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Learning the knowledge hidden in the manifold-geometric distribution of the dataset is essential for many machine learning
algorithms. However, geometric distribution is usually corrupted by noise, especially in the high-dimensional dataset. In this
paper, we propose a denoising method to capture the “true” geometric structure of a high-dimensional nonrigid point cloud
dataset by a variational approach. Firstly, we improve the Tikhonov model by adding a local structure term to make variational
diffusion on the tangent space of the manifold.)en, we define the discrete Laplacian operator by graph theory and get an optimal
solution by the Euler–Lagrange equation. Experiments show that our method could remove noise effectively on both synthetic
scatter point cloud dataset and real image dataset. Furthermore, as a preprocessing step, our method could improve the robustness
of manifold learning and increase the accuracy rate in the classification problem.

1. Introduction

Since objects vary gradually in the real world, the manifold
assumption indicates that the data points depict the state of an
object should distribute on a smooth low-dimensional mani-
fold embedded in high-dimensional observation space [1].
Dimensionalities of the manifold are key factors that control
variation of the object state. For example, in Figure 1, the
images of the rotational duck toy distribute on a one-di-
mensional manifold (a curve) embedded in high-dimensional
pixel space. Each image depicts a particular state of the duck.
Although the pixel values change dramatically at these images,
humans could discover easily that they are controlled by one
key factor: rotation of the duck.

Learning the knowledge hidden in the manifold-geo-
metric distribution of a high-dimensional dataset is essential
in many machine learning algorithms. For example, manifold
learning algorithms aim to discover the nonlinear geometric
structure dataset by preserving different local geometric
properties [3–8]. )e embedding results can be further used
in data visualization, motion analysis, and classification

[9, 10]. Moreover, much research takes manifold assumption
as a constraint condition in its objective function [11, 12]. It is
worth noting that manifold assumption is applied to explain
why deep learning works well recently [13–15]. )is research
indicates deep learning could capture the manifold structure
of one kind of knowledge by powerful nonlinear mapping.

However, noise is inevitable in data acquisition. For
example, in Figure 1, the noiseless images of the rotational
duck toy (red points) should lie on a curve embedded in the
pixel space. However, due to the long exposure time and
camera shake, the duck becomes “brighten” and “small” in
the image. )e corresponding noise data point, which is
marked by “N” and green color in Figure 1, does not lie on
the curve because pixel values change dramatically in the
noise image.

Noise makes machine learning models fragile and hard
to train. For example, the outlier points are difficult to
handle in the classification and clustering task. Machine
learning model needs to becomemore complex to get proper
results [13]. In manifold learning algorithms, noise points
make recovered embeddings difficult to capture the true
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manifold-geometric distribution of the dataset.)e reason is
that the “short circuit” phenomenon arises easily in the noise
dataset which destroys the local linear structure of the
manifold [16].

In this paper, we propose a novel denoising method
based onmanifold assumption. Our aim is to obtain the data
points that lie on the noiseless manifold through noise data
points. Compared with the existing denoising methods, our
method has two contributions worth being highlighted:

(1) Our method makes use of manifold-geometric dis-
tribution information of the dataset. )erefore, this
method works for a dataset rather than a single data
point.

(2) Our method improves the Tikhonov model to make
the variational diffusion on the tangent space of the
manifold for a high-dimensional nonrigid point
cloud dataset.

Our method could capture the “true” geometric struc-
ture of the noise dataset. After denoising, the key factors that
control the geometric distribution of the dataset are
maintained and the characteristics of individual points are
removed as noise. As a preprocessing step, our method could
improve the robustness of manifold learning and increase
the accuracy rate in the classification problem.

)e rest of the paper is organized as follows: a brief
review of the research on the manifold assumption is out-
lined in Section 1. Section 2 describes the motivation and
details of the proposed method. In Section 3, experiments
are conducted on both synthetic and real data to evaluate our
method. Section 4 concludes remarks and a discussion of
future work.

2. Related Work

Existing denoising methods always work for the noise in a
single data point, such as “Gaussian noise” or “pepper noise”
[17, 18] in an image. However, these methods could not deal
with the noise that distorts the geometric distribution of the

dataset, such as the noise duck toy image (green point)
caused by longer exposure time and camera shake in
Figure 1.

Only a few studies exist to deal with this problem.
Gong et al. [19] proposed a local linear denoising
method. )is method removed noise by projecting noise
data points to the tangent space of manifold which is
estimated by the principal component analysis method
firstly. )en, local denoised patches are aligned to get the
global denoising dataset. However, the principal com-
ponents may be distorted because they are calculated by
the neighborhood of noise data points, which could lead
to a wrong denoising result. Hao et al. [16] also utilized
principal component analysis and projection method to
find the noiseless data points. )erefore, it has the same
problem. Moreover, many machine learning methods
proposed the noise-resistant model for outliers but did
not discuss denoising as an independent problem [7, 20].
For example, Zhang et al. [7] proposed an adaptive
neighborhood selection method by the shrink and ex-
pand strategy to resist noise on the neighborhood of
manifold.

