
Research Article
Real-Time Multipath Mitigation in Multi-GNSS Short Baseline
Positioning via CNN-LSTM Method

Yuan Tao,1 Chao Liu ,1,2,3 Tianyang Chen,4 Xingwang Zhao,1 Chunyang Liu ,1,2

Haojie Hu,1 Tengfei Zhou,5 and Haiqiang Xin6

1School of Spatial Information and Geomatics Engineering, Anhui University of Science and Technology, Huainan 232001, China
2Jiangsu Key Laboratory of Resources and Environmental Information Engineering, China University of Mining and Technology,
Xuzhou 221116, China
3School of Mining and Geomatics, Hebei University of Engineering, Handan 056038, China
4Department of Geography and Earth Science, /e University of North Carolina at Charlotte, Charlotte 28223, USA
5College of Surveying and Geo-informatics, Tongji University, Shanghai 200092, China
6Xinjiang Academy of Surveying and Mapping, Urumqi 830002, China

Correspondence should be addressed to Chao Liu; chaoliu0202@gmail.com

Received 28 July 2020; Revised 17 December 2020; Accepted 23 December 2020; Published 5 January 2021

Academic Editor: Adrian Neagu

Copyright © 2021 Yuan Tao et al. )is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Multipath is the main systematic error of the Global Navigation Satellite System (GNSS) short baseline positioning. Multipath
cannot be eliminated by the double-differenced technique and is difficult to parameterize, which severely restrict the high-
precision GNSS positioning application. Based on the spatiotemporal repeatability of multipath, the sidereal filtering in co-
ordinate-domain (SF-CD), the sidereal filtering in observation-domain (SF-OD), and the multipath hemispherical map (MHM)
can be used to mitigate the multipath in real-time. However, the multipath model with large matrix for multi-GNSS multipath
mitigation is difficult to achieve lightweight calculation and the SF-CD cannot be applied tomitigate themulti-GNSSmultipath. In
this paper, we propose a new multipath mitigation strategy in the coordinate-domain that shakes off the formation mechanism of
multipath, a CNN (convolutional neural network)-LSTM (long short-term memory) method is used to mine the deep multipath
features in GNSS coordinate series. Furthermore, multipath will be mitigated in real-time by constantly predicting the value of the
next epoch. )e experimental results show that the CNN-LSTM effectively mitigates the multi-GNSS multipath. )e method can
reduce the average RMS (root-mean square) of multi-GNSS positioning errors in the east, north, and vertical directions by 62.3%,
70.8%, and 66.0%.Moreover, comparing with the SF-CD, SF-OD, andMHM, CNN-LSTM canmore effectively mitigate the effects
of the GPS multipath, and the ability of multipath mitigation is almost not affected over time.

1. Introduction

)e Global Navigation Satellite System (GNSS), as a real-
time and high-precision positioning technology, is widely
used in many fields such as navigation, geodesy, defor-
mation monitoring, and photogrammetry [1–4]. How-
ever, many errors limit the GNSS positioning accuracy
[5], such as receiver clock error, satellite clock error,
tropospheric delay error, ionospheric delay error, and
multipath. )e double-differenced technique can elimi-
nate satellite and receiver clock errors and significantly

weaken tropospheric and ionospheric delay errors in
GNSS short baseline positioning; however, it cannot
eliminate or weaken multipath. )erefore, the multipath
is the primary errors source in GNSS short baseline
positioning [6]. Research on multipath mitigation has
become an important research issue, and many scholars
have conducted lots of researches around this issue
[7–10]. In addition to site selection, current researches
can be divided into two categories: hardware-based and
software-based approaches. )e hardware-based ap-
proaches mainly mitigate multipath by improving
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antenna and receiver performance [11–14]; however, that
cannot eliminate multipath, theoretically [15].

)ere are many software-based approaches for multipath
mitigation. Improved stochastic models based on the signal-
to-noise ratio (SNR) and carrier-to-noise-power-density ratio
are used to suppress the impact of multipath on baseline
vector accuracy [16, 17]. Antenna array technique is an ef-
fective method to mitigate multipath. Ray et al. [10, 18]
proposed to estimate the multipath based on the multiple
close space antenna system, which significantly suppressed
the influence of code and carrier multipath. However, the
polarization of multipath signals is severe in complex and
changeable environments [19]. By considering the multipath
frequency-domain characteristics, signal processing methods
are applied for mitigating the multipath, such as a Vondrak
filter with cross-validation [9], empirical mode decomposi-
tion (EMD) [20], independent component analysis with
reference signal [8], and wavelet analysis [21]. )ese signal
processing methods provide ways to mine the characteristics
of multipath and appear to mitigate multipath effectively.

