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Transformers are the main equipment for power system operation. Undiagnosed faults in the internal components of the
transformer will increase the downtime during operation and cause significant economic losses. Efficient and accurate trans-
former fault diagnosis is an important part of power grid research, which plays a key role in the safe and stable operation of the
power system. Existing traditional transformer fault diagnosis methods have the problems of low accuracy, difficulty in effectively
processing fault characteristic information, and superparameters that adversely affect transformer fault diagnosis. In this paper,
we propose a transformer fault diagnosis method based on improved particle swarm optimization (IPSO) and multigrained
cascade forest (gcForest). Considering the correlation between the characteristic gas dissolved in oil and the type of fault, firstly,
the noncode ratios of the characteristic gas dissolved in the oil are determined as the characteristic parameter of the model. Then,
the IPSO algorithm is used to iteratively optimize the parameters of the gcForest model and obtain the optimal parameters with
the highest diagnostic accuracy. Finally, the diagnosis effect of IPSO-gcForest model under different characteristic parameters and
size samples is analyzed by identification experiments and compared with that of various methods. The results show that the
diagnostic effect of the model with noncode ratios as the characteristic parameter is better than DGA data, IEC ratios, and Rogers
ratios. And the IPSO-gcForest model can effectively improve the accuracy of transformer fault diagnosis, thus verifying the
feasibility and effectiveness of the method.

1. Introduction

Transformer fault will endanger the safe and stable operation
of the whole power system. Transformer fault diagnosis can
analyze equipment status information to ensure reliable and
efficient operation of transformer equipment. Therefore,
accurate identification of transformer fault types and timely
maintenance can provide an important guarantee for the
normal operation of the power system [1, 2].

Since the amount of dissolved gas in the oil inside the
transformer tank is closely linked to the actual operating
conditions of the transformer, it is necessary to use the
dissolved gas analysis (DGA) technology to evaluate the
condition and monitor the early discharge, overheating, and

other faults of the transformer in the oil. Dissolved gas
analysis in oil is mainly used in online monitoring of oil-
immersed transformers [3-5]. Based on the characteristic
gas of DGA for data correlation analysis, foreign researchers
have proposed the IEC ratio method, Rogers ratio method
[6], Dornenburg ratio method [7], and electrical cooperative
research method. However, the traditional DGA method
only gives the threshold discrimination boundary of fault
diagnosis, which cannot show the relationship between
characteristic gases and fault types. It cannot meet the re-
quirements of actual operation of transformer [8, 9]. With
the advancement and development of artificial intelligence
technology, the application of machine learning methods in
transformer fault diagnosis has made remarkable
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achievements. Currently, expert systems [10], deep belief
networks (DBN) [11-13], random forests (RF) [14], and
support vector machine (SVM) [15, 16] are commonly used
in transformer fault diagnosis. Although these machine
learning methods are widely used in transformer fault di-
agnosis, there are still certain drawbacks. For example,
expert systems cannot learn to autonomously work in low
efficiency, and it is hard to obtain accurate diagnosis results.
DBN has strong self-learning ability, but it requires a large
amount of sample data for training. The learning period of
DBN is long, and it is easy to be overfit. RF is easy to be
overfit when dealing with multiclassification problems of
transformer fault diagnosis. SVM has outstanding perfor-
mance when processing small sample data, but it is essen-
tially a two-classifier, which is inefficient when dealing with
multiclassification problems such as transformer fault di-
agnosis. The methods used in the above literature have
improved the accuracy of transformer fault diagnosis.
However, the transformer faults are diverse and complex,
and the use of a single intelligent fault diagnosis method has
the problems of insufficient reasoning ability and low di-
agnostic accuracy, which makes it difficult to obtain satis-
factory diagnosis results. With the continuous development
of big data technology in power system and the increase of
transformer fault cases, the level of fault diagnosis needs to
meet higher requirements.

Multigrained cascade forest (gcForest) is a deep inte-
grated learning model based on decision tree proposed by
Zhou Zhihua in 2017 [17, 18]. The model has the advantages
of high parallel learning efficiency and strong representa-
tion learning ability. It is widely used in the fields of
hyperspectral image classification [19], complex machine
processing status monitoring [20], turbine fault intelligent
diagnosis [21], and other fields with good results. The
gcForest model consists of two parts: multigrained scan-
ning procedure and cascade forest procedure. The multi-
grained scanning procedure mines the feature information
of the original sample data and then supervises the learning
layer by layer through the cascade forest. Therefore, the
generalization ability of the model is improved. Although
they perform well in much application, the rationality of
the architecture and its optimization remains an unre-
solved problem.

