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+e control of mobile robotic systems with input constraints is still a remarkable problem for many applications. +is paper
studies the model predictive control-based kinematic control scheme after implementing the decoupling technique of wheeled
mobile robots (WMRs). +is method enables us to obtain the easier optimization problem with fixed initial state. +e finite
horizon in cost function of model predictive control (MPC) algorithm requires the appropriate terminal controller as well as the
equivalent terminal region. +e stability of MPC is determined by feasible control sequence. Finally, offline simulation results
validate that the computation load is significantly reduced and also validate trajectory tracking control effectiveness of our
proposed control scheme.

1. Introduction

Mobile vehicle systems have a broad application prospective
in many important fields (military, industry, and hospital
task) and are attractive to researchers throughout the world
following several main directions including interaction
between chaotic systems andmobile robots [1, 2], multirobot
coordination [3], trajectory tracking control, and motion-
force control problem. +e conventional nonlinear control
technique has beenmentioned inmany works by researchers
[4].+e classical slidingmode control (SMC) was considered
in the work of [4] based on the computation the control
signals in each stages consisting of converging to sliding
surface and moving on it. Furthermore, the SMC technique
has been implemented for different systems such as bilateral
teleoperators, under the consideration of order reduction
[5]. Because of the nonholonomic constraints and under-
actuated description, it is worth noting that a robotic system
can be classified into two subsystems. It leads us to consider a
cascade controller and stabilization problem [5–9]. Under
the influence of unknown wheel slip, this separation

technique can be still considered for robotic systems to
develop the back-stepping controller achieving the whole
system stability [8]. Moreover, the authors in [7] still employ
the back-stepping technique for output feedback problem as
well as for tractor-trailer systems in [9].

During the last three decades, the motion-force control
design of robotic systems under the effect of underactuated
mechanical systems and nonholonomic constraints has been
considered as a remarkable challenge. +e fact is that the
above separation method only depends on the trajectory
tracking problem due to the constraint coefficient elimi-
nation after the transformation. +erefore, the motion/force
controller for robotics has been proposed in [10] after
obtaining the equivalent map. On the other hand, the
challenge of actuator saturation has been handled by clas-
sical nonlinear controllers [6]. However, in general non-
linear systems, it is necessary to consider the model
predictive control (MPC) solution because of the advantage
in handling the actuator saturation.

Optimal control solution has the remarkable way that
can solve the above constraint problems by considering the
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constraint-based optimization [11–14], and model predic-
tive control (MPC) is also one of the most effective solutions
to handle the constraint in single systems [15, 16] as well as
multiagent systems [17]. In the direction of optimal control,
finding the explicit solution of Ricatti equation and partial
differential HJB (Hamilton–Jacobi–Bellman) equation in
general nonlinear systems [11] is necessary. +anks to the
neural network approximation effectiveness, the novel
online adaptive dynamic programming (ADP) algorithm
which enables to adjust simultaneously both actor and critic
terms [11] is proposed. +e training technique of the critic
neural network (NN) was implemented by the modified
Levenberg–Marquardt method to minimize the square re-
sidual error. Furthermore, the weight convergence and
stability problem were shown by the need of persistence of
excitation (PE) condition [11]. Considering the extension of
this work, a model-free adaptive reinforcement learning has
been proposed via the special cost function without the
knowledge of the system dynamics [12]. Moreover, the
nonlinear systems were acted by online adaptive rein-
forcement learning with completely unknown dynamics
after implementing the data collection and Kronecker
product.

In recent years, the model predictive control (MPC) has
been considered as an effective approach to deal with state/
input constraints along with guaranteeing many control
objectives under choosing the equivalent cost functions
[18, 19]. +e main difference between MPC and conven-
tional nonlinear control approaches is that we give out the
control sequence by solving optimization problem at each
sampling time [20, 21]. Moreover, the tracking problem as
well as stability effectiveness of closed systems should be
mentioned in MPC algorithm after satisfying the optimi-
zation problem. A number of two directions are considered
in MPC solution to ensure the stability effectiveness of
closed systems, including finite horizon [15, 22–24] and
infinite horizon cost function [25, 26]. In order to satisfy the
feasibility problem in the MPC control system, the linear
matrix inequalities (LMIs) were mentioned in the case of
infinite horizon cost function [25, 26], and the appropriate
terminal cost function, equivalent terminal controller, ter-
minal region were found in the case of finite horizon
[15, 22–24]. +is method was also considered for active car
suspension and linear parameter varying (LPV) systems in
the description of discrete time systems by using LMIs
technique without finding the terminal controller in the
work of [16, 27], respectively.

