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The intermittence and fluctuation of photovoltaic power generation seriously affect output power reliability, efficiency, fault
detection of photovoltaic power grid, etc. The precise forecasting of photovoltaic power generation is the critical method to solve
the above limitations. Current photovoltaic power generation forecasting methods generally usually adopt meteorological data
and historical continuous photovoltaic power generation as inputs, but they do not take into account historical periodic
photovoltaic power generation as inputs, which makes the existing methods inadequate in learning time correlation. Therefore, to
further study the time correlation for improving the prediction accuracy, an LSTM-FC deep learning algorithm composed of long-
term short-term memory (LSTM) and fully connected (FC) layers is proposed. The double-branch input of the model enables it
not only to consider the impact of meteorological data on power generation but also to consider time continuity and periodic
dependence, thereby improving the prediction accuracy to a certain extent. In this paper, meteorological data, historical
continuous data, and historical periodic data are used as experimental data, and these three types of data are combined into
different input forms to evaluate and compare LSTM-FC with other baseline models, including support vector machines (SVM),
gradient boosting decision tree (GBDT), generalized regression neural network (GRNN), feedforward neural network (FFNN),
and LSTM. The simulation results show that the accuracy of the models with meteorological data, continuous data, and periodic
data as input is higher than that of other input forms, and the accuracy of LSTM-FC is the highest among these models, and its root

mean square error (RMSE) is 11.79% higher than that of SVM.

1. Introduction

The gradual depletion and pollution of resource-based en-
ergy have become the focus of attention of the whole society,
while renewable energy represented by solar energy has
absolute security, cleanliness, and resource sufficiency and
plays an important role in the long-term energy strategy
[1, 2]. According to the statistical data results of the In-
ternational Renewable Energy Agency (IRENA) in 2019,
China’s installed photovoltaic (PV) power generation ca-
pacity has reached 205.493 GW [3]. PV power stations are
based on solar energy. However, as the output of PV power
generation is highly fluctuant and intermittent, when PV
power generation reaches a certain threshold, it will bring
huge impact and challenges to the power system and reduce

the efficiency and reliability. The purpose of this paper is to
propose a deep learning algorithm to accurately predict the
PV power generation, so as to reduce the impact of the
fluctuation and intermittence of PV power generation on the
PV system, improve the operation efficiency, generate stable
and reliable power supply, and help the operators adjust the
operation mode and decision implementation.

At present, many modern machine learning models
including some deep learning models have been well applied
in the fields related to PV power generation prediction [4].
In addition, several hybrid model based methods are also
proposed for improving prediction accuracy [5-7]. It can be
concluded from [8-11] that traditional machine learning
methods often require a lot of feature engineering work
before training and testing, which makes the preliminary
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work relatively heavy. On the other hand, these methods
consider fewer relevant factors, such as only considering
meteorological data. In [12-18], some deep learning models,
including LSTM, GRNN, and FFNN, have also been applied
in the field of PV power generation. However, they only
consider some meteorology data and historical continuous
data, regardless of historical periodic data, so there is still
room for improvement in accuracy.

To compensate for these shortcomings, our contribution
is that we use real public historical PV power generation data
and meteorological information to forecast PV power
generation through LSTM-FC in the next 1 hour. LSTM
models have performed well in the field of temporal
modelling, while the fully connected layers usually are
suitable for feature mapping. An LSTM-FC structure with
two branches, including main input and auxiliary input, not
only use LSTMs layer to obtain time continuity and peri-
odicity, but also obtain the important role of meteorological
information through FCs layer. This indicates that these two
branches play complementary roles, which can further
improve the accuracy of PV power generation prediction.

The rest of this paper is organized as follows. The second
section mainly introduces the related work to this paper. The
third section mainly introduces the model structure and
evaluation metrics. In the fourth section, continuous data,
periodic data, and meteorological data are used as experi-
mental data to obtain the prediction results of LSTM-FC and
baseline model, and their errors were compared using
RMSE, etc. Finally, the summary and future prospects are
given.

2. Related Work

The current machine learning methods including some deep
learning methods can be widely used in the short-term
forecasting of PV power generation. For example, Shi et al.
developed a method based on SVM to predict PV power
generation under different weather conditions [10]. They
divided four models according to different weather condi-
tions and then used historical data and weather forecasts as
inputs to predict PV power generation. The authors obtained
promising results when testing their technique to forecast
the power output of a PV station in China. However, the data
sets in their paper are mostly sunny or rainy, so it is
troublesome to design different models for regions with
more weather types.

Wang et al. proposed a short-term forecasting method of
PV power based on GBDT [11]. They used historical weather
data and PV power data to train the model. The simulation
results show that this method is superior to SVM and
autoregressive moving average model (ARMA). However,
this method does not use periodic PV power data and has
few features. Ramsami and Oree proposed a prediction
method based on hybrid model [15]. First, stepwise re-
gression (SR) was used to obtain important features as input,
and then FFNN, GRNN, and multiple linear regression
(MLR) were used to predict. Simulation results showed that
this method could achieve the same accuracy or even better
with a small number of features. For the same problem, this
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method only considers the average value of meteorological
data of the day before yesterday and does not carry out SR
processing for relevant characteristics in time. In [16], Cheng
et al. proposed PV power forecast research of PV system
based on double-level neural network; the input of the
double-level neural network adopts the calculated value or
the predicted value and learns the existing measured value
through the network to correct the theoretical value and get
the prediction result. This idea can use LSTM to further
improve the prediction accuracy.

