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Establishing an adequate level of reliability in the overhead crane operations is an important and vital principle to avoid un-
desirable consequences. To do this, it is appropriate to have a comprehensive approach for risk and reliability assessment of the
most probable failure scenarios during overhead crane operations. In this study, fault tree analysis (FTA) in combination with
fuzzy set theory, Bayesian network (BN), and Markov chain was used to evaluate the probability of top event and reliability of
overhead cranes. A total of 47 basic events were identified for ladle fall in overhead cranes. (e results showed that the probability
of the ladle fall in the FTapproach is equal to 0.0523035 and in the BN approach in the prior event is equal to 0.0273394 which is
less than the FTmethod. Based on the values predicted by Markov chain, the reliability of the system decreases over time by 67.9%
after 60 months. (is study showed that the plan for ladle fall prevention should consider all influencing parameters identified by
proper risk assessment methodologies.

1. Introduction

(ere are various techniques and methods to estimate the
reliability level of systems. One of the most popular and
validated methods for reliability assessment in complex
systems is fault tree analysis (FTA). (is is based on cal-
culating the occurrence probability of a top event, and in
conventional version of this technique, it uses relevant
databases containing failure rate data, such as Odisha Re-
newable Energy Development Agency (OREDA) [1], Center
for Chemical Process Safety (CCPS) [2], and Lees [3] to
facilitate the estimation of the failure rate of root events.

However, databases have suffered from some limitations
such as the lack of failure rates for all root events and the low
trustworthiness of the related data. In some resources, such
as the NOG-070 report, it has been clearly mentioned that if
the number of components subject to failure is less than 30
components, the estimated failure rate will not be sufficiently
reliable to assess the system safety [4].

To minimize the uncertainty level, attempts should be
made to overcome the inherent limitations of the conven-
tional FTA. One of the important approaches to minimize
the level of uncertainty is employing expert’s opinions in-
tegrated with the fuzzy logic approach to estimate the
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occurrence probability of basic events. (is approach has
been studied by various researchers, such as Liu et al. [5],
Cheliyan and Bhattacharyya [6], Jianxing et al. [7], and
Hosseini et al. [8]. (e fuzzy method can be a good tool for
determining the probability in case of vague and uncertain
information [9].

Despite using this approach and reducing the uncer-
tainties raised from divergences in individual opinions, the
FTA structure is remaining static and its deductive rea-
soning became impossible. Haarla et al. used the FTA to
analyze the reliability of a power transmission network in
relation to system failures. (ey used FTA and event tree
analysis (ETA) integrated with dynamic assessment dynamic
simulation of the power system and concluded that their
suggested methodology can be employed to estimate the
probability of system failure and other states for the system
[10]. Rahman et al. used the FTA for customer reliability
assessment of a distribution power system which obtained
the satisfactory results for estimation frequency of failure
and Mean Inactivity Time [11].

In order to overcome the static nature of these tech-
niques, there are several novel and dynamic methods such as
Bayesian networks (BNs), fuzzy theory, evidence theory,
Monte Carlo models, andMarkovmodel (MM) [12]. Among
these methods, BN method is a more appropriate option to
reduce uncertainty in risk assessment as well as accident
analysis, since it benefited from the dynamic nature. Its
appropriate efficiency and performance have been empha-
sized in various studies including Barua et al. [13], Li et al.
[14], and Guo et al. [15]. Today, due to its advantages in high
applicability and flexibility, it is becoming a popular method
for risk and reliability assessment of systems [16]. (ere are
several studies focusing on reliability assessment using fuzzy
FTA and Bayesian networks. For example, Jafari et al. used
fuzzy FTA and dynamic BN to estimate the reliability of fire
alarm systems. (e results of their study showed that the
proposed combined method for situations where there is a
degree of uncertainty can well predict the reliability of the
system [17].

Sýkora et al. used BNs to provide a framework for an-
alyzing the probability of risk. (e results of this study
showed that BNs provide an effective tool for estimating the
probability of events in risk assessment [18]. Shi et al. utilized
the Bayesian Regularization Artificial Neural Network
method to analyze the risk of offshore platform explosions.
(ey stated that the developed method is appropriate for
evaluating an explosion [19]. (ey provided a method for
analyzing urban hydrogen refueling station risk using BNs.
(ey also stated that the developed method would reduce
uncertainty and computational costs in fire risk assessment
[20].

Li et al. used BN to assess reliability for systems suffering
common cause failure. (ey stated that the proposed
method is suitable for assessment in dynamic environments
[21]. Markowski et al. [22], Cheliyan and Bhattacharyya [6],
and Yazdi et al. [23] combined the fault tree with fuzzy and
evidence theories for uncertainty using expert opinion and
similar incidents’ statistics. Garg confirmed that the pro-
posed method based on fuzzy reliability assessment has

satisfactory results to overcome the uncertainty in uncertain
environments [24]. Niwas and Garg concluded that the
newly introduced methodology using the Markov process
effectively analyzes the behavior of a system under the
studied conditions [25]. Yazdi et al. took into account the
issue of uncertainty in FTA and how it can be reduced in a
review article. (ey emphasized the potency of fuzzy set
theory and Bayesian network to overcome the uncertainty
level. One of the main recommendations of their study was
to pay more attention to the utilization of the integrated
approaches especially using the Bayesian network [26].

For repairable and unrepairable systems, other reliability
methods can also be used. One of them is the Markov model
(MM), which models the random behavior of systems in
continuous or discontinuous change states with respect to
time or space. (is method is based on the assumption that
the system has the features of memorization, so that its
current behavior is not affected by its past or future records,
its current status is important, and its behavior is constant
[27]. (is means that the system has a constant hazard rate
and follows Poisson and exponential distributions. In dis-
crete space and time, space follows the so-called Markov
chain and the whole process is called a Markov process [28].

Li et al. developed a method for reliability assessment,
and its verification was confirmed using the Monte Carlo
technique. (ey stated that the new model is more effective
despite its associated defects [29]. (imashew and Bush-
inskaya argued that the Markov process causes the behaviors
of a set of seriously developing defects to be considered
collectively and as a distribution system [28]. (e study of
Ossai et al. reported that the Markov process could predict
the reliability and the estimation of the residual life of the
pipeline systems [30]. Peiravi et al. also showed that new
Markov-based model with a significant reduction in com-
putation time is a suitable solution for estimating the system
reliability [31].