In this paper, we propose a denoising method for the
dataset. )is method improves the Tikhonov method by
adding a local structure term. )e optimal solution is ob-
tained by minimizing the objective function through a
variational diffusion approach.

3. Proposed Approach

Let F � f(1), f(2), . . . , f(m){ } be the noise dataset.
f(x) ∈ RD is the x-th data point in F. D is the dimension
number of f(x). Let U � u(1), u(2), . . . ,u(m){ } be the
noiseless dataset we want to obtain. u(x) ∈ RD is the x-th
data point in U. f(x) � u(x) + ξ(x), ξ(x) ∈ RD is the noise of
f(x). )e goal is to recover U from F.

We illustrate our method in three steps: firstly, introduce
to inspiration and motivation; then, construct the objective
function by improving the Tikhonov model; and finally,
optimize the objective function and get the solution by
taking discrete operators.

3.1. Inspiration and Motivation. Manifold assumption
claims that the noiseless data point u(x) that depicts the
object state (the blue points in Figure 2) should lie on a
smooth manifold U (blue surface in Figure 2) embedded in
observation space. However, noise points f(x) (red points)
distribute on the noise manifold F. )e denoising problem
is how to obtain ux on Ufrom f(x) on F.

3.2.Objective Function. )e objective function is formulated
in this part. Firstly, we illustrate the Tikhonov model briefly
in image denoising which is similar to our problem. )en,
the challenge of our problem is shown. Finally, we improve
the Tikhonov model and construct the objective function for
our problem.

N

Figure 1: Image dataset of the rotational duck toy distributes on a
one-dimensional manifold [2]. )e red points correspond to
noiseless images. )e green point correspond to the noise image.
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3.2.1. Tikhonov Model in the Image Denoising Problem.
Our problem is similar to the image denoising problem
f(x, y) � u(x, y) + ξ(x, y), where x and y are row and
column numbers of a pixel in an image. f(x, y) and u(x, y)

are pixel values at row xand column y in noise and noiseless
image, respectively. ξ(x, y) is the noise. In Figure 2, if we
regard the x, y, and z coordinate of f(x) as row number,
column number, and pixel value, then the red manifold F
depicts the pattern of noise image. )erefore, the image
denoising problem is to find a noiseless image U from F.

)e Tikhonov model is one of the most classical vari-
ational models to deal with this problem [21]:

E(u) � min
u

1
2

􏽚
|Ω

(u − f)
2dx +

α
2

􏽚
|Ω

|∇u|
2dx, (1)

where Ω is the image domain and dx is the area element
(pixel) in Ω. ∇u is the gradient of u(x). )e first term
􏽒Ω(u − f)2 is “data term” that measures the Euclidean
distance between F and U. )e second term 􏽒Ω|∇u|2dx is
“smooth term” that measures the noise strength of U. Since
these two terms have opposite effect, the parameter α bal-
ances these two terms. If α is small, U is close to F but the
noise strength is large. On the other hand, the noise becomes
small but the image pattern of U is “unlike” F.

3.2.2. 7e Challenge of Our Problem. In the image denoising
problem, the gradient operator is defined as [21]

∇u � [u(x, y) − u(x − 1, y), u(x, y) − u(x, y − 1)]
T
. (2)

When minimizing the “smooth term” 􏽒Ω|∇u|2dx in (1),
the pixel values in the image became the same, whereas the
image area does not change since x and y are fixed.

However, in our problem, the dataset is nonrigid and
high-dimensional cloud points. Let
u(x) � [u(x)1, u(x)2, . . . , u(x)D] ∈ RD be a data point. D is
the dimension number of u(x). Suppose Nu(x) is the
neighborhood of u(x) which is determined by the KNN
method:

Nu(x) � u yi( 􏼁 ∈Nu(x)􏽮 􏽯, i � 1, . . . , k. (3)

Naturally, the gradient operator is defined as

∇u � u(x) − u y1( 􏼁,u(x) − u y2( 􏼁, . . . , u(x) − u yk( 􏼁􏼂 􏼃
T
.

(4)

)erefore, the “smooth term” in (1) is

􏽚
Ω

|∇u|
2

� 􏽚
Ω

􏽚
Nu(x)

u(x) − u yi( 􏼁( 􏼁
2dy dx. (5)

When minimizing an objective function, the “smooth
term” makes u(x) and u(yi) become the same point.
)erefore, the “cluster” phenomenon arises in the
dataset—some points are brought close together and the
other points are pushed away. )erefore, the geometric
structure of the manifoldU (blue surface in Figure 2) will
shrink to a few point clusters rather than becoming
smooth. )erefore, the Tikhonov model could not be
applied directly to solve our problem.