Multipath is mainly affected by the satellite, receiver, and
reflector positions. )e operation of the satellites directly
affects the multipath, when the receiver and reflector po-
sitions are relatively stable. )e corresponding multipath
also has a similar periodic variation considering that the
satellite operating cycles are usually stable. According to this
characteristic, the sidereal filtering (SF) was employed to
mitigate the multipath [22–25].

It is necessary to model different satellites separately since
there are slight differences in the operating cycle of each
satellite. )e advanced sidereal filtering (ASF) was proposed to
solve this problem. Based on the “zero mean” assumption [26],
Zhong et al.[27] used the ASF to convert the double-difference
residual series of the GPS carrier phase observations into a
single-difference residual series, which was to reduce the
multipath of different GPS satellite and to improve the co-
ordinates accuracy. Similarly, Zhang et al.[28] and Ye et al.[29]
successfully mitigate the multipath of three different types of
satellites with the ASF method: GEO (geostationary orbits),
IGSO (inclined geosynchronous orbits), and MEO (medium
Earth orbits) in BeiDou Navigation Satellite System (BDS).
Although the SF and ASF methods can effectively mitigate the
impact of multipath on positioning accuracy, both methods
have to calculate the operating cycles of the satellites in ad-
vance. However, the operating cycle of the satellite is not fixed,
which changes slowly with time. )erefore, the degree of
multipath mitigation in SF and ASF methods decreases con-
tinuously over time. Besides, when the multi-GNSS single-
epoch solution is performed, the computational efficiency and
reliability of the ASF method will be reduced due to the sig-
nificant increase in the number of visible satellites.

Regarding the identified issues, Dong et al.[7] con-
structed a single-difference observation equation based on a
single receiver with multiple antennas and proposed to
establish a multipath hemispherical map (MHM) with
satellite altitude and azimuth as independent variables. )e
MHM makes full utilization of the nonlinear relationships
among the geometric relationship of the satellites, reflectors,
stations, and multipath. In a stable environment, the MHM

method appears to effectively mitigate multipath and di-
rectly displays the multipath of satellites at different posi-
tions. Wang et al.[30] proposed an improvedMHMmethod,
named trend surface analysis-based MHM (T-MHM), to
improve the calibration accuracy of multipath in the lattice.
Besides, MHM has been continuously being developed by
scholars and being used for precise point positioning [31]
and dynamic short-distance relative positioning [32]. )e
MHM and its improved methods overcome the dependence
of the SF and its improvedmethods on the satellite operating
cycle, and the operating mode is simpler and more effective
than the SF method. However, when these methods are used
to mitigate the multi-GNSS multipath, the multipath model
will have a very large matrix, which makes it impossible to
achieve lightweight calculation. Moreover, an increase in
number of satellite and signal frequency types [33] by using
multi-GNSS observation could lead the multipath to be
more complicated [34].

Deep learning, as an effective tool for solving nonlinear
problems [35, 36], has been successfully applied many fields
in recent years, such as satellite clock error prediction [37],
intelligent satellite selection [38], indoor positioning [39],
GNSS reflectometry [40], and vehicle navigation [41]. )e
salient feature of deep learning is the data-driven with
multiple layers of a perceptron. )ere is no need to establish
an accurate physical model; only training and learning of
historical data are required to obtain the optimal parameter
characteristics of the data system, thereby completing data
mining [42]. As mentioned above, the multipath has
complex nonlinear relationships with satellites, receiver, and
reflectors positions, especially in multi-GNSS observations.
It is challenging to build a mathematical model of GNSS
multipath due to this complex nonlinearity [43]. )erefore,
we propose the use of deep learning methods for feature
mining of multipath in GNSS coordinate series, real-time
prediction, and mitigation of multipath. )e specific deep
learning method used in this paper is the combination of the
convolutional neural network and long short-term memory
(CNN-LSTM), which combined the advantages of local
feature extraction of CNN and the prediction ability ad-
vantage of LSTM [44, 45].