In integrated approaches, an attempt is made to reduce
the limitations of existing methods and obtain more ob-
jective results by employing various theories and methods.
(erefore, combination of conventional FTA with the novel
and suitable theories or methodologies can lead to a more
accurate estimate of the probability of basic events and
reliability.

Overhead cranes are widely used in the industry for
carrying and moving heavy loads. Due to involvement of
operators in crane control and operations, there is always a
risk of accidents due to human error or equipment failure
[5]. In such cases, establishing an adequate level of reliability
in the whole system is an important and vital principle, and
any fault in paying attention to this can have undesirable
consequences. To do this, it is appropriate to have a com-
prehensive approach for risk and reliability assessment of the
most probable failure scenarios during overhead crane
operations. As mentioned before, FTA integrated with other
approaches seems to meet this objective. Using the present
approach can help engineers to reduce the uncertainty levels
in risk assessment of overhead cranes. Moreover, they can
integrate this approach with other risk assessment meth-
odologies to opt for a more dynamic method. All the
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industries using an overhead crane in their routine lifting
operations can consider this approach in their risk man-
agement program. Hence, this study aimed to analyze the
risks and assess the reliability of overhead cranes using FTA
integrated with fuzzy theory and experts’ judgment, BN, and
MM. (e main novelties of the present study are as follows:
(1) to our knowledge, this is the first comprehensive study to
address dynamic risk analysis and reliability of overhead
crane; (2) the integration of FTA with fuzzy approach and
BN seems to give better results than traditional FTA; and (3)
predicting the reliability of overhead crane system for a five-
year period can give us proper recommendations for pre-
ventive maintenance scheduling.

2. Materials and Methods

In this study, FTA in combination with fuzzy theory,
Bayesian network, and Markov chain was used to evaluate
the reliability of overhead cranes. Figure 1 reveals the
schematic diagram of the study methodology. (e details of
each step are described as follows.

2.1. Identifying the Structure and Operation of Overhead
Cranes Carrying Ladles. First, detailed information about all
components of the system and physical and functional in-
teractions between crane components was gathered. All
technical documents related to cranes and procedures of
transporting ladles containing molten materials and empty
ladles in the steelmaking unit and other documents related
to the operations of the cranes were received and reviewed.
Relying on the available resources and the experts’ opinions
in this field led the cranes to be considered in four sub-
systems, namely, structural, mechanical, electrical, and in-
strumentation, and safety protection features, so that a
comprehensive understanding can be achieved about faults,
failures, and defects occurring in the cranes.

2.2. IdentifyingProbableRelatedScenarios. After recognizing
the structure and operation of overhead cranes carrying
ladles and also receiving the experts’ opinions, a question-
naire was designed to get the main scenarios for FTA
construction. In this regard, five possible scenarios were
identified in overhead cranes carrying ladles. Ladle fall was
the most important scenario identified based on the experts’
opinions, near-miss and accident reports. (is scenario was
considered to proceed with the present study.

2.3. FTADevelopment. (e FTAmethod is the most popular
and structured technique used to identify the potential
causes of an undesirable event or a top event with a safety
and economic loss effect [32]. In this method, all the causes
of failure are depicted in the form of a tree with an inductive
approach or top-down structure; then, constructed structure
is analyzed qualitatively or quantitatively to estimate the
occurrence probability of the top event [33]. In this study,
the FTA was used to identify the basic events affecting the
top event and also to estimate its probability of occurrence.

2.4. FTA Validation. Content validity shows the extent to
which a tool measures all aspects of a construct. Various
indexes are available to estimate the validity of an instru-
ment, among which Content Validity Ratio (CVR) and
Content Validity Index (CVI) are considered as the most
widely used methods. In this study, these two criteria were
employed to examine the relevance and necessity of basic
and intermediate events and also to determine the type of
gates. To solve the initial uncertainty in the FTA structure,
we constructed an expert team including nine experts from
the steelmaking plant (such as firefighting manager, HSE
experts, electrical and instrumentation experts, repair and
maintenance manager, mechanical engineer, and crane
supervisor) and two university specialists with risk assess-
ment expertise.(e experts’ opinions were gathered through
the brainstorming method. Figure 2 represents the FTA
validation process based on the opinions of the constructed
team. Content Validity Ratio (CVR) is a method of mea-
suring the validity of a tool designed by Lawshe [34]. To
calculate this ratio, the experts’ opinions regarding the test
content were used. First, the objectives of the test were
explained to the experts, and the operational definitions of
the content of the questions were declared. (ey were then
asked to rate each question based on a three-point Likert
scale (1� not necessary, 2� useful but not necessary, and
3� necessary). It was then calculated using the following
equation:

CVR �
nE − (N/2)

N/2
. (1)

Here, nE is the number of experts who selected the
necessary option and N is the total number of experts.

According to Lawshe’s table, the minimum acceptable
value of CVR was 0.59 for 11 experts and lower values did
not have an acceptable content validity.

(e Content Validity Index (CVI) is also used to esti-
mate the validity of the questionnaire provided byWaltz and
Bausell [35]. To calculate the CVI, experts were asked to rate
the relevance of each item based on a 4-point Likert scale
(1� not relevant, 2� somewhat relevant, 3� quite relevant,
and 4� very relevant). (e number of experts who chose
options 3 and 4 was divided by the total number of experts. If
the obtained number is less than 0.7, the item will be
rejected. If it is between 0.7 and 0.79, a review should be
performed, and if it is greater than 0.79, it will be acceptable.