Furthermore, a different approach to consider the sta-
bility of MPC control systems was also investigated by using
Lyapunov-based MPC solution [28]. In [22–24], the authors
considered the way to handle the disturbance based on
nominal systems, which are obtained by eliminating the
disturbance, and this technique was extended by an addi-
tional disturbance observer [29]. Furthermore, the extension
of this method is considered via a cascade controller with
different terminal controller [15]. Similar to the work in
[22–24, 30], the robust MPC was applied for manipulators
based on optimization problem with which the initial state
belongs to the region obtained from disturbance influence

[31]. +e linearization technique was applied for the ad-
vantage of obtaining easier optimization problem in ma-
nipulator [32] and inmobile robots [33]. Extending the work
in [22–24], the event-based model predictive control for
tracking of a nonholonomic mobile robot was investigated
in [34]. Moreover, the motion-force control objective can be
considered after the work in [35] employing nonlinear MPC
for chained form systems. In [36], the nonlinear MPC was
investigated for autonomous underwater vehicles (AUVs),
not only the kinematic subsystem but also dynamic model.
Inspired by the above contents and consideration of MPC
problem for robotic systems, the work focuses on the MPC-
based kinematic control for mobile robots with main con-
tributions listed as follows:

(1) In comparison with the previous papers
[15, 22–24, 30], a MPC-based kinematic control
scheme with an easier optimization problem con-
sidering fixed initial state and eliminating the pre-
dicted model in MPC law

(2) +e strict proof concerning the new terminal con-
troller as well as the terminal region is given based on
the Lyapunov stability theory

+e remainder of our paper is organized as follows. +e
robot mathematical model and problem statements are
given in Section 2. +e model predictive-based kinematic
tracking control design is presented in Section 3. Subse-
quently, the simulation results are shown in Section 4. Fi-
nally, the conclusions are determined in Section 5.

2. Robot Mathematical Model and
Problem Statements

In [8, 9], we can establish the Lagrange function after
obtaining the kinematic and dynamic energy. Based on
Lagrange dynamic equation, the mathematical model of
WMRs can be represented in Figure 1 as mentioned in [8, 9]:

M(η)€η + C(η, _η) _η + B(η) F( _η) + τd(  � B(η)τ + J
T

(η)λ,

J(η) _η � 0,

⎧⎨

⎩

(1)

where η � [x, y, θ]T is the vector of joint variables. Let us
describe in detail about this vector: three variables, namely,
x, y, and θ are sequentially denoted by the position coor-
dinates, the orientation angle of the mobile robot with re-
spect to the axis. All the parameters as well as variables are
described in Table 1. Moreover, M(η) is the symmetric and
positive-definite inertia matrix; C(η, _η) denotes the cen-
tripetal and Coriolis matrix; F( _η) and τd represent the
friction term and bounded external disturbances, respec-
tively; B(η) denotes the input transformation matrix; JT(η)

is the associated constraint matrix; λ is the Lagrange coef-
ficient; and the mobile robot is acted by the input vector
τ � [τl, τr]

T including left and right torques. +e non-
holonomic description of general mobile robotic systems (1)
leads us to obtain many appropriate control designs based
on the existence of solutions ST(η) satisfying the equation
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ST(η). JT(η) � 0. Consequently, there exists a vector σ such
that _η(t) � S(η)σ. +erefore, taking the time derivative of
this equation, we obtain that

€η � _S(η)σ + S(η) _σ. (2)

In the case of WMRs, the vector σ was determined as
σ � [ϑ,ω]T, where ϑ and ω are the linear and angular ve-
locities, respectively. It is worth noting that the state vari-
ables can be represented by [ηT, σT]T � [x, y, θ, ϑ,ω]T. By
multiplying on both sides of mathematical model (1), we
achieve the two connected subsystems of WMRs as follows:

_η � S(η)σ,

D(η)S(η) _η + C1(η, _η)η � B(η)τ.
 (3)

Remark 1. It can be verified that the above decoupling
technique (3) has the following advantage.+e dynamic part
(inner subsystem) is a fully actuated subsystem being
influenced by unknown parameters and unmodeled dis-
turbances. Meanwhile, the kinematic part, namely, the outer

subsystem is the only underactuated system without any
uncertain terms.