3.2.3. Our Objective Function. To deal with this problem,
we maintain the geometric distribution of U by keeping
the tangent linear structure when minimizing the ob-
jective function. Since the neighborhood of the manifold
could be regarded as tangent space (the blue plane in
Figure 3), we make the neighborhood structure of U the
same as F.

)e weight of local linear representation is utilized to
depict the geometric structure of the neighborhood. )e
weight Wf of data point f(x) is defined as

f(x) � 􏽘
k

i�1
Wfif yi( 􏼁, (6)

where f(yi) ∈Nf(x) and Wfi is the i-th component of Wf
between f(x) and f(yi). Similarly, the linear representation
weight of u(x) is defined as Wu.

)e local linear structure can be maintained if we setWu
the same as Wf . )en, f(x) could only move along the
normal space of manifold when minimizing the “smooth
term” in the objective function because the tangent geo-
metric structure is fixed by Wu. )erefore, we add a “local
structure term” in the Tikhonov model:

􏽚
Ω

( u(x) − 􏽚
Nu(x)

Wfif yi( 􏼁dy )
2dx, (7)

where 􏽒
Nu(x)

Wfif(yi)dy is the linear reconstruction of
u(x). )us, our objective function is

E(u) � min
1
2

􏽚
Ω

(u − f)2dx +
α
2

􏽚
Ω

|∇u|
2dx +

β
2

􏽚
Ω

u − WfN( 􏼁
2dx,

(8)

where α and β are balance parameters.

3.3. Optimal Solution. In this part, we get optimal u by
minimizing objective function (8). )e solution in the
continuous form is calculated firstly. )en, the discrete
operator is defined and plugged to get a discrete solution.

Noise data points
Noise manifold

Noiseless data point
Noiseless manifold

Figure 2: Illustration of the idea of our method: obtain the
noiseless blue points that lie on smooth manifold (blue surface)
from the noise red points that distribute on an irregular surface
(noise manifold).
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3.3.1. Solution in Continuous Form. To get optimal u, we
calculate the derivative of (8) with respect to u by variational
approach and set it to zero:

E′(ε) �
d
dε

E(u + εη,∇u + ε∇u)

�
d
dε

1
2

􏽚
Ω

(u + εη − f)2dx +
α
2

􏽚
Ω

|∇u + ε∇η|
2dx +

β
2

􏽚
Ω

u + εη − WfN( 􏼁
2dx􏼠 􏼡

� 􏽚
Ω
η(u − f)dx + α􏽚

Ω
∇η∇udx + β􏽚

Ω
η u − WfN( 􏼁dx

� 􏽚
Ω
η(u − f)dx + α􏽚

zΩ
n
→η∇u ds − α􏽚

Ω
ηΔu dx + β􏽚

Ω
η u − WfN( 􏼁dx

� η􏽚
Ω

[ (u − f ) − αΔu + β u − WfN( 􏼁 ]dx + α􏽚
zΩ

n
→η∇uds.

(9)

)erefore, the Euler–Lagrange equation of u is

(u − f) − αΔu + β(u − WfN) � 0. (10)

)en,

u �
f + βWfN + αΔu

1 + β
. (11)

And the boundary condition is

n
→∇u � 0. (12)

3.3.2. Solution in Discrete Form. To get the discrete solution,
we define the discrete Laplacian operator in (11) by spectral
graph theory [22]. Firstly, the gradient of u(x) is defined as

∇wGu(x, y) � u yi( 􏼁 − u(x)( 􏼁Wd(x, y)􏼈 􏼉u yi( )∈Nu(x)
,

i � 1, . . . , k.
(13)

)is gradient is a k-dimensional vector because there are
k data points inNu(x). )e subscript “wG” is abbreviated to
“weighted graph.” Wd(x, y) is a weight vector. )e com-
ponentWd(x, yi) should be important if u(x) and u(yi) are

near. On the contrary, the component should be unim-
portant if u(x) and u(yi) are far away. )erefore, we define
Wd(x, y) as

Wd(x, y) �
1

σ
���
2π

√ exp −
d(x, y)

2σ2
􏼠 􏼡, (14)

where d(x, y) is the vector of Euclidean distance between
u(x) and u(yi) ∈Nu(x). σ is the variance of d(x, y). For the
convenience of calculations, we set

������
w(x, y)

􏽰
� Wd(x, y).