Another significant but rarely studied problem in
machine learning based classification and regression tasks
is hyperparameter optimization. The hyperparameter set-
tings such as the multigrained scanning window size q and
the maximum cascade number allowed by the cascade
forest [ will have a greater impact on the model diagnostic
performance. Therefore, the problem of low diagnosis
accuracy can be solved by adjusting random parameters
through optimization algorithms and iteratively searching
for the optimal parameters of the model. There are several
common optimization algorithms, such as simulated
annealing algorithm [22], genetic algorithm [23], Bayesian
algorithm [24], and particle swarm algorithm [25]. Particle
swarm optimization (PSO) algorithm is more popular in
the past few years. PSO algorithm is a group optimization
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algorithm that simulates the bird foraging process based on
the activity of bird clusters. The PSO algorithm has fewer
hyperparameters, and the parameter adjustment process is
simple and easy to implement that makes it suitable for
optimization under dynamic and multiobjective condi-
tions. But the PSO algorithm tends to fall into the local
optimal in the optimization process, which may cause a
large error result. Therefore, the use of improved particle
swarm optimization (IPSO) algorithm in transformer fault
diagnosis may help it a lot.

The DGA-based transformer fault diagnosis method
can analyze the equipment status information and detect
the potential risks of the transformer in time, which is the
key to ensuring the reliable and efficient operation of the
equipment. Therefore, we proposed a transformer fault
diagnosis method to improve the accuracy of transformer
diagnosis, in which the key parameters of gcForest model
were optimized by IPSO algorithm. Firstly, the noncode
ratios of the characteristic gas dissolved in oil are deter-
mined as the characteristic parameter of the model. Then,
the IPSO algorithm is used to iteratively optimize pa-
rameters g and [ of the gcForest model. Under the premise
of the highest diagnostic accuracy, the optimal parameters
of the model are obtained through continuous iteration,
and the IPSO-gcForest fault diagnosis model is established.
Finally, the fault characteristic information of transformer
is extracted by multigrained scanning, and the cascade
forest has supervised the learning to diagnose the fault type
of transformer. After that, the accurate diagnosis of
transformer fault type can be got. The diagnostic perfor-
mance of the IPSO-gcForest model under different char-
acteristic parameters and size samples is analyzed through
calculation examples, and the effectiveness of the method is
verified. And the transformer fault diagnosis method
proposed in the paper is applied to the transformer con-
dition assessment system with good practical application
results. Our contributions in this paper include the
following:

(1) Different strategies are used to update the inertia
weight and acceleration factor of the traditional PSO
algorithm in order to improve the convergence speed
and search ability of the particles.

(2) Under the premise of the highest diagnostic accu-
racy, the IPSO algorithm is used to iterate and update
automatically to find the optimal value of the pa-
rameters in the gcForest model, which overcomes the
problem of low accuracy caused by the traditional
empirical selection of parameters.

(3) It is proposed that using noncode ratios as the
characteristic parameter of the model can signifi-
cantly improve the accuracy of transformer fault
diagnosis.

(4) A new intelligent data-driven transformer fault di-
agnosis method is proposed. The multigrained
scanning process of the gcForest model mines more
transformer fault feature information. And the
cascade forest process integrates multiple classifiers
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for parallel training layer by layer. It can ensure that
features are distinguished in different operating
conditions and improve the accuracy of
classification.

The rest of the paper is organized as follows: In Section 2,
the principle of IPSO-gcForest model is described in detail,
including the gcForest model, PSO algorithm, and its im-
proved algorithm. In Section 3, based on IPSO-gcForest
model, an intelligent transformer fault diagnosis model is
built. In Section 4, the robustness of the fault diagnosis
method is analyzed, and the process of parameter optimi-
zation of gcForest model by IPSO algorithm is discussed.
Conclusions are presented in Section 5.