2.5. Determining the Probability of Basic Events Using Fuzzy
Set 1eory (FST). Failure Rate and Event Data (FRED) da-
tabases can be used to estimate the probability of occurrence of
basic events [36]. However, since in this study no information
was available for the identified basic events, the occurrence
probability of the initial event was estimated using the experts’
opinions and fuzzy theory. (is approach can help inspectors
in situations where there is ambiguous data and uncertainty of
data [37]. In this study, the experts’ opinions and inferences
and FSTwere used to determine the probability of basic events.
(e steps of implementing this theory to determine the
probability of basic events are as follows.
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2.5.1. Weighting the Experts’ Opinions Using the Fuzzy
Analytic Hierarchy Process (FAHP) Method. Using experi-
enced persons is a way to estimate the probability of events.
(is method can be employed to provide the solution when
we are faced with the challenge of lack of appropriate data
[38]. In this study, a heterogeneous group of experts was
used. (e FAHP method was used to weigh the experts’
opinions.(e AHPmethod has been widely used in selecting
the best option from among other options using pairwise
comparisons for each level according to the objective of
selecting the best option, although it has suffered from some
limitations. For example, it is primarily used in crisp de-
cisions, examines a very unbalanced scale of judgment, and
does not take into account the uncertainties in individual

judgments; moreover, the ranking of this method is almost
inaccurate. Mental judgments, choices, and performance of
decision-makers have a great impact on the AHP results. In
addition, the judgment of people about qualitative indicators
may be subjective and to some extent imprecise. (ese
limitations can overshadow the efficiency and accuracy of
the conventional AHP method when we need to make
critical decisions. Fuzzy set theory has the ability to combine
with pairwise comparisons to develop the AHP technique in
order to overcome the conventional AHP limitations. (e
combined decision-making technique offers a more accurate
understanding of the decision-making process [39, 40]. In
this study, Buckley method according to the study by Yazdi
[41] was used to weigh the experts’ opinions.

Identifying the structure and operation of
overhead cranes carrying ladles
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Figure 1: Study methodology.
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2.5.2. Quantifying Experts’ Opinions. To quantify the ex-
perts’ opinions and determine the weight of their opinions
on the judgment of failure rate of basic events, the seven-
point Likert items based on the study of Saaty and
Ozdemir [42] were used, namely, very low (0.2, 0.1, 0, 0),
low (0.3, 0.2, 0.2, 0.1) relatively low (0.5, 0.4, 0.3, 0.2),
medium (0.6, 0.5, 0.5, 0.4)), relatively high (0.8, 0.7, 0.6,
0.5), high (0.9, 0.8, 0.8, 0.7), and very high (1, 1, 0.9, 0.8).
(ere are several applications of fuzzy set theory to deal
with uncertainties and inaccuracy of expert judgment,
including triangular, intuitionistic, trapezoidal, and
Gaussian fuzzy numbers [43–45]. Trapezoidal and tri-
angular fuzzy numbers describe the fuzzy membership
linearly, while the Gaussian function describes fuzzy
membership nonlinearly and more flexibly. However, the
latter method is more complex than the linear methods,
which may cause more inaccuracy [45]. (e choice of a
certain type of membership function depends on the
nature of the problem [46]. In recent studies, the use of
triangular and trapezoidal fuzzy numbers has been more
effective and more applicable to risk assessment, and
studies have used both triangular and trapezoidal fuzzy
numbers to transfer linguistic terms to fuzzy membership

functions [39, 47, 48]. (erefore, trapezoidal fuzzy
numbers were used in this study, and the experts’ opinions
were quantified using the method proposed by Chen and
Hwang [49].

2.5.3. Converting Linguistic Terms into Crisp Failure Possi-
bility (CFP). Experts’ judgments in the form of linguistic
terms had to be converted to fuzzy numbers and then a final
number called fuzzy possibility score (FPS). (ere are
various techniques for consensus of experts, such as linear
opinion pool, max–min Delphi method, sum-product, and
max-product. In this study, the sum-product algorithm and
(2) were used for the consensus of experts [37]:

Zi � 􏽘
n

j�1
wjfij, i � 1, 2, . . . , m, j � 1, 2, . . . , n. (2)

Here, Zi is the failure rate of basic events; wj is the
experts’ weight j; fij are the occurrence probability of fuzzy
defect of basic event i stated by the experts j; and n andm are
the total number of experts and the number of basic events,
respectively.

FT validation Brainstorming 

Team selection

Firefighting manager

4 HSE experts 

Electrical and
instrumentation experts

Crane supervisor

Repair and maintenance
manager

2University specialists

Mechanical engineer

Content validity

Relevant Necessary 

CVI CVR

FT development

Yes: CVI>0.75

Yes: CVR>0.59

Figure 2: FTA validation process.
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2.5.4. Defuzzification Process. To make decisions in a fuzzy
environment, defuzzifying the fuzzy numbers is very im-
portant. (e number obtained by experts should be
defuzzified. (ere are several methods for defuzzification,
including center of area (CoA) method, max–min, center of
the largest area, weighted average, mean max, and bisector
[50, 51]. In this study, max–min method presented by Shi et
al. [52] was used. (e max–min fuzzy set method has been
used in several studies, including Sharma et al. [53], Shi et al.
[52], and Yazdi and Kabir [37]. (is method is presented in
the following equations: equations:.

fmax(x) �
x, 0≤x≤ 1,

0, (otherwise),
􏼨 (3)

fmax(x) �
1 − x, 0≤ x≤ 1,

0, (otherwise).
􏼨 (4)

In order to calculate the left and right numbers of the
fuzzy set, the following equations were used.

FPSRight � sup
x

fz(x)∧fmax(x)􏼂 􏼃 �
(1 − d)

[1 +(d − c)]
, (5)

FPSRight � sup
x

fz(x)∧fmin(x)􏼂 􏼃 �
(1 − a)

[1 +(b − a)]
. (6)

(erefore, the probability of the fuzzy number Zi was
calculated using the following equation:

FPS Zi( 􏼁 �
FPSRight Zi( 􏼁 + 1 − FPSLeft Zi( 􏼁􏽨 􏽩

2
. (7)

2.5.5. Top Event and Failure Probability. (e numbers ob-
tained from the defuzzification step for each event are CFP,
and they must be converted from possibility to probability.
(e following equation was used for this purpose [54]:

FP �
01/10

K

, CFP≠ 0,

CFP � 0,

⎧⎪⎨

⎪⎩

K �
1 − CFP
CFP

􏼢 􏼣

1/3

× 2.301.

(8)

Here, FP is the probability rate of each basic event, CFP is
the possibility number obtained from the defuzzification
step, and K is an intermediate variable that is a function of
CFP.