Remark 2. +e decoupling technique was the starting idea of
robust adaptive control design in mobile robotic systems [9].
However, it is worth noting that this technique does not
guarantee implementing motion/force control objective due
to elimination of constraint force factor being the La-
grangian constraint coefficient (3). In order to implement
the motion/force control problem, the chain form-based
decoupling techniques were mentioned in [25].

+e control objective is to find the control signal sat-
isfying the trajectory tracking control problem based on the
model predictive control (MPC) algorithm with the ad-
vantages not only the optimization problem but also the
closed loop stability. Additionally, the purpose of this article
is also to reduce the complexity of MPC law by decoupling
the WMRs model.

3. Model Predictive-Based Kinematic Tracking
Control Design

In this section, we first design the tracking controller using
the MPC technique and then analyze the feasibility and
closed loop stability of the proposed MPC algorithm.
According to (3), in the case of WMRs, the kinematic model
can be represented as

_x

_y

_θ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

cos θ 0

sin θ 0

0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

v

ω
 . (4)

Because of the existence of trigonometric factor in (4),
according to the desired trajectory [xr, yr, θr]

T and equiv-
alent [vr,ωr]

T, the tracking error model of kinematic sub-
system should be transformed as follows:

xe(t)

ye(t)

θe(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

cos θ sin θ 0

−sin θ cos θ 0

0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

xr(t) − x(t)

yr(t) − y(t)

θr(t) − θ(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (5)

+erefore, the tracking error model’s dynamic of the
kinematic subsystem can be obtained as follows:

d
dt

pe �

_xe

_ye

_θe

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

ωye − v + vr cos θe( 

−ωxe + vr sin θe( 

ωr − ω

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (6)

where the modified control inputs:

ue �
u1e

u2e

  �
vr cos θe(  − v

ωr − ω
 . (7)

Remark 3. +e difference in description method in com-
parison with [15] is described by choosing the equivalent
coordinate. In our work, the local coordinate frame of the
WMR uses the geometrical center. Meanwhile, the mass

Wheeled mobile
robotics (WMRs)

τ (t)

τ (t)

η (t)

λ (t)

σ (t)
S (η)Inner subsystem

(dynamic)

Outer subsystem
(kinematic)

η· η
∫

Figure 1: +e model of wheeled mobile robotics.

Table 1: Parameters and physical variables of WMRs.

Parameter Meaning Unit
b Half of distance between two wheels m
r +e wheel’s radius m
r +e wheel’s radius m
mr +e weight of platform Kg

Irz

Inertia moment of platform with respect to
z-axis kgm2

Iwz Inertia moment of wheels with respect to z-axis kgm2

Iwy

Inertia moment of wheels with respect to wheel
axis kgm2

x
Projection of the coordinate with respect to

x-axis m

y
Projection of the coordinate with respect to

y-axis m

θ Heading angle of mobile robots with respect to
x-axis rad

θr, θl Angular displacement of each wheel rad
v WMR’s velocity m/s
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center of WMR was chosen for the local coordinate frame in
[15]. It leads us to find the appropriate terminal region,
terminal controller. Furthermore, it is obviously different
from the existing control methods for WMRs in [4, 6–10].
+e proposed robust MPC is first structured to obtain the
optimization purpose being the extension of classical tra-
jectory tracking control.

+anks to the decoupling technique above, the distur-
bance has been eliminated in the kinematic subsystem (6)
and then leads us to present the MPC algorithm with
modified optimization problem considering the fixed
starting point as follows:

argmin
u τ | tk( )

J pe, ue(  � 
tk+T

tk

L pe τ | tk( , ue τ | tk( ( dτ + g pe tk + T | tk( ( ,

(8)

subject to

_pe τ | tk(  � f xe τ | tk( , ue τ | tk( ( , τ ∈ tk, tk + T ,

pe tk | tk(  � pe tk( ,

u τ | tk(  ∈ U

� [v,ω]
T
: 0≤ v≤ vmax, −ωmax ≤ω≤ωmax ,

τ ∈ tk, tk + T ,

pe tk + T(  ∈ Ω,

(9)

where

L pe τ | tk( ,ue τ |tk( (  � pe τ |tk( 
����

����
2
Q

+ ue τ | tk( 
����

����
2
P
,

g pe( tk + T |tk(  �
1
2

pe tk + T |tk( 
����

����
2
,

Q � diag q1,q2,q3 ,

P � diag p1,p2 ,

T � Nδ; N ∈,N>0,

(10)

and Ω is the terminal region, and then it will be defined and
found later.

Remark 4. +anks to the decoupling technique, the kine-
matic model belongs to certain systems. +erefore, the
optimization problem will be considered with the fixed
initial state, as described in the following algorithm.