2. Principle of the IPSO-gcForest Model

2.1. PSO Algorithm. To the extent feasible, the PSO algo-
rithm constantly adjusts each particle’s speed and position
based on its own search experience and that of other par-
ticles. Firstly, the state of the particle is initialized. The local
extreme value and the global extreme value are iteratively
searched according to the fitness function of the particle.
Then, it is constantly updated in the set number of iterations.
The coordinates of the particles change depending on the
search velocity at each iteration, which in turn depends on
the inertial weight, acceleration factor, and local and global
extreme values. The formula for calculating the position and
velocity of each particle is shown in

t+1 t+1
Xid = Xig T Vid > (1)

t+1 _ 4+l t t+1 t t+1 t
Via =W Vigt$ rl(Pi,d - xi,d) +5; rz(Gd - xi,d)’ (2)

where xt i,d represents the d-dimensional coordinate
component of the ¢ iteration of the i particle; vt i,d represents
the d-dimensional velocity component of the ¢ iteration of
the i particle; w' represents the inertia weight at the ¢ it-
eration; st 1 and st 2 represent the two acceleration factors at
the ¢ iteration; r; and r, represent random values between [0,
1]; P;4 represents the local extreme value of the d-dimen-
sional component of the i particle; G, represents the global
extreme value of the d-dimensional component.

2.2.IPSO Algorithm. It can be seen from formula (1) that the
main factors affecting PSO algorithm update are three pa-
rameter variables: inertial weight w and acceleration factors
s; and s,. This paper puts forward two improvement
strategies based on the traditional PSO algorithm. First,
according to the iterative process and the particle’s following
position, the inertia weight is varied in a nonlinear differ-
ential way to balance the overall speed of the particle search
and the convergence velocity [26], as shown in equations (3)
and (4). Secondly, the acceleration factor is dynamically
adjusted by a cosine function to promote the coordination of
the overall optimization and local optimization capabilities
of the particles and improve the algorithm’s optimization
capability [27], as shown in

3
d_w — (wini B wﬁn) _ 4(wini B wﬁn) Xt (3)
dt T max T2
w; . — W 2(w;; —w
wt = w,, + ( 1r,1111 ﬁn) t— ( 1n12 ﬁn) % t2) (4)
max Tmax
1 —cos tn/T
t
S1 = Siini +(Sl,ﬁn - 51,mi)<fmax>> (5)
1—cos tn/T
t
S3 = Syini +(52,ﬁn - SZ,ini)(%) (6)

where w;,,; and wyg, represent the initial and final values of
the inertia weight, respectively; t represents the current
number of iterations; T',,, represents the maximum number
of iterations, s, i, Sy g, and s, ;> Sy 5, Tepresent the initial

and final values of acceleration factors s; and s,, respectively.

2.3. gcForest Model. The gcForest model is composed of
multigrained scanning and cascade forest. The multigrained
scanning stage can extract the features of the original sample
set. The cascade forest structure can adaptively determine
the number of cascading layers, and it can carry on rep-
resentation learning and improve the generalization ability
of the model. The complete random forest and random
forest [17] in the gcForest model are integrated by CART
decision trees.

2.3.1. Decision Tree. The decision tree is based on examples
to realize the tasks of classification and regression. In other
words, it obtains classification rules by recursively analyzing
the training set of the original sample set, thereby generating
a decision tree to process the testing set. The decision tree is a
hierarchical structure composed of nodes containing sample
attributes and branches containing attribute test conditions.
Starting from the root node of the decision tree, it applies the
attribute test conditions to the training set, selects the ap-
propriate branch according to the testing results, and then
follows the branch to an internal node or uses the new
attribute test condition to reach the leaf node. The structure
of the decision tree is shown in Figure 1.

The common algorithms of decision tree are ID3, C4.5,
and CART. ID3 algorithm adopts a divide and conquer
strategy and uses information gain as the selection criterion
of attributes. So, all subsets only contain the same kind of
information. The important improvement of C4.5 algorithm
for ID3 is using information gain rate to select attributes
[28, 29]. The CART algorithm is the basic decision tree
algorithm of the completely random forest and random
forest, which uses Gini coefficient as the attribute’s selection
criterion.

The CART algorithm divides the training set of the
original sample set into two subsets by using category k and
threshold u, and then it minimizes the cost function H (k,
u) to generate the purest subset. During the growth of the
decision tree, we select the Gini coeflicient as the best di-
vision metric for the root node and internal nodes. Then, we
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FI1GURE 1: Structure of the decision tree.

use the Gini coefficient and the cost function to select the
optimal attribute to divide the training set. After the decision
tree is established, the testing set is used to prune the tree,
and it can improve the generalization ability of the decision
tree. The Gini coefficient and cost function are shown in

G;=1- Z pj,k{ (7)
k=0
H(k _ Nefi Y right
( ’uk) - y left T y right> (8)

where p ;. represents the percentage of training instances in
which the node j belongs to category k, yiefirign: is the
number of instances of the left and right subsample sets, and
Glefi/rignt is the measure of the impurity of the left and right
subsample sets.