Finally, the probability of occurrence of intermediate
events related to the final event was calculated using the
following equations and according to the gate type:

Por � 1 − 􏽙
n

i�1
(1 − P), (9)

Pand � 􏽙
n

i�1
Pi, (10)

P(TE) � 1 − 􏽙
k

j�1
1 − P MCSj􏼐 􏼑􏼐 􏼑, (11)

where Pi is the probability of the basic event i, P (MCSj) is the
occurrence probability of the main cut set j, and P (TE) is the
occurrence probability of TE.

2.6. Bayesian Networks. BN is a graphical model to depict
the relationship between the desired variables. (is network
consists of qualitative and quantitative parts. (e qualitative
part (structural model) shows the interactions between the
variables and a unique continuous probability distribution
which is defined on all variables. (e quantitative part
provides a set of local probability characteristics, which are
necessary for inferring probabilities and numerically mea-
suring variables or a set of variables. BN is a noncircular
directional diagram [55], and it not only uses Bayesian
theory to update probabilities, but also has a fully flexible
and compatible feature for dynamic modeling of a wide
range of event scenarios. It uses a set of variables to calculate
the joint probability distribution [56, 57]. In this study, the
initial, intermediate, and top events identified by the FTA
method were considered as root, intermediate, and top
nodes, respectively [58]. One of the most important features
of the BN is the inductive and deductive reasoning ability.

2.6.1. Inductive Reasoning. (is type of reasoning is used to
predict and estimate the occurrence probability of events
and its consequences. Although the FTA model, like BN, is
able to make this type of reasoning, due to the mentioned
limitations, it may lead to incorrect estimation of the
probability of the event scenario and consequently the
probability of final consequences [59, 60].

2.6.2. Deductive Reasoning. One of the characteristics of BN
is the deductive reasoning ability which is very important in
dynamic risk analysis. (is advantage makes the network
structure dynamic and allows updating the occurrence
probability of basic events by providing accident precursors.
(is makes the model data in the update state closer to
reality and creates a dynamic risk analysis model. By
updating the occurrence probability of the basic events and
the final consequences, it will be possible to select the most
critical basic event that has the largest role in the occurrence
of the top event [60]. In this study, this type of reasoning was
used to update the probability of basic events.

2.7. Sensitivity Analysis in BN. Traditional definitions of
significance criteria, such as Ratio of Variation (ROV) and
Birnbaum Importance Measure (BIM), are generalized in
BN using probability laws. (e new definitions developed in
BN can be used not only to identify critical events, but also to
overcome the FTA limitations in this regard [61].

2.7.1. ROV Criterion. In order to compare the probability of
prior and posterior basic events and to select the most
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critical basic event, the method of measuring the ROV was
used, which was calculated by the following equation [60]:

ROV BEi( 􏼁 �
π BEi( 􏼁 − θ BEi( 􏼁

θ BEi( 􏼁
. (12)

Here, π(BEi) is the posterior probability of the basic
event and BEiθ(BEi) is the prior probability of the basic
event BEi.

2.7.2. BIM Criterion. (e BIM criterion finds the most
important components by how likely it is that the failure or
integrity of a component corresponds to the probability of
failure or integrity of the system, or in other words to what
degree a component is critical to the system. (is criterion
was calculated using the following equation [48]:

BIM BEi( 􏼁 � P TE|BEi � True( 􏼁 − P TE|BEi � Flse( 􏼁.

(13)

Here, P(TE|BEi � True) is the occurrence probability of
TE event when the basic event BEi in the basic node of the
BN is in True state, and P(TE|BEi � Flse) is the occurrence
probability of TE event when the basic event in the basic
node of the BN is in False state.

2.8. Markov Chain. Markov chains are a special state of the
Markov process, in which both the t-parameter and the
system state select only discrete values. Random variables of
X1, X2, . . . , Xn are called Markov chains when (14) is
established for all values of n (step) and all states of i and j
[27].

P Xn+1 � j|X1 � i1, X2 � i2, . . . , Xn � i􏼂 􏼃 � P Xn+1 � j|Xn � i􏼂 􏼃.

(14)

2.8.1. Transition Matrix. (e transition matrix is called a
matrix, the constituent element (Pij) of which is in the row i
and column j. In other words, Pij indicates the probability of
changing the system state from i to j. If the system has M
states, its transition matrix will be according to the following
equation [62]:

P �

p11 p12 · · · p1M

p21 p22 · · · p2M

· · · · · ·

· · · · · ·

pM1 pM2 pMM

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (15)

All elements of this matrix are nonnegative, and the sum
of the elements in each row is equal to one. In general, any
square matrix whose elements are all nonnegative and the
sum of its elements in each row is equal to one is called the
Markov matrix. (e state space diagram is used to make it
easier to use Markov processes. All available states for the
system and all transition paths from each state are con-
sidered, and then the transfer rates of each step are entered.

(is diagram is used to further facilitate the analysis of
Markov processes.

2.8.2. State Space Diagram. (e state space diagram showed
the relationship between the states of a Markov system. In
this diagram, the nodes represent the state of the system, and
the branches represent the possibility of transition from one
state to another. (e values on the branches indicate the
change rate of the system state from i to j. For a repairable
member, the state space diagram is shown assuming two
states of correct function and impaired function, λ is the
failure rate or state change from the correct to impaired
function, and µ is the repair rate of the failed member to
achieve correct function [62]. In this study, the state space
diagram was used for a single member. Figure 3 shows the
state space diagram for the overhead crane carrying a
melting ladle.

3. Results

After analyzing the overhead crane system and receiving the
experts’ opinions the questionnaire was designed to identify
the main scenarios of the FT. Finally, according to the results
of the questionnaires and the experts’ opinions, 5 important
scenarios were identified, namely, pouring and splashing of
molten material, ladle fall, objects fall, falling of people from
height due to working on cranes or related equipment, and
falling of other objects carried by the crane. Figure 4 shows
the relative frequency of each scenario according to the
results of the questionnaires. As demonstrated, ladle fall has
the highest relative frequency which was selected as the most
probable scenario.