Remark 5. Unlike that the classical MPC needs to employ
the predictive model, this above optimization problem can
solve directly based on the kinematic model without external
disturbances and uncertainties. +e modified optimization
problem is solved online at each step by consideration of the
optimal control problem without implementing the com-
putation of predicted model. It should be noted that, by
combining with the consideration of a fixed initial point in
optimization problem, it is able to obtain simplicity in
implementing the MPC law. Furthermore, the unification of

optimization and tracking problem is solved in the +eorem
1.

+e following theorem shows the tracking problem of
closed systems using the modified optimization-based al-
gorithm (Algorithm 1).

Theorem 1. Consider the outer loop error system (6) with the
above kinematic tracking algorithm. �en, the closed control
system is ISS.

In order to obtain the proof of +eorem 1, several
definitions and lemmas are considered as follows.

Definition 1. Consider the tracking error model (6), the
terminal region Ω, and the equivalent terminal controller
uL(.) are described that if pe(tk + T | tk) ∈ Ω, then the closed
system with this terminal controller satisfies, for any
τ ∈ (tk + T, tk+1 + T]:

pe τ | tk(  ∈ Ω;

u τ | tk(  ∈ U;

dg pe τ | tk( ( 

dτ
+ L pe τ | tk( , ue τ | tk( ( ≤ 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

Lemma 1 enables to find the equivalent terminal region
for a terminal controller. It leads us to determine the stability
of closed system by using the intermediate estimation.

Lemma 1. For the outer loop error system (6), the following
set

Ω �

pe: xe


≥ ye


, yeθe < 0,

vr cos θe − vmax

k1
≤ xe ≤

vr cos θe + vmax

k1

−
ωmax + ωr( 

k2
≤ θe ≤

ωmax − ωr( 

k2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (12)

is a terminal region for the equivalent terminal controller:

u
L

t | tk(  �
−k1xe + vr cos θe( 

k2θe

 , (13)

for any τ ∈ [tk + T, tk+1 + T), where k1 and k2 satisfy
k1 − q1 − p1k

2
1 > q2, k2 − q3 − p2k

2
2 > 0.

Proof. It can be seen that the terminal controller satisfies
uL ∈ U if pe(tk | tk) ∈ Ω.

Taking the time derivative of pe(tk | tk) ∈ Ω with respect
to τ, we have

dg pe τ | tk( ( 

dτ
� xe _xe + ye _ye + θe

_θe

� −k1x
2
e − k2θ

2
e + yevr sin θe( .

(14)
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According to (12) and (14), we imply (dg(pe(τ | tk))/
dτ)< 0. +erefore, the first condition in (11) is satisfied.
Furthermore, based on pe(τ | tk) ∈ Ω, we obtain the result as
follows:

dg pe τ | tk( ( 

dτ
+ L pe τ | tk( , ue τ | tk( ( 

� xe _xe + ye _ye + θe
_θe + q1x

2
e + q2y

2
e

+ q3θ
2
e + p1u

2
1e + p2u

2
2e

� − k1 − q1 − p1k
2
1 x

2
e − k2 − q3 − p2k

2
2 θ2e

+ yevr sin θe(  + q2y
2
e < 0.

(15)

It is obvious that the third condition of (11) is satisfied,
which completes Lemma 1. □

Proof. First, it is necessary to consider the feasibility
problem of Algorithm 1. Assuming that there exists a fea-
sible solution, an optimal solution u∗(tk) is obtained at the
sampling instant time tk. Implementing the application of
this control sequence u∗(tk) to (6), the state trajectory is
driven into the terminal region Ω, by means that
p∗e (tk + T | tk) ∈ Ω. Furthermore, pe(tk+1 | tk) � p∗e (tk+1) is
a feasible initial state for the modified optimization problem.
+erefore, a feasible control sequence is considered as the
intermediate control sequence for estimation in Step 2,
which can be established as follows:

u τ | tk+1(  �
u
∗ τ | tk( , τ ∈ tk+1, tk + T ,

u
L τ | tk( , τ ∈ tk + T, tk+1 + T .

⎧⎨

⎩ (16)

Secondly, in order to prove the stability of closed system,
we choose the Lyapunov function using optimal cost
function as V(tk) � J(p∗e (tk), u∗e (tk)), k � 1,∞.