)e rest of this paper is organized as follows. Section 2
briefly introduces the principle of multipath and related
processing methods. Section 3 designs different experiments
to validate the performance of the proposed method. Finally,
conclusions are drawn in Section 4.

2. Basic Principle and Algorithm

In this section, we firstly describe the mechanism of mul-
tipath generation, and then we introduce the basic principles
of CNN and LSTM. Finally, we give the strategies and al-
gorithms for real-time multipath mitigation using the CNN-
LSTM method.

2.1. Basic Principle ofMultipath. In GNSS measurement, the
receivers not only receive direct signals transmitted by
satellites but also inevitably receive signals reflected or
diffracted by surrounding objects. )e direct signals and
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reflected signals are superimposed to produce interference
signals, which are treated as standard signals. Since the
length of the propagation path of the reflected or the dif-
fracted signals are usually longer than the direct signal, the
interference signals will produce some deviations in the
ranging results, which will severely damage the GNSS po-
sitioning accuracy [46].

For GNSS carrier phase observation, there is a phase
delay between the reflected signal and the direct signal. At
the same time, the signal energy will be attenuated after
reflection. )e degree of attenuation is related to the re-
flection factor of the reflector. When selecting a site, it is
generally chosen to be far away from tall buildings.
)erefore, one reflected signal SR can be expressed as

SR � αA cos(θ + φ), (1)

where α is the reflection factor, α ∈ [0, 1] and θ, A, and φ are
the phase of direct signal, the amplitude, and the phase offset
of the reflected signal. )e multipath Smth caused by a single
reflected signal can be expressed as

Smth �
λ
2π

· φ �
λ
2π

· arctan
α sin θ

1 + α cos θ
 , (2)

where λ is the wavelength of the satellite signal.
For a single GNSS satellite signal, it may be reflected by

obstacles in different spatial locations. Meanwhile, the re-
flection factors of different obstacles are different, and the
multipath errors caused are also different. When multi-
GNSS combined observation, it can be seen from equation
(2) that even the satellite signals of the same reflection path
will have a difference in the value of multipath errors due to
the signal wavelength. Especially GLONASS, the signals
broadcast by each of its satellites have different frequencies.

Since the GPS satellite constellation in the space repeats
nearly every sidereal day (23 h 56m 04 s), the multipath
errors will repeat approximately every sidereal day if the
external environment and receiver location remain un-
changed. )erefore, the periodic characteristic can be ap-
plied to model and mitigate multipath errors. However, for
multi-GNSS combination or BDS with heterogeneous
constellations, different navigation systems have different
satellite orbital heights and satellite repetition periods.
)erefore, multipath no longer has periodic characteristics
and exhibit strong nonlinearity.

2.2. Convolutional Neural Network. CNN constructs mul-
tiple filters and extracts data structure features through
convolution operations and pooling operations. )e main
types of layers to build a typical CNN architecture: input
layer, convolutional layer, pooling layer, fully connected
layer, and output layer. Among them, the convolutional
layer comprises multiple feature maps, each of which is
composed of multiple neurons, and each neuron is con-
nected to a local area of the previous feature map through a
convolution kernel. )e pooling layer includes multiple
feature maps, each of which uniquely corresponds to a
feature map of the layer above it without changing the

number of feature maps. )ere are usually several con-
volutional layers and pooling layers. )e convolutional
layers and pooling layers are alternately set. )at is, one
convolutional layer is connected to one pooling layer, and
the pooling layer is connected to another convolutional
layer.

In the convolutional layer, the feature map of the pre-
vious layer is convolved with the convolution kernel of the
current layer. )e result of the convolution operation is
calculated by the activation function to form the feature map
of this layer. )e feature map of the output is

x
l
j � f 

i∈Mj

x
l−1
i · k

l
ij + b

l
j

⎛⎜⎝ ⎞⎟⎠, (3)

where xl
j is the feature map corresponding to the j-th

convolution kernel of the l-th convolution layer; f(·) is the
activation function, usually using functions such as sigmoid
and tanh;Mj is the acceptance domain of the current neuron;
kl

ij is the i-th weighting coefficient of the j-th convolution
kernel of the l-th layer; and bl

j is the bias term.
)e pooling layer uses local correlation to subsample the

data to reduce the data dimension while retaining useful
information. At the same time, the pooling operation is used
to maintain the features, so that the features have a trans-
lation, rotation, and distortion invariance. )e pooling
operation can be expressed as

x
l
j � f βl

jdown x
l−1
j  + b

l
j , (4)

where β is the weighting coefficient of the down-sampling
layer and down(·) is the down-sampling function.