3.1. Drawing and Validating the FT. (e FT related to the
ladle fall from the overhead crane was constructed by the
panel of experts and operatives (Figure 5). After drawing the
FT, the content validity of the basic events in terms of the
type of gate and their location was evaluated by the panel of
experts using the CVI and CVR. In this study, X14 (human
error in case of reeving ropes) was considered as a common
event between IE19 and IE21 events. (e gate between basic
events for the IE22 intermediate event was considered “or.”
(e CVI for the final basic events was greater than 0.79, and
the CVR value for the final basic events was greater than
0.59. As a result, 29 basic events and 13 final events were
identified.

According to Figure 5, the main causes for the ladle fall
were identified and are demonstrated in Figures 6–8. Ta-
bles 1 and 2 represent the list of intermediate events due to
crane-related failures and basic events, respectively. (e
results of qualitative evaluation of the fault tree showed that
a total of 27 intermediate events and 47 root events were
identified in the melting ladle scenario.

3.2. Determining the Probability of Basic Events Using Fuzzy
Logic. In order to determine the probability of the top event,
it is necessary to calculate the probability of the basic events.
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Figure 4: Relative frequency of the identified scenarios.
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A 7-term linguistic scale was used to determine the oc-
currence probability of basic events. According to Ishikawa
et al. [63], the three experts selected to determine the
probability of the basic events in this study were fully aware
of the system. Yazdi and Zarei [44] and Omidvari et al. [64]
also used three experts to determine the probability of basic
events based on the experts’ opinion. (e experts in this
study were overhead crane repair expert, overhead crane
electrical expert, and PM overhead crane expert. (e FAHP
method was used to calculate the weight. (e experts’ in-
formation system is shown in Figure 9, and Table 3 shows the
experts’ weighting profile. Table 3 reveals that expert No. 1
(overhead crane repair expert) had the highest weight and
expert No. 3 (overhead crane electrical expert) had the
lowest weight.

In the next step, fuzzy numbers equivalent to the theories
of each expert were estimated separately. (ese fuzzy
numbers were then defuzzified, and finally the occurrence
probability of each basic event was calculated; the results are

presented in Table 4. As seen in the table, the lowest
probability was related to the X30 basic event (lack of spare
parts), the probability of which was estimated to be
0.0007656, and 16 basic events had the highest probability
which was 0.0020797 per year.

After determining the probability of basic events, the
probability of the top event was calculated to be 0.052303 in
the FT method according to the type of gate.

3.3. Determining the Probability of Basic Events Using Fuzzy
BN

3.3.1. Ladle Fall. After determining the probability of basic
events using fuzzy logic, the obtained results were entered
into GeNIe software according to the method presented in
this study, and the prior and posterior probabilities were
determined by updating BN. Figure 10 shows an overview of
BN modeling.

Ladle relevant failures duo 
to ladle knobs cut out

X18X44 X45 X46 X47

Out 03

Figure 7: Ladle-related failures due to ladle knobs cutting out.
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X22 X23 X24
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X43X41
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Figure 8: Crane-related failures.
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According to Table 5, 47 basic events were identified for
ladle fall in overhead cranes. (e FT results showed that the
lowest probability was that of BE30 (lack of spare parts) and
BE19 (poor lubrication).

3.3.2. Deductive and Inductive Reasoning. Inductive rea-
soning is the common features of both FTand BN. Columns 2,
6, 3, and 7 of Table 5 show the results of inductive reasoning.
(e results showed that the probability of the top event is equal
to 0.0523035 and in the BN approach in the prior event is equal
to 0.0273394 which is less than that of the FT method.

One of the special features of the BNmethod is deductive
reasoning; that is, it is possible to update the basic events by
receiving accident and near-miss data, converting the BN
model to dynamic model.

Columns 4 and 8 of Table 5 show the results of deductive
reasoning or updated probabilities of basic events calculated
using GeNIe software for basic events. (e results of
updating the basic events in the BN allow us to choose the
most important basic event. Updated values of probability of
basic events indicated that BE46 (fatigue due to overheating
of molten metal), BE27 (body crack), and BE41 (longitudinal
weld of girder failure) had the highest role in the occurrence
of the top event. However, BE30 (lack of spare parts), BE35
(Cardan shaft breakage), and BE36 (Cardan coupling
breakage) had the lowest role in the occurrence of top events.

3.3.3. Sensitivity Analysis. In this study, BIM and ROV
methods were used to analyze the sensitivity of BN as well as
identify the most critical basic event. Figure 11 shows the

results of sensitivity analysis by ROV method. As seen, 17
basic events had the highest amount of ROV, among which
BE46 and BE1 events were identified as the most important
basic events.

Figure 12 demonstrates the results of sensitivity
analysis using the BIM criterion. As depicted, 18 basic
events had the highest probability, among which BE46,
BE32, BE33, and BE27 were identified as the most im-
portant basic events influencing the occurrence of the top
event.

Table 1: Describing intermediate events due to crane-related
failures.

Symbol Intermediate event
IE4 Hoisting stop failure
IE5 Wire rope running out
IE6 Lifting beam rupture
IE7 Hock failure
IE8 Hoisting emergency brake failure
IE9 Critical joint connection failure
IE10 Structure failure in case of main girder
IE11 Brake failure
IE12 Wire rope tearing
IE13 Rope faster running out
IE14 Main body fracture
IE15 Lamellar hock body breakdown
IE16 Hock running out
IE17 Overspeed
IE18 EMG brake failure
IE19 General brake failure
IE20 Excessive tension
IE21 Excessive twisting
IE22 Rope contact
IE23 Overload
IE24 Hock damage
IE25 Power transmission
IE26 Impact during lifting
IE27 Wire rope deformation

Table 2: Describing basic events.