2.3.2. Multigrained Scanning. The multigrained scanning
structure uses scan windows of different sizes to scan the
original input features, which can produce many feature
instances of different dimensions. Then, the feature instances
corresponding to the original input features are trained by a
completely random forest and a random forest to generate a
class probability vector. Finally, the feature vectors are
obtained by splicing to improve the representation learning
ability of the model. The multigrained scanning process is
shown in Figure 2.

As showed in Figure 2, the multigrained scanning phase is
divided into two processes: feature scanning and feature
conversion. Assume that the original input feature is of m x m
dimensions, the sliding window size is of g x g dimensions,
and the sliding step size is e. The scanning window extracts
feature information by scanning the original input features
and will generate N g-dimensional feature instances, as shown

in
2
N:[M] _ (9)
e+1

If each forest outputs c-dimensional class probability
vectors, after completely random forest and random
forest training, all class probability vectors are connected
into L-dimensional feature vectors, as shown in
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2
L=2X|:M:| X C. (10)
e+1

The scale of the feature vectors obtained by the multi-
grained scanning is much higher than that of the original
input feature vectors. Therefore, more feature information
can be extracted.

2.3.3. Cascade Forest. The cascade forest is integrated deep
learning based on decision trees. The cascade forest has
high accuracy when processing high-dimensional data
and has scalability and parallelism. The supervised
learning of cascade forest layer by layer can improve the
representation ability of feature information. Each layer of
the cascade forest contains two completely random forest
classifiers and two random forest classifiers. The combi-
nation of multiple different types of base classifiers can
tully learn the feature information of the input feature
vector, thereby improving the overall recognition per-
formance of the model. The cascade forest process is
shown in Figure 3.

The input feature vector of the cascade forest is the
tfeature vector finally generated in the multigrained
scanning process, and then supervised learning is carried
out between cascading layers. The class vectors outputs
between the cascade-forest layers are not merged before
the logistic regression. The generated class vectors are
spliced together with the input feature vectors as the input
of the next layer. After layer-by-layer training, the final
class vector is generated by logistic regression for all class
vectors in the final cascade layer, from which the maxi-
mum value is taken to obtain the final classification of the
original input features. In order to avoid overfitting in the
cascade forest training, the completely random forest and
random forest each are trained with 5-fold cross-valida-
tion to generate class vectors.

The cascade level of cascaded forest can be adaptive,
and the class vector of each cascading layer is dynamically
updated. The performance of the whole cascade forest is
evaluated according to the testing set. If the gcForest
model does not improve significantly during training
within several consecutive layers, the cascade process will
be terminated automatically. This process can improve the
accuracy of fault diagnosis and reduce the training time,
and the dynamic changes of the cascade layer can make the
gcForest model suitable for different sizes of sample data.
When the sample data is small, the fault feature infor-
mation will be closely combined to enhance the charac-
terization learning ability of the original input feature.
When the sample data is large, the number of cascade
layers will be limited to accelerate the training process of
cascaded forest.

3. Transformer Fault Diagnosis Model
Based on IPSO-gcForest

3.1. Characteristic Parameter Selections. When the opera-
tion and maintenance personnel analyze the abnormal
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conditions and failure causes of the transformer, the
analysis of the dissolved gas in the oil is a vital part.
Different faults in power transformers will produce dif-
ferent characteristic gas, but the characteristic gas content
in DGA data is quite different, which has a certain impact
on the diagnosis and testing of internal faults of oil-im-
mersed transformers. Therefore, by comparing DGA data,
IEC ratios (CH4/H,, C,H,/C,Hs C,H,/C,H,), Rogers
ratios (CH4/H2, C2H2/C2H4, C2H4/C2H6, C2H6/CH4), and
noncode ratios (CH4/H2, C2H2/C2H4, C2H4/C2H6, CH4/
(C1+Cy), CHL/(C1+Cy), Hy/(Ha+C+Cy), CoHA/(C1+Cy),
CzHG/(Cl‘FCz), (CH4+C2H4)/(C1+C2)) as the diagnostic
accuracy of the model’s characteristic parameters, the
input characteristic parameters of the model are deter-
mined, where C, is CHy, and C, is the sum of C,H,, C,H,
and C,Hs.