2.3. Long Short-TermMemory. In 1986, Rumelhart et al [47]
proposed a recurrent neural network (RNN), which uses a
directed loop to establish relationships between input data at
different times. Although RNN can effectively handle
nonlinear time series, problems such as gradient vanishing
and explosion still exist. )en, long short-term memory
(LSTM) was proposed to effectively alleviate the above
problems by introducing gate operations [48]. A typical
LSTM architecture consists of a cell and three “regulators”,
which form the information flow inside the LSTM unit:
input gate, output gate, and forget gate. Cells are connected
end to end and selectively memorize information to over-
come the long-term dependence problem of nonlinear
physical modeling, through the cooperative work of input
gate, output gate, and forget gate.

)e typical LSTM workflow consists of four parts: the
decision to discard information, determining to update
information, updating cell status, and outputting
information.

2.3.1. Decision to Discard the Information. )e forget gate
determines how much information is discarded from the
previous memory information stream. )e output value of
the hidden layer at time t-1 and the input value xt at time t
are linearly combined, compressed using the sigmoid
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function to output a value between 0 and 1 (0 means
completely discarded, 1 means completely reserved). )e
formula for discarding information ratio ft is

ft � σ Wf ht−1, xt  + bf , (5)

where σ is the sigmoid function; Wf is the weight of the
forget gate; and bf is the bias of the forget gate.

2.3.2. Determining to Update Information. Determine what
new information is stored in the cell state. )ere are two
parts: the first part, the input gate determines the value that
needs to be updated; in the second part, a tanh function
creates a new candidate value vector and adds it to the cell
state. )e formulas for these two parts are

it � σ Wi ht−1, xt  + bi( ,

Lt � tanh Wc ht−1, xt  + bL( ,
(6)

where it is the input gate; Wi is the weight of the input gate;
bi is the bias of update gate; tanh is the hyperbolic tangent
function; Lt is a candidate value; Wc is the weight of update
candidate; and bL is the bias of the update candidate.

2.3.3. Updating Cell Status. )e old state of cell multiplies by
discarding information ratio to determine what information
needs to be discarded, and it is changed according to how
much each status is updated as follows:

Dt � ft ⊕Dt−1 + it ⊕ Lt, (7)

where Dt is the new status value and ⊕ denotes elementwise
multiplication.

2.3.4. Outputting Information. )e output is based on the
state of the cell, which is a filtered value. Run a sigmoid layer
to determine which parts of the cell state should be output.
)en, we place the cell state through tanh function and
multiply it by the output of the sigmoid layer to output the
determined parts. )e formulas are:

Ot � σ WO ht−1, xt  + bO( ,

ht � Ot⊕ tanh Dt( ,
(8)

where Ot is the updated output parts; WO is the weight of the
updated output value; bO is the bias of the updated output
value; and ht is the finalized output.

2.4. CNN-LSTM for Multipath Real-Time Mitigation.
Based on the principle of the algorithms, CNN has a
strong ability to mine local features of data, and LSTM can
better obtain time-series features and has an excellent
predictive ability. )erefore, we propose to use the CNN-
LSTM integrated method to predict GNSS multipath
(Figure 1). )is work can be divided into two parts: one is
to build a CNN-LSTM network model based on a certain
amount of training data; the other is based on the
established network model to perform real-time predic-
tion and multipath mitigation. )e prediction way of the
method is shown as follows [49]:

first − epoch: c1, c2, . . . , c100 
√√√√√√√√√√√√

input

⇒ p101√√
output

second − epoch: c2, c3, . . . , c101 
√√√√√√√√√√√√

input

⇒ p102√√
output

,
(9)

where⟹ denotes “predict,” c is the coordinate value of the
sliding window, and p denotes the final prediction. Multi-
path is corrected in real time by constantly predicting the
value of the next epoch.