)erefore, the discrete gradient of u(x) is

∇wGu(x, y) � (u(y) − u(x) )

������

w(x, y)

􏽱

􏼚 􏼛
u(y)∈Nu(x)

. (15)

Consequently, the gradient of a vector v(x, y) is (the
derivation procedure is listed at “Notice” at the end of this
capture):

∇wGv � − 􏽘
y∈N(x)

(v(y, x) − v(x, y))

������

w(x, y)

􏽱

. (16)

Let v(x, y) � ∇wGu(x, y) � (u(y) − u(x))
������
w(x, y)

􏽰
,

therefore, the discrete Laplace operator of u(x) can be
defined by

Tangent space
u(x)
u(yi) ∈ N(u(x))
Wu

f(x)
f(yi) ∈ N(f(x))
Wf

Figure 3: Local weights in the neighborhood.Wu is the weight of the linear representation of u(x) by u(yi) that are in the neighborhood of
u(x). Wf is the weight of the linear representation of f(x) by f(yi) that are in the neighborhood of f(x).
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ΔwGu � ∇wG ∇wGu( 􏼁 � 􏽘
y∈N(x)

((u(y) − u(x))

·

������

w(x, y)

􏽱

− (u(x) − u(y))

������

w(x, y)

􏽱

)

� 2 􏽘
y∈N(x)

(u(y) − u(x))w(x, y).

(17)

We plug the discrete Laplace operator into (11). )e
solution of our object energy function (8) is

u(x)
k+1

�
f(x) + β􏽐y∈N(x)W(x, y)f(y) + 2α􏽐y∈N(x) u(y)

k
− u(x)

k
􏼐 􏼑w(x, y)

1 + β
, (18)

where the superscripts k and k+1 are the iteration step.
)e initial value of u is set to f . )e optimal u is obtained
by iteration, which ends up when E(u)< ε, where E(u) is
the objective function value and ε is a small error we set.
)e boundary condition (12) could be ignored because the
dataset is scattered and nonrigid cloud points.

Notice:
)e gradient of a vector v could be derived as follows:

􏽘
x∈Ω
∇wGu · v � 􏽘

x∈Ω
􏽘

y∈N(x)

( u(y) − u(x) )

������

w(x, y)

􏽱

v(x, y)

�
1
2

􏽘
x∈Ω

􏽘
y∈N(x)

( u(y) − u(x) )

������

w(x, y)

􏽱

v(x, y)

+ 􏽘
x∈Ω

􏽘
y∈N(x)

( u(y) − u(x) )

������

w(x, y)

􏽱

v(x, y)

�
1
2

􏽘
x∈Ω

􏽘
y∈N(x)

u(x)(v(y, x) − v(x, y))

������

w(x, y)

􏽱

+
1
2

􏽘
x∈Ω

􏽘
y∈N(x)

u(y)(v(x, y) − v(y, x))

������

w(x, y)

􏽱

� 􏽘
x∈Ω

􏽘
y∈N(x)

(v(y, x) − v(x, y))

������

w(x, y)

􏽱

u(x)

� − 􏽘
x∈Ω
∇wGv · u.

(19)

)erefore,

∇wGv � − 􏽘
y∈N(x)

(v(y, x) − v(x, y))

������

w(x, y)

􏽱

. (20)

4. Experiments

In this section, we evaluate our algorithm on both the
synthetic scatter point cloud dataset and real image dataset.
)en, this method is utilized as a preprocess step for
manifold learning and classification task. )e major pa-
rameters of our algorithm include (1) the neighborhood size

k; (2) the smooth term weight α; and (3) the local structure
term weight β.

4.1. Experiments on Synthetic 3D Scatter Cloud Data. In this
part, we test our algorithm on the classical “swiss roll”
dataset. )e data points are sampled from 2D manifold
randomly embedded in the 3D space like a swiss roll cake.
Figures 4(a) and 4(b) at first row are noiseless and noise
dataset at [− 8, 10] and [0, 0] viewpoint, respectively. It is
obvious that noise data points distribute around the “swiss
roll” manifold but do not lie on it exactly. Our goal is to
recover the noiseless dataset in Figure 4(a) by the noise
dataset in Figure 4(b). In this experiment, we set the number
of data points n � 1300, KNN parameter k � 12, and the
noise parameter NI � 1. )e MATLAB code of the swiss roll
dataset is listed in Table 1.