Since the dissolved gas content data in transformer
oil is disturbed and affected by the monitoring device,
ambient temperature, and personnel operations, the
original data needs to be normalized. The normalization
of feature quantity can reduce the impact of data on the
performance of the model and improve the training
speed and diagnostic accuracy of the model. In order to
ensure that all feature quantities are in the same value
range, it is needed to normalize the feature quantities, as
shown in

% = Y = Vmin X
4 Ymax = Vmin (1)

where ys* is the normalized data; y,;, and y,.. are the
minimum and maximum of a certain dimension feature
vector; and y is the original data.

3.2. IPSO-gcForest Diagnostic Model Technical Route.
With its own internal structure, the gcForest model can fully
mine fault feature information and accurately diagnose
transformer faults. When the gcForest model is used to
identify fault types, it is necessary to determine the key
parameters of the model according to human experience or
control variables, which may easily lead to poor diagnostic
results. Thus, under the premise of satisfying the highest
diagnostic accuracy, the IPSO algorithm obtains the optimal
parameters of the gcForest model through continuous it-
erative solving, which will improve the diagnostic accuracy.
The fault types of transformer can be divided into seven
states: normal (N), high-energy discharge (D1), low-energy
discharge (D2), partial discharge (D3), high-temperature
overheating (T1), medium-temperature overheating (T2),
and low-temperature overheating (T3). The fault diagnosis
based on IPSO-gcForest model includes three main steps:
data preprocessing, IPSO algorithm optimization parame-
ters, and fault type identification. The whole process is
shown in Figure 4, and the specific steps are shown as
follows:

Step 1: the noncode ratios of the characteristic gas
dissolved in the oil are determined as the characteristic
parameter of the model, and then the characteristic
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FIGURE 4: IPSO-gcForest model diagnostic roadmap.

parameter is normalized. According to the model
testing requirements, the original sample was randomly
divided into a training set and a testing set at a ratio of
8:2.

Step 2: initialize the population particles randomly, and
set the value range and search range of g and . Then, the
number of particles and the maximum number of it-
erations can be determined.

Step 3: build the gcForest model based on the values of
initialized g and L The training set and the testing set
are used to train and diagnose gcForest, respectively,
and then the diagnostic accuracy of the training set is
used as the fitness value of the particles.

Step 4: the local extreme values and global extreme
values of particles are determined according to the
initial fitness of particles, and the velocity and position
of particles are updated by using equations (1) and (6).
The corresponding particle fitness values are calculated
and compared with local extreme value and global
extreme value. The new local extreme value and global
extreme value are determined to achieve the highest
diagnosis and recognition accuracy.

Step 5: when the particle fitness value tends to be stable
or the number of iterations reaches a preset value, the
particle iteration optimization is stopped to obtain the
optimal parameters. Otherwise, return to step 4.

Step 6: the IPSO-gcForest fault diagnosis model is
constructed based on the optimal parameters obtained
from the IPSO algorithm, and the diagnosis results are
analyzed comprehensively with the evaluation index.

3.3. Model Evaluation Index. To validate the diagnostic
performance of the IPSO-gcForest model, the diagnostic
accuracy, precision, and recall rate were used as evaluation
indexes to analyze the diagnosis results of the model.

The diagnostic accuracy represents the ratio of the
number of correct fault samples to the total number of
samples, which can directly evaluate the generalization
ability of the model.

The diagnostic precision refers to the proportion of
correctly identifying class A fault samples and all the fault
samples identified as class A fault samples, indicating the
precise detection of class A fault samples. The definition of
diagnostic precision is shown in
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TP

- 12
TP + FP’ (12)

precision =
TP is the number of true positives, and FP is the number of
false positives.

The diagnostic recall rate refers to the percentage of
correctly identified class A fault samples and actual class A
fault samples, indicating whether all class A fault samples
have been checked. The definition of diagnostic recall rate is
shown in

TP

_—, (13)
TP + FN

recall rate =

FN is of course the number of false negatives.