Symbol Basic event

X1 Human error in case of unsuitable hook fitness before
lifting

X2 Hook span defect
X3 Hook misalignment ESP due to pin jamming
X4 Worn gasket
X5 Break maladjustment
X6 Break disk damage
X7 Mechanical parts failure
X8 Worn shoes
X9 Suspended load at height
X10 Human error in case of operation
X11 Upper limit switch failure
X12 Absolute encoder failure
X13 Improper wire rope selection
X14 Human error in case of reeving ropes
X15 Human error in case of hook positioning
X16 Lower stop limit switch failure
X17 Wipe rope overlapping due to lack of rope guard
X18 (ird party damage
X19 Poor lubrication
X20 Lack of rope guard
X21 Overheating due to molten metal splash
X22 Shaft rupture
X23 Socket failure
X24 Cotter pins failure
X25 Load detection system failure
X26 Human error in case of overloading
X27 Body crack
X28 Overheating
X29 Joint connection failure in case of lifting beam rupture
X30 Lack of spare parts
X31 Poor inspection test
X32 Lamellar hook pin failure
X33 Joint connection failure in case of hook running out
X34 Cross joint pin failure
X35 Cardan shaft breakage
X36 Cardan coupling breakage
X37 Shaft encoder
X38 Inverter control unit failure
X39 Joy stick failure
X40 Overspeed device failure
X41 Longitudinal weld of girder failure
X42 Groove welds failure
X43 High tension bolts failure
X44 Knob joint connections failure within welding points
X45 Knob ridge fraction due to welding points defect
X46 Fatigue due to overheating of molten metal

X47 Knob corrosion due to molten metal permeation to
refractory
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After determining the main root events, the effectiveness
of reducing the probability was evaluated by assuming that
each of the root events was zero. (e results of sensitivity
analysis showed that the most important basic events are
BE46, BE32, BE33BE34, and BE27. Events BE32, BE33, and
BE34 were of equal importance, and to assess effectiveness
only one of them was considered. Table 6 reveals the results
of estimating the probability of the top event occurring in the
current situation and assuming that some important events
are zero.

3.4. Reliability Estimation. In this study, in order to predict
the reliability with the experts’ opinions, a 5-year period of
time was selected. (e initial probability of the ladle fall was
estimated by BN and FT methods, which is 0.0273394 yr− 1

(3.13E − 6 hr− 1). (e repair rate was 0.175 (hr− 1) as provided
by the maintenance unit of the industry. Figure 13 shows the
modeling results of overhead cranes based on FT and BN
results over a 5-year period. It indicates that, according to
the current situation in the studied system, if no plan is taken
to reduce the probability of basic events, the reliability of the
system will decrease from 97.3% to 31.3% after 5 years.

4. Discussion

In developing countries, since there is no database for the
failure rate of basic events, it is not possible to calculate the
probability; therefore, fuzzy logic can be used to reduce the
uncertainties in the lack of proper data [65]. Estimating the
occurrence probability of events is possible through two
ways. (e first way is the use of classical methods derived
from definite mathematics, requiring accurate and quanti-
tative data. (is limitation leads to inflexibility and reduced
accuracy in mathematical models. (e second means is to
employ accident databases, which may have more contro-
versial validity than real data of events. Regarding the point

that the main assumption in classical method is the un-
certainty about the feature, the parameters are determined
definitively, and conventional models do not provide an
accurate estimation about reality. However, fuzzy logic can
examine parameters in an interval [66].

In this study, fuzzy logic and a heterogeneous group of
experts were used to determine the probability of basic
events. (is method can improve the reliability and reduce
system costs by reducing uncertainty and ambiguity. (e
method used in the study of Jafari et al. [67] is consistent
with the method used in the present study. In this study,
Winkler and Clemen methods were used to weigh the ex-
perts’ opinions, and the max–min method was used for
defuzzification. (e difference between this study and the
study by Jafari et al. is the use of max–min method in
defuzzifying the probability of basic events. Yazdi et al. used
the sum-product method for consensus of experts and the
max–min method for defuzzification. According to Yazdi
and Kabir, the max–min method is a popular method for
defuzzifying linguistic terms [37]. (e mentioned methods
are consistent with the method used in the present study.
Yazdi and Zarei compared the sum-production/CoA
method with the sum-production/max-min method in fuzzy
theory to estimate the probability of basic events and the top
event.(ey found that the sum-production/CoAmethod is a
reliable and suitable method for complex systems in safety
assessment. In this study, sum-production/max–min
method was used to estimate the probability of basic events
and the top event (ladle fall). In order to validate the FT, a
team consisting of relevant and university experts was
formed. Given the wide range of researchers in various
industries and their unfamiliarity with all aspects of systems,
the university-industry interaction can make it possible to
exchange information, which has had positive effects on
large companies [44]. In this study, CVI and CVR were used
for initial validation of the FTstructure.(e relationship and
necessity of the existence of basic events as well as the type of

Table 3: Experts’ weighting profile.

Expert code Job filed Education level Work experience Age Weighted score
Expert 1 Repair expert MSc 2–10 40–49 0.413
Expert 2 Overhead crane expert BSc 2–10 30–39 0.343
Expert 3 Electrical expert of overhead cranes BSc 2–10 30–39 0.271

Expert competence

Job filed Education level Work experience Age 

Expert 1 Expert 2 Expert 3

Figure 9: FAHP indicator system for qualification assessment of the experts.
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gates between the basic events and their location were in-
vestigated by a team of steel industry experts using these
criteria.

According to Figures 5–8, the results of the qualitative
constructing of the FT, a total of 74 causes or failure (47 basic
events and 27 intermediate events) were involved in the ladle
fall. (e probability of the ladle fall from the overhead crane
was estimated to be 0.0523035, and in the BN method this
value was 0.0273394 using the fuzzy FT. (e estimated value
in BN is less than the value of the FT approach. (e dif-
ference in values obtained by these two methods is due to
considering the conditional dependence between the root

and intermediate events as a common cause. (e FTmethod
is not able to consider these dependencies. (erefore, it can
be concluded that some events are statistically interdepen-
dent using the BN model. For example, event X10 (human
error in case of operation) is a common basic event between
IE20 and IE 22. Event X18 (EMG brake failure) is also a
common basic event between IE21, IE22, IE23, and IE14
basic events. (e effect of these dependencies can be ob-
served in estimating the probability of the top event, i.e., the
probability of the ladle falling from the overhead crane.
Identifying the critical events that play a major role in the
occurrence of the top event is one of the important issues for

Table 4: Experts’ opinions and fuzzy probability of basic events.