)e second, third, and fourth rows in Figure 4 are
denoising results by our method with α and β equal to (1, 1),
(3, 1), and (0.3, 1), respectively. For ease of viewing, we set
the denoising datasets at [− 8, 10] and [0, 0] viewpoints in the
left and right columns. In the right column, it is easy to see
that the denoising data points are closed to the tangent space
of manifold compared with (b), which show that our method
is effective. Among them, (f ) seems to be the best result
because the denoising points are the nearest to manifold
compared with (d) and (h). However, the “cluster” phe-
nomenon arises in the denoising dataset; some points are
close together and the other points are pushed away, which is
easy to see in (e). )e reason is that the large smooth pa-
rameter (α � 3) makes geometric distribution distort when
minimizing the objective function. Conversely, the “cluster”
phenomenon in (g) is not serious when we set a small
parameter α � 0.3, but the noise is large.

To conduct a quantitative comparison between noise and
denoising datasets, we assess the quality of the denoising datasets
by mean square error (MSE) and tangent distance error (TE).
MSE is a widely used index whichmeasures the average squared
Euclidean distance difference between two datasets:

MSE �
1
N

􏽘

N

i�1
ui − u

∗
i( 􏼁

2
, (21)

where N is the point number of the dataset. ui and u∗i are a
noise data point and corresponding noiseless data point.
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)e tangent distance error (TE) measures the distance of
ui to the tangent space of the manifold. A small TE indicates
that ui lies on the manifold and noise is weak. On the
contrary, the noise strength is large if TE is big. For the
convenience of calculations, we approximate TE as the Eu-
clidean distance between ui and its nearest data point in the
noiseless dataset.)e tangent distance error (TE) is defined as

0
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0
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–10 0 10
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(d)

0
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20

0
–10 0 10

(e)

0

–10 0 10

(f )

0

40
20

0
–10 0 10

(g)

0

–10 0 10

(h)

Figure 4: Denoising results with different parameters. (a) Noiseless dataset. (b) Noise dataset. (c) and (d) Denoising results with α � 1 and
β � 1. (e) and (f) Denoising results with α � 3 and β � 1. Large α eliminates noise, but “cluster” phenomenon arises. (g) and (h) Denoising
results with α � 0.3 and β � 1.

Table 1: MATLAB code for the noise swiss roll dataset.

Input: the number of datasets: n; noise parameter: NI
Output: swiss roll dataset, noiseless and noise
t � (3∗pi/2)∗(1 + 2∗rand(n, 1));

Height� 30∗rand (n, 1);
Noiseless data� [t ·∗cos(t) height t ·∗sin(t)];

Noise data� [t · ∗cos(t) height t ·∗sin(t)] + NI∗rand n(n, 3);
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TE �
1
N

������������������

􏽘

N

i�1
ui − min

u∗
i

d ui, u
∗
i( 􏼁

2

􏽶
􏽴

, s.t. u
∗
i ∈ U

∗
, (22)

where N is the number of data points, ui and u∗i represent
the denoising data point and noiseless data point, respec-
tively. U∗ is the noiseless dataset.

To evaluate our algorithm, we test seven sets of α and β
ranging from 0 to 10. MSE and TE are listed in Tables 2 and
3. When α and β equal 0, the “data term” is the only term
remaining in the objective function (8). )erefore, the
denoising dataset is the same as the noise dataset and the
value at (α� 0, β� 0) is the errors of the noise dataset. While
α is small and β is large, the “data term” and “local structure
term” maintain the geometric structure of the noise dataset.
)erefore, the errors at the upper right of the table are close
to the errors of the noise dataset. While α is large and β is
small, the “smooth term” plays a major role. It could lead to a
“cluster” phenomenon which distorts the geometric struc-
ture of the dataset and make errors large at the bottom left of
the table. It is able to see that the errors near the diagonal of
tables are much smaller than the others.

4.2. Experiments on the Image Dataset. In this part, we test
our method on two real image datasets: MNIST hand-
written number dataset [23] and “LLE face” dataset. Image
is regarded as a point in pixel space. For example, the image
in the MNIST dataset could be regarded as a point in 784-
dimensional space because it has 784 pixels. )erefore, the
only difference between this part to experiment 3.1 is that
the dimensionality of image-point is much higher than the
synthetic scatter point in 3D space.

We analyze denoising images both from the subjective
and objective aspects. Firstly, our method is applied to raw
image datasets. Ideally, key factors that control the geometric
distribution of the dataset could be maintained and the
characteristics in individual images are removed as noise.
Since there is no ground truth of the raw image dataset, we
could only evaluate results by eyes subjectively. Secondly, we
add several types of noise in an image and utilize MSE to
measure the denoising images by our method and classical
image denoising methods objectively.

4.2.1. Experiments on the Raw Image Dataset. We select
“number 3” and “number 4” datasets in MNIST which
contain 1010 and 982 images, respectively. )e size of each
image is 28∗ 28 pixels. )e “LLE face” dataset contains 1965
face images with different expressions and shooting angles.
)e size of each image is 28∗ 20 pixels.

