶96⟶65⟶173⟶159⟶191⟶139⟶135 809.5
7 142⟶99⟶164⟶33⟶45⟶95⟶113⟶101⟶80⟶58⟶140⟶198⟶138⟶9⟶167⟶194⟶48 752.0
8 19⟶70⟶148⟶146⟶27⟶13⟶197⟶179⟶133⟶155⟶152⟶158 843.5
9 63⟶145⟶163⟶90⟶102⟶18⟶185⟶94⟶119⟶47⟶117 747.5
10 28⟶100⟶182⟶170⟶98⟶77⟶34⟶132⟶143⟶168⟶174⟶200⟶195⟶49 860.0
11 46⟶52⟶22⟶104⟶89⟶192⟶184⟶199⟶26⟶54⟶29⟶44⟶50⟶1 793.5
12 35⟶8⟶4⟶24⟶171⟶53⟶82⟶129⟶15⟶67⟶10⟶172⟶21 851.0
13 78⟶181⟶97⟶116⟶161⟶85⟶56⟶31⟶74⟶91⟶72⟶105⟶42⟶196 765.0
14 183⟶87⟶43⟶112⟶3⟶147⟶189⟶154⟶2⟶6⟶92⟶127⟶11 745.0
15 59⟶103⟶83⟶156⟶126⟶128⟶110⟶51⟶122⟶23⟶7⟶137⟶166⟶141 787.0
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Figure 3: Comparison of the total piking time under two different time cost models.

Table 3: Influence of the balance among picking stations on task fulfillment time.

Number of tasks Balance among picking stations considered? Picking station 1 Picking station 2 Picking station 3
Time (seconds) Time (seconds) Time (seconds)

300 Yes 1271.5 1175.5 1269.5
No 979.31 1532.01 1329.53

400 Yes 1488.5 1379.0 1560.5
No 1732.7 1438.5 1867.2

500 Yes 1801.8 1610.5 1830.5
No 2010.2 1953.28 2303.5
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the number of tasks, the advantage of the proposed task time
cost model is becoming more and more obvious. ,at is
because, with the increase of the number of tasks, the
correlation between tasks increases, and thus, considering
task correlation can save more time.

5.3. Influence of the Balance among Picking Stations.
Because of the parallel operation mode of multiple picking
stations, the total fulfillment time of all tasks is determined
by the longest picking time of all picking stations. ,erefore,
balancing the picking time among picking stations is an
important part of the design of the task allocation algorithm.
Different numbers of tasks (300, 400, 500) were experi-
mented on for comparative analysis between our proposed
algorithm and the algorithm without considering the bal-
ance of the picking stations. ,e results are given in Table 3,
in which the time in bold is the fulfillment time of all tasks
under that scenario.

It can be seen from Table 3 that the picking time of each
picking station is relatively balanced and the completion
time of all tasks is shorter when considering the picking time
balance among picking stations. In contrast, without con-
sidering the balance of picking stations, the picking time of
each picking station fluctuates greatly and it takes a longer
time to complete all the tasks. As the balance among picking
stations is not taken into account, the burden of each picking
station is uneven, which may lead to long queues of some
picking stations and idleness of other picking stations. In
that case, the picking time difference between picking sta-
tions is relatively large, and the fulfillment time of all tasks is
extended.

6. Conclusions and Prospects

,is paper studied the multirobot task allocation problem in
e-commerce RMFS. Combined with the operation process of
the picking system, a task time cost model considering the
correlation between tasks is proposed. ,e time balance
among picking stations is added to multirobot task allo-
cation model, and a four-stage balanced heuristic auction
algorithm is designed to solve the model efficiently. Simu-
lation results showed the proposed model and algorithm can
significantly improve the efficiency of task allocation and
reduce the fulfillment time of orders compared with the
methods which do not consider the correlation between
tasks and the balance among picking stations.

,e proposed task allocation method in this paper only
considers the standard operation process, which is appli-
cable to the daily smooth operation of small- and medium-
sized e-commerce enterprises. For task allocation in large-
scale and changeable application scenarios, dynamic un-
certain factors, such as order cancellation, order insertion,
and traffic congestion, should be considered to improve
efficiency. As reinforcement learning is suitable for dynamic
and changeable environments and deep learning can handle
the problem with high complexity and large space state, the
MRTA method based on deep reinforcement learning may
be a promising direction to solve the task allocation problem
in large-scale robotic mobile fulfillment systems.
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