BE E1, E2, E3 Fuzzy corresponding number d K FP
1 FH H M 0.568 0.67 0.746 0.849 0.328 2.922 0.00119647
2 H H FH 0.716 0.822 0.822 0.924 0.378 2.717 0.00191867
3 M H M 0.526 0.629 0.663 0.766 0.342 2.862 0.00137404
4 M FL L 0.637 0.74 0.843 0.904 0.343 2.858 0.00138676
5 VH H M 0.822 0.924 1.027 1.027 0.387 2.682 0.0020797
6 VH H VH 0.822 0.924 1.027 1.027 0.387 2.682 0.0020797
7 VH H FH 0.822 0.924 1.027 1.027 0.387 2.682 0.0020797
8 VH FH H 0.794 0.897 0.973 1 0.385 2.69 0.00204174
9 H H H 0.78 0.833 0.944 0.986 0.384 2.694 0.00202302
10 VH VH VH 0.822 0.924 1.027 1.027 0.387 2.682 0.0020797
11 VH FH FH 0.822 0.924 1.027 1.027 0.387 2.682 0.0020797
12 VH H H 0.822 0.924 1.027 1.027 0.387 2.682 0.0020797
13 VH FH VH 0.822 0.924 1.027 1.027 0.387 2.682 0.0020797
14 VH VH VH 0.822 0.924 1.027 1.027 0.387 2.682 0.0020797
15 VH VH VH 0.794 0.897 0.973 1 0.385 2.69 0.00204174
16 VH FH VH 0.822 0.924 1.027 1.027 0.387 2.682 0.0020797
17 FH M M 0.636 0.739 0.78 0.883 0.35 2.828 0.00148594
18 M M M 0.541 0.644 0.671 0.773 0.347 2.841 0.00144212
19 M L L 0.472 0.575 0.636 0.739 0.324 2.94 0.00114815
20 FH FL L 0.582 0.685 0.753 0.856 0.332 2.905 0.00124451
21 M FL L 0.541 0.644 0.671 0.773 0.347 2.841 0.00144212
22 VH FH H 0.637 0.74 0.843 0.904 0.343 2.858 0.00138676
23 VH FH H 0.787 0.89 0.958 0.993 0.385 2.69 0.00204174
24 M FH M 0.622 0.725 0.752 0.828 0.369 2.752 0.00177011
25 H VH H 0.466 0.569 0.603 0.706 0.336 2.888 0.0012942
26 VH VH H 0.794 0.897 0.973 1 0.385 2.69 0.00204174
27 VH VH H 0.794 0.897 0.973 1 0.385 2.69 0.00204174
28 M H H 0.519 0.622 0.649 0.725 0.36 2.787 0.00163305
29 H FH H 0.65 0.753 0.787 0.89 0.355 2.808 0.00155597
30 FL L L 0.178 0.281 0.357 0.459 0.287 3.116 0.0007656
31 VH VH VH 0.822 0.924 1.027 1.027 0.387 2.682 0.0020797
32 VH FH VH 0.822 0.924 1.027 1.027 0.387 2.682 0.0020797
33 VH FH H 0.822 0.924 1.027 1.027 0.387 2.682 0.0020797
34 VH H VH 0.822 0.924 1.027 1.027 0.387 2.682 0.0020797
35 FH M FH 0.582 0.685 0.753 0.856 0.332 2.905 0.00124451
36 FH H FH 0.582 0.685 0.753 0.856 0.332 2.905 0.00124451
37 VH FH FH 0.822 0.924 1.027 1.027 0.387 2.682 0.0020797
38 M M M 0.411 0.513 0.513 0.616 0.346 2.845 0.00142889
39 FH FH FH 0.568 0.67 0.746 0.849 0.328 2.922 0.00119674
40 VH H H 0.822 0.924 1.027 1.027 0.387 2.682 0.0020797
41 H H FH 0.764 0.849 0.876 0.951 0.381 2.705 0.00197242
42 FH FH M 0.582 0.685 0.753 0.856 0.332 2.905 0.00124451
43 FH H M 0.582 0.685 0.753 0.856 0.332 2.905 0.00124451
44 FH H FH 0.568 0.67 0.746 0.849 0.328 2.922 0.00119674
45 FH H FH 0.568 0.67 0.746 0.849 0.328 2.922 0.00119674
46 VH H FH 0.822 0.924 1.027 1.027 0.387 2.682 0.0020797
47 FH H FL 0.582 0.685 0.753 0.856 0.332 2.905 0.00124451
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providing preventive measures.(e BNmethod employs the
increased values of updated probabilities to identify the most
critical event, which may provide incorrect information to
risk analysts, leading to incorrect control and preventive
measures to control the top event. In this case, the results of

dynamic risk analysis studies may be ineffective. To this end,
in this study, two criteria, BIM and ROV, were used to
identify the important events that have the largest share in
the occurrence of the top event. (ese criteria have been
widely used in ranking the basic events leading to the

Figure 10: BN structure based on the FT.

Table 5: Determining the probability of basic and final events using the FT and BN approaches.

BE Prior probability
(FT)

Prior probability
(BN)