Figure 5 shows 110 images in the “handwritten number
3” dataset.)e left side is original images and the right side is
the corresponding denoising images by our method. In this
experiment, k � 15, α � 0.8, and β � 1. Four typical images
are marked with a box and listed in Figure 5. It can be seen
that the blurring strokes become clear and the posture of
number in the image is maintained.

Figure 6 shows the 110 images in the “handwritten
number 4” dataset. )e left and right sides are original
images and the corresponding denoising images by our
method, respectively. In this experiment, k � 15, α � 8, and
β � 1. It can be seen that the denoising images maintain the
main factors, such as the angularity of number “4.” And the
individual characteristics are removed after denoising; for
example, the difference of stroke width becomes small after
denoising. Four typical images are marked with a box and
listed in Figure 6. It is obvious that the margin of “head” of
number “4” becomes large in the first two images after
denoising. In the third image, the stroke width becomes
broad. In the fourth image, the “bend” at the upside of the
stroke is removed.

Figure 7 shows the denoising result for the LLE face
dataset. )is dataset contains 1965 face images and the size
of each image is 28∗ 20 pixels. In this experiment, k � 15,
α � 3, and β � 0.8. [4] shows that this dataset distributes on
the manifold that spans by two key factors: head pose and
expression, where the expression reflects by lip shape in
images.

It can be seen that these two factors are maintained after
denoising and the characters in the individual image are
removed as noise. Four typical images are marked with a box
and listed in Figure 7. In the first two images, the head twists
to the left and right slightly in the original dataset whereas
the head pose is fixed after denoising. In the third image, the
original head seems to be smaller than the other images
which may be caused by camera shake. )e corresponding
denoising image enlarges the face, and the cheek and chin
became “fat.” In the fourth image, the eyes are “open” after
denoising.

4.2.2. Experiments on the Noise Image. In this part, we add
several different types of noise to an LLE face image. )en,
our method and three classical image denoising methods are

Table 2: MSE of our method (10− 1).

α β 0 0.2 0.5 0.8 1 3 10
0 2.53 2.53 2.53 2.53 2.53 2.53 2.53
0.2 2.36 2.30 2.25 2.27 2.30 2.35 2.49
0.5 3.00 2.67 2.44 2.34 2.33 2.28 2.40
0.8 3.77 3.18 2.76 2.55 2.46 2.26 2.34
1 4.28 3.52 3.00 2.73 2.60 2.30 2.33
3 9.63 7.29 5.54 4.67 4.22 2.82 2.30
10 28.4 21.5 15.3 11.9 10.6 5.37 2.91

Table 3: ET of our method (10− 2).

α β 0 0.2 0.5 0.8 1 3 10
0 2.01 2.01 2.01 2.01 2.01 2.01 2.01
0.2 1.70 1.73 1.74 1.80 1.81 1.91 1.95
0.5 1.68 1.67 1.69 1.70 1.70 1.80 1.91
0.8 1.74 1.69 1.66 1.67 1.68 1.72 1.89
1 1.80 1.72 1.69 1.65 1.66 1.72 1.87
3 2.42 2.12 1.93 1.82 1.80 1.66 1.71
10 4.55 3.73 3.14 2.60 2.47 1.89 1.65
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applied to these noise images. Finally, MSE is utilized to
evaluate denoising images.

Figure 8 shows the denoising images by four denoising
methods for five types of noise. )e first column is a raw
LLE face image. Brightness noise, Gaussian noise, salt and
pepper noise, rotation noise, and scaling noise are added
to the raw image which are shown in the second column,
top to bottom row. )e MATLAB code of noise model is
listed in Table 4.

)ree classical denoising methods, mean filtering, me-
dian filtering, and Tikhonov method are utilized to deal with
these noise images. )e corresponding denoising images are
listed in the third, fourth, and fifth columns in Figure 8. )e
images in the last column are denoising results by our
method. MSE is listed below each image. In this experiment,
the size of the raw LLE face image is 28∗ 20 pixels. In mean
filtering, the size of the filter is 2∗ 2 pixels. In median fil-
tering, the size of the filter is 3∗ 3 pixels. In the Tikhonov

Original images

(a)

Denoising image

(b)

Figure 5: Denoising for theMNISTnumber 3 dataset. Original images and corresponding denoising images are listed in the left column and
right column. )e blurring strokes become clear.

Original images

(a)

Denoising image

(b)

Figure 6: Denoising for theMNISTnumber 4 dataset. Original images and corresponding denoising images are listed in the left column and
right column. )e stroke widths become similar, and the posture of number 4 is maintained.
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method, the smooth parameter is 0.3. )e parameters in our
method are set to k � 15, α � 3, and β � 3.