4. Transformer Fault Diagnosis Model
Based on IPSO-gcForest

This paper collects fault sample data of transformer voltage
level from 35kV to 500kV, from the transformer online
monitoring data and historical fault data of China Southern
Power Grid Corporation, the transformer fault oil chro-
matographic data in published papers, the “Typical Cases of
Application of Power Grid Equipment Detection Technol-
ogy” published by the State Grid and IEC TC 10 database. All
the above data samples comprise 1601 cases of transformer
fault data. In this paper, the training set and testing set are
divided at the proportion of 8:2. Among them, 1280 cases
received supervised training to adjust the parameters of the
model to improve the fitting degree of the model. 321 cases
were used to evaluate the performance and generalization
ability of the model. Thus, the transformer fault diagnosis is
realized. The sample data distribution for each fault type is
shown in Figure 5.

4.1. IPSO-Gcforest Model Parameter Selection and Optimi-
zation Results. After normalizing the data in Figure 5, the
noncode ratios of the characteristic gas dissolved in the oil
are determined as the characteristic parameter of the model.
In the process of q and [ optimization of gcForest model
parameters by IPSO, the diagnostic accuracy of training set
is taken as the particle fitness value. After adjusting the
model parameters and comparative analysis of the diagnosis
results, the model parameters are determined as follows: the
number of decision trees in a random forest during mul-
tigrained scanning is 500, and the decision tree growth rule is
that the purity of the leaf node reaches the optimal or the
depth reaches 50. The number of decision trees in a single
random forest of cascade layer is 101, and the decision tree
growth rule is that the purity of the leaf node reaches the
optimal or the depth reaches 50. The parameters are set
during the optimization process as shown in Table 1. The
fitness change of the particles during the optimization
process is shown in Figure 6.

As can be seen from Figure 6, the parameters g and [ of
the gcForest model go through five rounds of 100 iterations
each. The accuracy of transformer fault diagnosis reaches the
best in the 68, 49, 54, 65, and 52 iterations, respectively. At

450
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F1Gure 5: The distribution of transformer fault sample data.

the same time, the IPSO algorithm optimization process is
improved from 93.15% or 93.46% through 3 to 4 steps to the
optimal fitness value of 94.70%. Finally, when g is 4 and [ is 5,
the particle fitness is the best, reaching 94.70%.

4.2. Comparison of Different Characteristic Parameters.
According to the data distribution in Figure 5, the noncode
ratios were used as input characteristic parameters to test the
IPSO-gcForest model. In order to verify the effectiveness of
the proposed method, the DGA data, IEC ratios, and Rogers
ratios are used as input characteristic parameters in contrast
with the results obtained from noncode ratios. In order to
diagnose and analyze transformer fault types, the above four
different types of characteristic parameters were, respec-
tively, input into RF model, DBN model, gcForest model,
PSO-gcForest model, and IPSO-gcForest model for diag-
nosis. The RF model adopts bootstrap resampling method.
The number of subtrees is 100, and the number of split
features is 7. The activation function of the DBN model uses
the sigmoid function, and the learning rate is 0.001. The
momentum is 0.9, and the number of hidden layers is 3. The
default parameter setting of gcForest model is that the
number of decision trees in a random forest during mul-
tigrained scanning is 500, and the window size q is 2. The
number of decision trees in a single random forest in the
cascade layer is 101, and the maximum number of allowed
cascades [ is 7. The results are shown in Table 2.

As can be seen from Table 2, the diagnostic accuracy of
the same characteristic parameter increased in the order of
RF model, DBN model, gcForest model, PSO-gcForest
model, and IPSO-gcForest model. The diagnostic accuracy
of the same method is improved according to the charac-
teristic parameters of DGA data, IEC ratios, Rogers ratios,
and noncode ratios. With noncode ratios as the charac-
teristic parameter, IPSO-gcForest has the highest diagnostic
accuracy, reaching 94.70%. Compared with RF model, DBN
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TaBLE 1: The parameters of IPSO-gcForest model.
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SLﬁﬂ 0.5
SZ,ini 2.5
SZ,ﬁn 0.5
[ T I
0.946 - P
! 1
I
0.944 - S S R
T !
0.942 - Hon i
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FIGURE 6: The change of particle fitness.

model, gcForest model, and PSO-gcForest model diagnostic
results, the accuracy of IPSO-gcForest fault diagnosis is
improved by 10.90%, 9.03%, 5.91%, and 1.87%, respectively.
Compared with characteristic parameters of DGA data, IEC
ratios, and Rogers ratios, the diagnostic accuracy of IPSO-
gcForest was improved by 10.59%, 7.16%, and 3.11%, re-
spectively. It shows that noncode ratios can provide more
characteristic information as the input characteristic pa-
rameter of the transformer fault diagnosis model.