)e CNN-LSTM network model is trained on the training
data, which is described as follows: firstly, we apply the con-
volution layers to perform convolution calculations on the data
in each time series to extract local features and then apply the
pooling layers to transform the output dimensions. ReLU
function is applied in this part as the activation function for
improving the generalization ability of the convolution calcu-
lations. Secondly, the local features are input into the LSTM
network for deep mining and prediction of the data. To prevent
overfitting, the dropout method and the fully connected layer
(dense) are used to output the target vectors.

Based on the established CNN-LSTM network model,
real-time prediction and multipath mitigation are described
as follows: (1) set the currently obtained data as a simulation
data stream by continuously adding new data to the training
set; (2) set up a window to update the CNN-LSTM network
model based on the previous network model and the new
data and predict the multipath at the next moment; (3)

according to the predicted multipath, the GNSS coordinate
series at the corresponding time is corrected to mitigate the
multipath in real-time.

Our hardware environment comprises a graphics pro-
cessing unit (GPU) NVIDIA GTX 1060, a central processing
unit (CPU) Intel Core i7-7700K (processor frequency is
4.2GHz, quad-core and eight-thread), and 16GB of memory.
Our algorithm is developed on Keras API (Application Pro-
gramming Interface) framework based on Python 3.6 and
Tensorflow framework.

When using the CNN-LSTMmethod for network training,
the choice of hyperparameters will affect the final prediction
result. Moreover, the data complexity determines the input size
and output size of a typical time series prediction. To make the
local characteristics of the prediction seriesmore significant, we
set the input to 100 and output to 1. Moreover, there is no
deterministic principle about the optimal network structure,
and the final hyperparameter selection is determined through
multiple experiments [50].

Mean absolute percentage error (MAPE) was introduced
as an evaluation indicator for hyperparameter selection. It
can be expressed as
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MAPE � 
n

t�1

truet − predictiont

truet




·
100
n

, (10)

where truet is the original series, predictiont is the predicted
series, and n is the length of the series. )e value range of
MAPE is [0, +∞), the smaller the value, the better the value
selection of the hyperparameters.

We use the experimental data set in the next section to
calculate and analyze MAPE. )e results are shown in Ta-
ble 1. )e MAPE with a smaller value can be obtained with
different schemes, and the difference between the MAPE
values corresponding to the different schemes is not sig-
nificant. It shows that using different hyperparameter
schemes in Table 1 can obtain high-precision fitting results.
)erefore, we choose the relatively optimal scheme 1 for
subsequent data processing and analysis. Its parameters
setting is as follows: the number of convolution filters is 3,
the convolution kernel size is 12, the dropout is 0.1, and the
number of hidden layers in the LSTM is 12.

3. Experiments and Results

3.1. Data Collection. )e experimental data were collected
on the roof of the School of Spatial Information and Geo-
matics Engineering, Anhui University of Science and
Technology. Because of the short baseline distance, the small
height difference, and the same receivers, we assume that the
double-differenced technique can eliminate the influence of
tropospheric delay and ionospheric delay in the coordinate
results. )erefore, it is assumed that the coordinate series is
only affected by noise and multipath.

)e base and the rover stations simultaneously receive
GPS, BDS, and GLONASS signals. )e sampling interval is
1 s, and the satellite cutoff angle is 15°. To validate the
feasibility of the CNN-LSTM method, we continuously
observed between day of year (DOY) 300 and 308 in 2019 (9

days in total). We perform a single-frequency and single-
epoch calculation with the baseline length constraint to
ensure the ambiguity-fixed solution. Finally, we obtain a
three-dimensional coordinate series for subsequent multi-
path mitigation. )e general environment of the continuous
operating observation station is shown in Figure 2. More-
over, the long-term static data are calculated as the true value
to evaluate the solution result.

3.2. CNN-LSTM for Multi-GNSS Multipath Mitigation.
To test the ability of the CNN-LSTM method to mitigate
the multipath in multi-GNSS (GPS/BDS/GLONASS)
series, we use the parameter model trained by DOY 300 to
perform real-time multipath mitigation on DOY 301-308.
Figure 3 shows the original series of DOY 301, the pre-
dicted series, and their residual series. )e original series
subtracts the true value to display their amplitude clearly.
In their residuals (Figure 3(b)), the series can fluctuate at
0, indicating that the CNN-LSTM method can effectively
mitigate the multipath. However, there is still lower
frequency trend item interference in the residual.
)erefore, it is necessary to analyze the multipath miti-
gation capability of the proposed method from the
perspective of frequency-domain analysis.