It can be seen that three classical denoising methods have
no effect on brightness noise, rotation noise, and scaling
noise. )ese noises still exist in denoising images. )e MSE
even becomes larger after denoising in contrast to the noise
image whereas our method has a good effect. For example,
the rotation face is fixed at the fourth row and sixth column
and MSE becomes smaller.

)e reason is that classical image denoising methods
make use of the pattern information in a single image. )ey
could not “see” the geometric distribution information of the
whole image dataset whereas our method removes noise by

drawing noise data points back to the noiseless manifold-
geometric distribution of the image dataset.

4.3.DenoisingDataset forManifoldLearning. In this part, we
utilize our method as a preprocessing step and compare the
recovered low-dimensional embeddings of noise and
denoising datasets on several manifold learning algorithms.
In this experiment, α, β, and k are 1, 0.8, and 13.

Figures 9(a) and 9(b) are noise “swiss roll” dataset and
the ground truth of the noise dataset. Figures 9(c) and 9(d)
are embeddings of the noise and denoising dataset by Iso-
map. Figures 9(e) and 9(f) are embeddings of the noise and

Original images

(a)

Denoising images

(b)

Figure 7: Denoising for the LLE face dataset. (a) Noise images. (b) Denoising images. Four corresponding typical images are listed. )e
posture of the head in the first two images is fixed after denoising. )e head gets bigger in the third image. )e eyes become open in the
fourth image.
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denoising dataset by LTSA. Figures 9(g) and 9(h) are
embeddings of the noise and denoising dataset by HLLE. It
is obvious that embeddings of the noise dataset could not
reflect the geometric distribution of manifold since the
neighborhoods easy to result in the “short circuit”

phenomenon. By taking the denoising dataset, all the three
manifold methods could get the proper embeddings. )e
results of Isomap result in the “hole” phenomenon because
the calculated geodesic distance is always larger than it
really is.

Our
method

Original
image

Noise
image

Mean
filtering

Median
filtering

Tikhonov
method

1.47e – 20 3.60e – 2 4.14e – 2 3.74e – 2 3.43e – 2

1.20e – 20 1.62e – 1 6.30e – 2 8.71e – 2 5.85e – 2

1.26e – 30 9.77e – 3 1.56e – 2 5.50e – 3 4.40e – 3

1.35e – 20 8.56e – 2 8.65e – 2 8.10e – 2 7.23e – 2

7.03e – 30 3.52e – 2 3.81e – 2 3.30e – 2 2.98e – 2

Brightness noise

Gaussian noise

Salt and pepper noise

Rotation noise

Scaling noise

Figure 8: Denoising images’ comparison. )ree classical image denoising methods and our method are applied to image with five types of
noise. Our method could eliminate this noise, whereas the classical image denoising methods could not deal with brightness noise, rotation
noise, and scaling noise.

Table 4: MATLAB code for the noise model.

Brightness noise NoiseImage � Image × 1.3
Gaussian noise NoiseImage � imnoise (Image″, localvar″, size(Image)∗0.5)

Salt and pepper noise NoiseImage � imnoise(, ″salt & pepper″)
Rotation noise NoiseImage � imrotate (Image, 20, ″bicubic″, ″crop″)
Scaling noise NoiseImage � imresize (Image, 1.4, ″nearest″)
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Figure 9: Embeddings of the noise dataset. (a) Noiseless dataset. (b) Ground truth. (c) and (d) Embeddings of the noise and denoising
dataset by Isomap. (e) and (f) Embeddings of the noise and denoising dataset by LTSA. (g) and (h) Embeddings of the noise and denoising
dataset by HLLE.
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To conduct a quantitative comparison, we assess the
quality of the embeddings by three indexes: embedding
error, trustworthiness error, and continuity error [8]. )e
embedding error E measures the squared distance from the
recovered low-dimensional embeddings to the ground truth
coordinates which could be defined as

E �

����������

􏽘
N

n�1
yn − y

∗ 2
n

􏽶
􏽴

, (23)

where N is the number of data points and yn and y∗n
represent the embedding coordinates and ground true co-
ordinates, respectively. )is index tends to measure global
structure distortion of the manifold.

)e trustworthiness error T and continuity error C

measure the local geometric structure distortion. )e
trustworthiness error measures the proportion of points that
are too close together in the low-dimensional embedding
and continuity error measures the proportion of points that
are pushed away:

T(k) � 100 ×
2

Nk(2N − 3k − 1)
􏽘

N

n�1
􏽘

m∈U(k)
n

(r(n, m) − k), C(k) � 100 ×
2

Nk(2N − 3k − 1)
􏽘

N

n�1
􏽘

m∈V(k)
n

(􏽢r(n, m) − k), (24)

where k is the point number in the neighborhood, r(n, m)

is the rank of the point um in the ordering according to
the pairwise distance from point un in the high-di-
mensional space, and 􏽢r(n, m) is the rank of the point ym

in the ordering according to the pairwise distance from
point yn in low-dimensional embedding. )e variables
U(k)

n and V(k)
n denote the neighborhood points of um in

low-dimensional embedding and high-dimensional
space, respectively.