4.3. Comparison of Different Diagnostic Models. Due to the
unbalanced distribution of the samples of each fault type in
the collected transformer fault data, the performance of the
model cannot be effectively verified only by the diagnostic
accuracy. Therefore, the precision, recall rate, and receiver
operating characteristic (ROC) curve are used to measure
the generalization ability of the model. The noncode ratios
are used as the input characteristic parameter of different

Mathematical Problems in Engineering

diagnostic models, and the diagnostic result is shown in
Table 3.

As can be seen from Table 3, the precision and recall rate
of IPSO-gcForest method are all above 84%, and the average
precision and average recall rate are 94.00% and 92.77%,
respectively. The results show that IPSO-gcForest model has
obvious advantages in the classification performance of each
fault type. For the RF model to diagnose transformer fault
types, the partial discharge fault diagnosis accuracy is the
highest, reaching 88.24%. However, the recall rate of low
energy discharge fault is the lowest, which is only 50.00%.
The reason is that the fault types of transformers are related
to each other, and different fault superpositions may occur.
The recall rate of low energy discharge fault identified by
IPSO-gcForest model is the highest, reaching 93.33%. The
results show that it can effectively identify the actual fault
types of transformer.

The ROC curve draws the trend chart by the real case rate
(vertical axis) and false positive case rate (horizontal axis)
under different discriminant probability thresholds. The
ROC curve can comprehensively evaluate the classification
performance of fault diagnosis methods, especially for un-
balanced sample. By calculating the area under the ROC
curve, it can measure the learning effect of the model better
on a few cost-sensitive samples that need attention. More-
over, the classification performance and the overall trend of
the ROC curve can be intuitively evaluated. The ROC curves
of different diagnostic models are shown in Figure 7.

As can be seen from Figure 7, the area under the ROC
curve of IPSO-gcForest diagnostic method is the highest,
reaching 0.9873. Compared with the area under the ROC
curve of other transformer fault diagnosis, it has increased
by 13.67%, 11.71%, 6.77%, and 4.63% in turn. The results
show that the proposed method has good classification
ability for unbalanced sample.

4.4. Comparison of Samples of Different Sizes. In order to
turther analyze the robustness of IPSO-gcForest diagnostic
models under different size samples, according to the
proportions of 25%, 50%, 75%, and 100%, the fault samples
in Figure 5 are divided into sample 1 (400 cases), sample 2
(800 cases), sample 3 (1201 cases), and sample 4 (1601 cases).
Each sample is divided into training set and testing set
according to the proportion of 8:2, and the diagnostic
accuracy is shown in Figure 8.

As can be seen from Figure 8, the IPSO-gcForest model
achieves high accuracy in fault diagnosis under difterent size
samples. The results show that the performance of IPSO-
gcForest model is better than that of the other three fault
diagnosis methods. Compared with sample 1, sample 2, and
sample 3, the diagnostic accuracy of IPSO-gcForest model in
sample 4 increased by 9.51%, 5.88%, and 3.03%, respectively.
It indicates that the larger the sample size, the more the
feature information extracted. When the size of samples
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TaBLE 2: Diagnosis accuracy of different characterizing parameters in percentage.

Characteristic parameter RF DBN gcForest PSO-gcForest IPSO-gcForest
DGA data 76.64 79.44 81.31 81.62 84.11
IEC ratios 78.82 80.37 82.55 84.42 87.54
Rogers ratios 80.37 81.31 83.49 89.09 91.59
Noncode ratios 83.80 85.67 88.79 92.83 94.70

TasLE 3: Comparison of diagnostic results of different models.

Diagnostic results of different models /%

Evaluation index Fault type
RF DBN gcForest PSO-gcForest IPSO-gcForest
N 80.00 80.56 85.29 93.75 96.88
D1 80.85 82.11 90.80 98.77 98.80
D2 71.43 80.00 82.14 90.00 96.55
Precision D3 88.24 87.50 73.68 71.43 84.21
T1 88.68 90.57 91.38 89.66 91.38
T2 87.65 88.89 92.41 94.87 94.94
T3 85.00 85.00 87.50 95.24 95.24
N 84.85 87.88 87.88 90.91 93.94
D1 90.48 92.86 94.05 95.24 97.62
D2 50.00 53.33 76.67 90.00 93.33
Recall rate D3 78.95 73.68 73.68 78.95 84.21
T1 83.93 85.71 94.64 92.86 94.64
T2 93.42 94.74 96.05 97.37 98.68
T3 73.91 73.91 60.87 86.96 86.96
1.0 —_— - 100
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2 06 ’ g . . .-
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—— IPSO-gcForest-average ROC curve (area = 0.9873)
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F1GURE 7: ROC curves of different diagnostic models. [ DBN [ PSO-gcForest
[ gcForest