Posterior probability
(BN) BE Prior probability

(FT)
Prior probability

(BN)
Posterior probability

(BN)
1 0.00119647 0.00119647 0.04377341 25 0.0012942 0.0012942 0.00138808
2 0.00191867 0.00191867 0.07017959 26 0.00204174 0.00204174 0.00213555
3 0.00137404 0.00137404 0.05025855 27 0.00204174 0.00204174 0.07468115
4 0.00138676 0.00138676 0.00138696 28 0.00163305 0.00163305 0.05973241
5 0.0020797 0.0020797 0.00237966 29 0.00155597 0.00155597 0.05691304
6 0.0020797 0.0020797 0.00237966 30 0.0007656 0.0007656 0.00082220
7 0.0020797 0.0020797 0.00237966 31 0.0020797 0.0020797 0.00213622
8 0.00204174 0.00204174 0.00219069 32 0.0020797 0.0020797 0.07606962
9 0.00202302 0.00202302 0.00246952 33 0.0020797 0.0020797 0.07606962
10 0.0020797 0.0020797 0.00250701 34 0.0020797 0.0020797 0.07606962
11 0.0020797 0.0020797 0.0020797 35 0.00124451 0.00124451 0.00133518
12 0.0020797 0.0020797 0.0020797 36 0.00124451 0.00124451 0.00133518
13 0.0020797 0.0020797 0.00250701 37 0.0020797 0.0020797 0.00223121
14 0.0020797 0.0020797 0.00250701 38 0.00142889 0.00142889 0.00153299
15 0.00204174 0.00204174 0.00204261 39 0.00119674 0.00119674 0.00128392
16 0.0020797 0.0020797 0.00208057 40 0.0020797 0.0020797 0.00321367
17 0.00148594 0.00148594 0.00179125 41 0.00197242 0.00197242 0.07214562
18 0.00144212 0.00144212 0.05274872 42 0.00124451 0.00124451 0.04552070
19 0.00114815 0.00114815 0.00138406 43 0.00124451 0.00124451 0.04552070
20 0.00124451 0.00124451 0.00150022 44 0.00119674 0.00119674 0.04377341
21 0.00144212 0.00144212 0.00173843 45 0.00119674 0.00119674 0.04377341
22 0.00138676 0.00138676 0.00287280 46 0.0020797 0.0020797 0.07609662
23 0.00204174 0.00204174 0.00287280 47 0.00124451 0.00124451 0.04552033
24 0.00177011 0.00177011 0.00249061 TE 0.0523035 0.0273394 1
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occurrence of the top event and sensitivity analysis [68].
Figures 11 and 12 reveal that the highest values of ROV and
BIM were observed in X46, X32, X33, X34, X35, and X36

events. (is result is correct; since the probability of system
failure when these events are not in the state of failure is the
lowest among the events, the degree of reliability reduction is
the most among the events when these variables are working
in a good manner. What is worth mentioning is that the
application of the importance measure for both basic events
and minimum cut set is twofold: 1- better allocation of
resources for control; 2- determining the analysis scope of
each of the basic events or minimum cut set. What is often
inferred when calculating the degree of importance is that
only a small number of events play a more prominent role in
the occurrence of the top event; in many cases, only less than
20% of the events are involved in the occurrence of more
than 90% of the top events. In addition to determining the
degree of importance of events, another useful result of this
calculation is to clarify the allocation of resources for testing,
maintenance, inspection, quality control, etc. (erefore, by
optimizing the distribution of resources, costs are mini-
mized and the system is led to a better situation. In addition
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Figure 11: ROV values for basic events.
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Figure 13: Reliability of overhead cranes over a 5-year period.

Table 6: Effectiveness results of removing the most important MCSs.

BN approach FT approach
Reliability of TE Probability of occurrence of TE Reliability of TE Probability of occurrence of TE Control measures
0.9730 0.0273 0.9490 0.05230 None
0.9750 0.025312 0.9591 0.05032 Removing BE46
0.9750 0.025310 0.9528 0.04834 Removing BE32
0.9749 0.025349 0.9527 0.04842 Removing BE27
0.9749 0.021282 0.9584 0.04245 Removing BE27, BE32, BE46
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to resource allocation, measuring of importance can be used
to determine repair times or decommissioning of parts. (e
part that plays a major role in the occurrence of the top event
must be repaired in less time or taken out of service.

After ranking the root causes, the effect of the corrective
actions and the reduction of the probability of the main basic
events (assuming the probability of critical basic events is
zero) was investigated individually and simultaneously.
Table 6 reveals that by removing the most critical event
(BE46) the system reliability in the FTapproach increased by
1% (from 0.949 to 0.9591) and in the BN approach the
reliability of the system increased by approximately 0.002%
(from 0.973 to 0.975).(e effect of reducing the three critical
events (BE46, BE32, and BE27) was also investigated, in-
dicating that the reliability was 1.009% in the FT approach
and it was approximately 1% in the BN approach.(e rate of
reliability change in the BN approach was more than that of
the FTapproach due to the intrinsic characteristics of BN as
a result of considering CCF.

In this study, the Markov chain was used to estimate the
reliability of overhead cranes over a 5-year period. Figure 6
shows the reliability predicted by the Markov chain. As can
be seen, the reliability of the system decreases over time and
its value decreases by 67.9% after 60 months. (is reduction
in reliability is due to the presence of effective basic events,
such as X46, X32, X33, X34, X35, and X36.(ese basic events
have high variability over time and can reduce the system
failure rate over time. According to the results of fault tree
analysis to improve the safety performance of processes
related to overhead cranes, control measures were proposed
with two corrective and preventive approaches in both
general and specific areas of cranes. General measures in-
cluded developing safety checklists for inspecting cranes
after repair and maintenance. (e most important specific
measures included designing and installing a load cell on the
crane to prevent overloading and ladle fall, scheduling pe-
riodic preventive maintenance using the failed load cell,
changing the design of the rope fastener to increase the
coefficient and reduce the repair time, and replacing the tow
ropes.

5. Conclusion

In this study, a method was proposed for analyzing and
confirming the reliability of overhead cranes based on
Markov chain and fuzzy FT. First, a team consisting of
industry and university experts was created to evaluate the
validity of the FT, and fuzzy theory was used to determine
the failure rate of the probability of root events identified in
the qualitative analysis of the FT. (e fuzzy FTwas drawn in
most of the BN, and the reliability of overhead cranes was
calculated using the Markov chain for a 5-year period. (e
results indicated that the method used in this study was
successful in predicting the reliability and identifying the
effective events in the occurrence of the top event, namely,
the ladle fall. In order to reduce the possibility of ladle falls,
improve the performance of overhead cranes, and prevent
possible accidents, control strategies are suggested, such as
proper work instructions, use of proper inspection

checklists, and review of work standards to emphasize the
inspection of all safety devices and equipment in each shift in
cooperation with production and repair units. An important
factors in preventing such accidents is how to monitor and
support the crane department. (e most important limi-
tation of this study was the lack of access to industrial maps
of overhead cranes and the lack of documentation related to
accidents and quasi-accidents. Although the method pre-
sented in this study was used to analyze and evaluate the
reliability of overhead cranes for ladle fall scenario, it can be
also used to assess the reliability based on other possible
scenarios and finally consider multiple scenarios. Dynamic
BNmethod can be used to analyze the reliability of the whole
system.
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