We test our method on several dimension reduction
methods. )e noise swiss roll dataset contains 1300 points.
Here, we set α, β, and k to 1, 0.8, and 13.)e best embedding
results among several trials are selected in this experiment.
)e embedding error, trustworthiness error, and continuity
error are listed in Tables 5–7, respectively. To show the
effectiveness of our method, the errors of noise dataset,
denoising dataset, and noiseless dataset are listed in three
rows. It could be seen that the errors become small by taking
the denoising dataset in Isomap, LLE, HLLE, LTSA, and
AML. However, LE and LPP have a poor performance by
taking denoising dataset.

4.4. Classification Experiment. In this part, we utilize our
method as a preprocessing step and compare the accuracy
rate of the original dataset and denoising dataset in the
classification task. MNIST handwritten number dataset is
selected which contains 60000 images with ten classes from
numbers 0 to 9. Each class has about 6000 images and the
size of each image is 28∗ 28 pixels. To get the denoising
dataset, we utilize our denoising method for these ten
classes, respectively.

In this experiment, we specify different numbers of
images in each class as training data and utilize the
remaining images as test data both in the original dataset and
denoising dataset. A simple one-hidden-layer neural net-
work is adopted as a classifier. )e input layer has 784 units
corresponding to the pixels in an image.)e output layer has
10 units corresponding to ten categories from number zero
to nine. We set 25 units in the hidden layer including a bias
unit. )e parameters of the network are trained by the BP
method.

For each classification task, we repeat 10 times and list
the mean accuracy rate in Figure 10. )e labels “original
dataset” and “denoising dataset” are raw MNISTdataset and
denoising dataset with our method. )e x-coordinate is the
number of training images in each class and the y-coor-
dinate is the accuracy rate. )e blue and red lines are the
accuracy rate of the original dataset and denoising dataset,
respectively. It is obvious that the accuracy rate goes down as
the number of training images decreases in each class. )e
performance of the denoising dataset is much better than the
original dataset, especially when the training number is less
than 50 in each class. )e accuracy is above 96% even when
there are only 10 training images in each class for the
denoising dataset.

)e reason is that the individual characters are removed
in the denoising dataset, which is shown in Figures 5–7 in
Section 3.2.1. )e denoising datasets that distribute on a
“clean” manifold expanded by key factors of the dataset
could make machine learning algorithm easy to learn the
geometric distribution knowledge of the dataset. It also il-
lustrates that there is some kind of essential features to the
classifier that is captured by our method.
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5. Conclusion and Future Work

We propose a denoising method for the dataset rather than a
single data point. )is method is inspired by the manifold
assumption. A local structure term is added in the Tikhonov
model to make the noise points diffuse on the tangent space
of the manifold. Our method could prominent the major
factors hidden in the dataset and remove characteristics of
the individual data point. Experiments show that our
method could eliminate noise effectively on both synthetic
scatter point cloud dataset and real image dataset. And as a
preprocessing step, our method could improve the ro-
bustness of manifold learning and increase the accuracy rate
of the classification problem. However, the parameters are
sensitive in this model because the optimal solution is

calculated by iteration. )e geometric distribution of the
dataset is distorted when the smooth term parameter is large.
On the contrary, the noise intensity is still large after
denoising. Our future work will focus on this problem.
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Table 6: Trustworthiness error.

Isomap LLE HLLE LTSA LE LPP AML
Noise dataset 12.78 11.46 4.43 13.91 27.48 8.39 12.84
Denoising dataset 2.99 3.29 0.94 1.23 4.12 8.34 1.09
Noiseless dataset 1.62 2.09 0.29 0.92 4.08 6.74 0.88

Table 7: Continuity error.

Isomap LLE HLLE LTSA LE LPP AML
Noise dataset 5.96 3.34 1.14 4.87 5.89 2.51 4.44
Denoising dataset 1.83 2.11 0.52 0.67 2.29 2.30 0.60
Noiseless dataset 1.57 1.88 0.24 0.49 2.34 2.43 0.44
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Figure 10: Accuracy rate by taking different numbers of training images.

Table 5: Embedding error.

Isomap LLE HLLE LTSA LE LPP AML
Noise dataset 227.3 217.8 80.21 313.06 189.5 153.2 189.0
Denoising dataset 32.76 60.13 31.79 31.71 135.4 145.8 25.34
Noiseless dataset 28.79 54.63 13.42 25.80 87.29 147.9 24.70
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