decreases, the diagnostic accuracy of each method will de-
crease. However, the reduction of sample size has little effect
on fault diagnosis accuracy of IPSO-gcForest model. This
indicates that IPSO-gcForest model has better model per-
formance and strong robustness under small size samples.

4.5. Case Study. Table 4 shows the oil chromatographic data
of a transformer with SFSZ9-50000/110 in a substation after
its failure on January 21, 2020.

F1GURrE 8: Diagnostic accuracy of different sample sizes.

TaBLE 4: Transformer DGA data.
H, CH, GCH,
16.08 2.75 55.70

Gas type
Gas content (uL/L)

C2H4
25.21

C2H6
0.70

By selecting the noncode ratios as the input character-
istic parameter of the IPSO-gcForest model, the oil chro-
matographic data is diagnosed and identified. The result of
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FIGURE 11: B phase low voltage coil bulge.
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F1GURE 12: C phase low voltage coil and silicon steel sheet deformation.

the diagnosis is high-energy discharge with a probability of
87.63%. But the code determined by the three-ratio method
is “202,” and the corresponding fault type cannot be
determined.

The maintenance personnel found that the A phase low
voltage coil of the transformer was burned in a large area.
From the bottom 38 to 54 and 68 to 71, severe short-circuit
and interturn short-circuit occurred between the cakes. The
windings were melted and twisted in many places, and the
upper coil had radial deformation. The sinking of the whole
coil reaches about 40 mm, and the cushion block has dis-
located and fallen off. There are a lot of melted copper and
carbonization marks of insulating material in the fault
position, as shown in Figure 9. There are obvious discharge
traces between the low voltage coil and the iron core, and the
silicon steel sheet deformed slightly, as shown in Figure 10.

The B phase low voltage coil of the transformer is ob-
viously bulged. The insulating paper is damaged, and the
axial height of the winding sinks about 15 mm, as shown in
Figure 11. There is deformation between the lower end of the
transformer C phase low voltage coil and the core, and there
is a slight loosening when pressing by hand. There are no
obvious changes in the axial height of the winding, as shown
in Figure 12.

From the analysis of the field situation, there is a high-
energy discharge problem existing in the transformer A
phase low voltage winding, which is consistent with the
diagnosis result of the transformer fault diagnosis method
proposed in this paper.

5. Conclusions

This paper combines the current artificial intelligence
technology and machine learning algorithms; thus, a
transformer fault diagnosis method based on IPSO-gcForest
model is proposed. The following conclusions are obtained
from the example analysis results: (1) by improving the

location update strategy of the traditional PSO algorithm,
the key parameters of the gcForest model are optimized by
using the IPSO algorithm, which overcomes the random
fluctuation of the output of the gcForest model and makes
the diagnosis model have better generalization performance.
(2) Compared with the RF, DBN, gcForest, and PSO-
gcForest models, the IPSO-gcForest model has higher di-
agnostic accuracy in the diagnostic model with the noncode
ratios, DGA data, IEC ratios, and Rogers ratios as charac-
teristic parameters. Among them, the model with noncode
ratios as characteristic parameter has higher diagnostic
accuracy than the other three characteristic parameters. (3)
The proposed IPSO-gcForest transformer fault method has
higher identification accuracy and higher recall rate than
other compared methods. Moreover, its AUC value is also
the highest, which improves the classification ability of
unbalanced sample data. (4) With the increasing sample size,
the IPSO-gcForest model achieves improved diagnostic
accuracy and more stable diagnostic performance. In the
future, it will be possible to increase the collection of dis-
charge and overheat mixed fault cases to verify the effec-
tiveness of the proposed method. And further research on
optimization model structure will be conducted.

Data Availability

The data were obtained from the transformer online
monitoring data and historical fault data of China Southern
Power Grid Corporation, the transformer fault oil chro-
matographic data in published papers, and the paper entitled
the “Typical Cases of Application of Power Grid Equipment
Detection Technology” published by the State Grid and IEC
TC 10 database.
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