Considering the deviation of the two Lyapunov candi-
date functions at time tk and tk + 1,

ΔV � V tk+1(  − V tk( 

� J p
∗
e tk+1( ,u

∗
e tk+1( (  − J p

∗
e tk( ,u

∗
e tk( ( 

≤J pe tk+1( ,ue tk+1( (  − J p
∗
e tk( ,u

∗
e tk( ( 

� −
tk+1

tk+T

p
∗
e t |tk( 

����
����
2
Q

+ u
∗
e t | tk( 

����
����
2
P

 dt

+ 
tk+1+T

t
pe t |tk1( 

����
����
2
Q

+ ue t |tk1( 
����

����
2
P

 dt

+
1
2

pe tk+1 + T | tk+1( 
����

����
2

−
1
2

p
∗
e tk + T |tk( 

����
����
2
.

(17)

According to (11), integrating from (tk + T) to
(tk+1 + T), we imply that

1
2

pe tk+1 + T | tk+1( 
����

����
2

−
1
2

p
∗
e tk + T | tk( 

����
����
2

+ 
tk+1+T

t
pe t | tk+1( 

����
����
2
Q

+ ue t | tk+1( 
����

����
2
P

 dt≤ 0.

(18)

According to (17) and (18), the following holds:

ΔV � V tk+1(  − V tk( 

≤ −
tk+1

tk+T

p
∗
e t | tk( 

����
����
2
Q

+ u
∗
e t | tk( 

����
����
2
P

 dt

≤ −
tk+1

tk+T

p
∗
e t | tk( 

����
����
2
Q

 dt.

(19)

Furthermore, we obtain V(∞)−V(0)≤−
∞
0 (‖p∗e (t)‖2Q)dt.

Because V(∞)≥ 0, there exists the finite integral

∞
0 (‖p∗e (t)‖2Q)dt. Moreover, according to (19), a finite

limitation limk⟶∞V(tk) � ϕ<∞ exists. It is obvious that

0≤ lim
k⟶∞


tk+1

tk

p
∗
e (t)

����
����
2
Q
dτ

≤ lim
k⟶∞


tk+1

tk

p
∗
e (t)

����
����
2
Q

+ u
∗
e t | tk( 

����
����
2
P

 dt

≤ lim
k⟶∞

V tk+1(  − V tk( ( 

� ϕ − ϕ � 0.

(20)

+erefore, we conclude that limk⟶∞ 
tk+1

tk
‖p∗e (τ)‖2Qdτ �

0⟹ limt⟶∞‖p∗e (t)‖2Q � 0. □

Remark 6. Unlike the proposed solutions in [15, 22–24], the
terminal controller and equivalent terminal region in our
work are based on the local coordinate frame using the
geometrical center.

4. Simulation Results

+e offline simulation is implemented by Casadi tool for
modified optimization problem with fixed initial state. +e
trajectory of WMR to be tracked as follows: the desired tra-
jectory xr � 0.8 cos(0.5t), yr � 0.8 sin(0.5t) and parameters
of the controller are set to be q1 � q2 � q3 � 0.5, r1 � r2 � 0.2,

k1 � 2, and k2 � 1. Algorithm 1 is used for the kinematic
model ofWMR to obtain the tracking trajectory as described in
Figure 2. Furthermore, we also present the response of ve-
locities and the joint variable’s error in Figures 3 and 4, re-
spectively. +e good behaviours in Figures 2–4 validate the

(1) At time tk, implement the measurement of actual state
(2) Solve the modified optimization problem to obtain the controller ue(t)

(3) Apply the result during the sampling time interval [tk, tk + 1)

(4) Update the time instant tk⟶ tk+1

ALGORITHM 1: MPC-based kinematic tracking algorithm.
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high effectiveness of the proposed solution in paper. Fur-
thermore, the computational complexity is easier than the
previous works in [15, 22–24] because of the advantage of the
fixed initial state in the modified optimization problem.

5. Conclusions

In this paper, the MPC-based kinematic control scheme has
been developed for WMRs with input constraint and dis-
turbances. +e work was implemented under the advantage
of decoupling technique of the WMR model based on the
nonholonomic property in WMRs. +e MPC algorithm,
based on modified optimization problem with fixed initial
state and eliminating the computation of predicted model,
enables us to obtain easier computational complexity. +e
unification of optimization and tracking problem is handled
by considering the feasibility and feasible region, appro-
priate Lyapunov function candidate. Using the Casadi tool
in MATLAB software, simulation results and theoretical
analysis demonstrated the effectiveness of the proposed
solution. Future work of this research encompasses exper-
imental validation of mobile robotic systems.
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