)e power spectral density (PSD) can reflect the rela-
tionship between signal power and frequency. )e main
interference frequency domain of multipath is generally
considered to be lower than 0.02Hz [51]. As shown in
Figure 4, take the E direction series, for example, the DOY
301 original series and the real-time-corrected series are used
for spectrum analysis. )e low-frequency signal dominates
the signal component of the original series. When it is
mapped into the time domain, the multipath seriously affects
the positioning accuracy. Obviously, in the mitigated
multipath series, the low-frequency signal is significantly
mitigated.

σtanhσσ ×

tanh

×
×

σtanhσσ ×

tanh

×
×

σtanhσσ ×

tanh

×
×

Input: (100∗1)

Conv1: (100∗3)

Conv2: (33∗3)

Pool2: (11∗3)

Pool1: (33∗3)

LSTM: (1∗1)

Output:
prediction 

ht–1 ht

· · ·

· · ·

+ + +

ht+i

Figure 1: )e network flow of the CNN-LSTM integrated method to mitigate GNSS multipath.
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We count the results of the 8 consecutive days in the E,
N, and U directions, respectively, and these statistical results
are shown in Figure 5. )e CNN-LSTM method effectively
mitigates the multipath and obtains excellent positioning
accuracy. Moreover, the proposed method is not subject to
the degradation of positioning accuracy caused by the time
passage. )e 8-day improvements remained stable with high
improvement results. )e average accuracy of the original
series is 1.32, 1.48, and 4.20mm in the E, N, and U di-
rections, respectively; the average accuracy after mitigating
the multipath by the CNN-LSTM method is 0.50, 0.43, and
1.43mm; the average improvement is 62.3%, 70.8%, and
66.0%.

3.3. Comparison of CNN-LSTM with Other Methods. In
order to verify the superiority of the CNN-LSTM method,
we conduct comparative experiments in the GPS system by
different methods, such as the sidereal filtering in coordi-
nate-domain (SF-CD), the sidereal filtering in observation-
domain (SF-OD), and the multipath hemispherical map
(MHM). It is worth mentioning that all multipath models
are denoised by the EMD method. Moreover, the time delay
of SF-CD is fixed at 236 seconds; the time delay of SF-OD is
obtained by calculating ephemeris; the MHM method is
based on the double-difference residual, because it is difficult
for conventional receivers to remove the receiver clock error
by single difference. Since the CNN-LSTM method uses the
first day data for training and is used to predict subsequent

data, for other methods, we also use the first day observation
data to model the multipath.

Taking the MHM method as an example, we give the
multipath model established by this method, as shown in
Figure 6. Since the double-difference residual is used to map
to the spatial position of satellites (elevation and azimuth
angles), when the satellite with the highest altitude angle is
used as the pivot satellite at some time, the satellite will not
have the double-difference residual.)e position of the pivot
satellites is marked with a black frame in Figure 6. Obvi-
ously, the double-difference residual in the space domain
cannot reflect the multipath spatial correlation, because the
transformation of the pivot satellite causes the change of the
double-difference residual, but that does not affect theMHM
based on spatial repeatability to mitigate the multipath.

)e following 8-day original series is corrected by the
multipath model. Figure 7 shows the original series in the E
direction and the corrected series of the four methods to
analyze the degree of themultipathmitigation in the residual
series. Among them, the SF-OD andMHMmethods have an
obvious mutation in the series because the pivot satellite
transformation does not occur at a fixed time in each DOY,
which leads to obvious “end effects” in the use of multipath
models based on double-difference residuals by using the SF-
OD method. )at also results in obvious “distortion” in the
double-difference residual value of the MHM method in
selecting the nearest satellite position.)is phenomenon can
be avoided by using SF-CD and CNN-LSTM methods to
mitigate the multipath in the coordinate-domain; however,

Table 1: MAPE based on selected different hyperparameters.

Scheme Convolutional filters Convolution kernel size Dropout Hidden layers in the LSTM MAPE
1 3 12 0.1 12 0.0126
2 6 12 0.1 12 0.0132
3 12 12 0.1 12 0.0150
4 3 36 0.1 12 0.0158
5 3 64 0.1 12 0.0235
6 3 12 0.3 12 0.0133
7 3 12 0.6 12 0.0166
8 3 12 0.1 36 0.0154
9 3 12 0.1 64 0.0147

Base station

12.9m

Rover station

Metal plate

Figure 2: Surrounding environment of GNSS observation stations.
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the SF-CD method can only be used in navigation systems
with the same orbit. )e SF-CD and CNN-LSTM methods
can significantly mitigate the multipath, but the mitigated
results need to be analysed in the frequency-domain.

Figure 8 shows the power spectral density of the original
series in the E direction and the mitigated series of the four
methods. )e CNN-LSTM method significantly mitigates
the impact of multipath below 0.02Hz, indicating that the
CNN-LSTM has learned the deep characteristics of multi-
path in the network training stage. Only at the 2E-5Hz, the
ability of CNN-LSTM to mitigate multipath is slightly worse
than that of SF-CD, which is the reason why there are a small
amount of low-frequency multipath in the mitigated series

in Figure 7.)is does not affect the overall attenuation of the
multipath because the magnitude of this effect can be ig-
nored. Moreover, as shown in Figure 8, the mitigated results
of the two methods based on the observation-domain are
equivalent in the frequency-domain. )e ability of MHM to
handle low-frequency multipath is slightly better than SF-
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OD and slightly worse than SF-OD at high-frequency. )e
result obtained in the frequency-domain is consistent with
the conclusion of the literature [7].

We mitigate the coordinate series for the following 8
days, and obtain the statistical results and improvement of
the positioning accuracy, as shown in Figures 9 and 10.
)ere is no significant difference in the RMS of the original

8-day series, but the RMS of the series mitigated by different
methods has different rules. )e correction results of SF-CD
and SF-OD in DOY301-304 are basically the same, but the
correction accuracy will decrease over time.)e difference is
that the accuracy attenuation of the series after SF-OD
mitigation is mainly caused by the different time of the pivot
satellite transformation. For the MHM method, the time
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lapse has little effect on the correction accuracy, and the
accuracy decay is slower than that of the sidereal filtering
methods. )is shows that the spatial repeatability based on
the multipath can effectively mitigate the multipath, even if
only using the first day data for modeling. For the CNN-
LSTM method, the corrected results are stable and will not
decrease over time, and the three directions maintain ex-
cellent multipath mitigation capabilities, because the CNN-

LSTM method can learn the deep characteristics of the
multipath and can effectively predict the multipath.

Table 2 shows the average RMS of the original series
and mitigated series from DOY 301 to 304. In the hor-
izontal component, the correction accuracy of SF-CD,
SF-OD, and MHM methods are basically the same. )e
CNN-LSTM method is better than these three methods,
and the accuracy of the E and N directions of the original
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series has been increased from 2.61mm and 3.35 mm to
0.80 mm and 1.04 mm. In the vertical component, the
methods based on the coordinate-domain are signifi-
cantly better than the methods based on the observation
domain. )e original positioning accuracy of the CNN-
LSTM method is increased from 9.42 mm to 2.46 mm.

4. Conclusions

We consider the complex nonlinear change mechanism of
multipath and the influencing factors, and we propose to use
the deep learning method to conduct deep mining of
multipath changing mechanism and establish a CNN-LSTM
network model of multipath. Based on the established
network model, a real-time mitigation strategy for multipath
is proposed, and the feasibility and superiority of the new
method are validated through different experiments.

)e results show that the new method can dig deep into
the change mechanism of multipath in coordinate series.
Based on the trained model, the CNN-LSTM method ac-
curately mitigates the impact of low-frequency multipath.
)e proposed method can effectively mitigate the multi-
GNSS multipath in coordinate series.

Compared with the SF-CD, SF-OD, andMHMmethods,
the proposed method does not depend on the multipath
repeatability that can be applied to the real-time multipath
mitigation in the coordinate series. Also, the proposed

method is more effective than the SF-CD, SF-OD, andMHM
methods for multipath mitigation to a certain extent, and its
improvement of multipath mitigation is not affected by the
extension of data collecting time.

In general, the multipath mitigation based on deep
learning proposed in this paper does not consider the for-
mation mechanism of multipath but mines the inherent
change mechanism of multipath in the coordinate domain,
which has fewer constraints and stronger scalability. )is
paper provides a new solution for the multipath mitigation
research.
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