Huang et al. proposed a short-term prediction-based
solar irradiation on LSTM-MLP [17]. In this method, the
historical continuous irradiance and the meteorological data
of the predicted day are taken as the input of LSTM, and then
the output of LSTM and meteorological data are combined
as the input of MLP, and finally the final result is obtained
through MLP. The simulation results show that the per-
formance of the model is better than that of the baseline
model. In [18, 19], the authors also use prediction methods
based on LSTM or other hybrid models of deep learning
models and LSTM, and the simulation results also prove that
these methods improve the accuracy of prediction on the
original basis. However, they only considered the correlation
between continuity data and did not take the correlation of
data in the period as input, so there was room for the
prediction accuracy to rise.

In a word, the aforementioned methods only consider
the impact of the historical continuous PV power generation
and meteorological data on the power generation, and they
do not consider the time-periodic dependence. In LSTM-EC
model, it can obtain not only the effect of meteorological
data to PV power generation, but also time continuity and
periodicity dependence. Next, well look at the model
structure of LSTM-FC and why it has the above
characteristics.

3. The Proposed Model

3.1. Model Structure of LSTM-FC. LSTM can well solve the
problem of gradient disappearance and gradient explosion
and has a good application for the acquisition of time
correlation, while FC can better acquire the mapping rela-
tionship between features. We can take advantage of the
complementary characteristics of the two networks to fur-
ther improve the accuracy of the prediction. Below, we will
introduce the LSTMF-FC network structure.

As shown in Figure 1, this is the model structure of
LSTM-EC proposed in this paper. It contains two compo-
nents. The first component consists of an input layer, two
LSTM layers, and an output layer; it has two input types A
and B. For input A, the historical PV power generation at
[t—1,t-2,...,t—n] and [t—1%p,t—2%p,...,t—n*
pl time is the feed LSTM layerl, and then go through two
LSTM nodes and the output layer to get the output of the
first component, where # is the length of the time series
(number of samples) and p is the period interval. The input
of B is one more meteorological data than that of A. The
second component consists of an input layer, three fully
connected layers, and an output layer. The input layer is the
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Main input:

A: continuous data and periodic data
B: continuous data, periodic data, and
meteorological data at time ¢

Omain

Auxiliary input:
C: meteorological data at time ¢

!

O=F (o, W)

FiGgure 1: The structure of LSTM-FC.

meteorological data at time ¢, and then the data is passed to
the FC layer1, and then go through several hidden layers and
the output layer to get the output of the second component.
The final prediction result of the two components will be
weighted and summed according to the output of the two
components in a certain proportion.

The expression of the operation in Figure 1 is as follows:

hist® = Vst (‘xmain_input)’

Omain = Y1LSTM® (hLSTM(”’” )s

hfc“) = yfc“)(xauxfinput)’ (1)

Ogux = yfc(yx)(hfc(rrl)):

O=F(0,W)=Wmain*0main+w *0

aux aux?

X main_input T€Presents the main input, such as input A or
input B. y;gry represents the LSTM layer, hygry; represents
the output passing through the LSTM layer, and x,uy jnpus
represents the auxiliary input, which is the meteorological
data at time f. o,,, represents the output of the first
component, and o,,, represents the output of the second
component. The final output result is fused by the parameter
matrix, and W is learned by the model itself.

As shown in Figure 1, the models can be divided into
Model-A, Model-B, Model-AC, and Model-BC according to
different inputs. In the following sections, we will discuss

how to choose an appropriate length of contiguity data
sequence and the sequence length of periodicity data and
then get an excellent model from these models.

3.2. Evaluation Function of Model Accuracy. To better dis-
tinguish the performance of the model and implement a
baseline to compare with other baseline models, some
evaluation indicators need to be set. The evaluation func-
tions used to verify the model performance are presented
below, including RMSE, standardized root mean square
error (nNRMSE), mean absolute error (MAE), and determi-
nation coefficient (R?).

Z?:l (Yi B Y;)Z )
i (Y; - .”Y’)Z
(2)

Y is the predicted value obtained by the model, and Y is the
expected true value. py is the mean of the expected values.

Ry WmIL (VoY)
(Um) Y, (Y - pyr)?




Each evaluation index has its own specific target. For PV
power generation, RMSE, nRMSE, and MAE can well reflect
the dispersion degree between the predicted value and the
real value, but in some cases, R* is more useful than either of
the above and can better explain the performance of the
model.

4. Experiment and Result Analysis

4.1. Experimental Data and Environment. The experimental
data is real application data, which comes from Jinan PV
operation and maintenance platform. Considering the
confidentiality of data, the PV power generation data and
meteorological data is from 2018-1-1 to 2018-12-31. The
meteorological data includes temperature, humidity,
weather, wind direction, and wind speed. Since the PV
system does not generate electricity during certain periods,
the time set in this article is 7-19 hours a day. As shown in
Table 1, this is the structure of the data. To meet the re-
quirements of training, we should preprocess the data, such
as data cleaning and data normalization. The specific steps
are as follows. Firstly, weather and wind direction need to be
encoded into data that computers can process. After pro-
cessing, the corresponding number for local cloudy days is
15 and the corresponding number for east wind is 3.

Secondly, the outliers need to be processed to reduce the
impact on the accuracy of the prediction algorithm. Cur-
rently, the main outlier detection algorithms include One-
ClassSVM, EllipticEnvelope, IsolationForest, and LOF [20].
Here, the four methods above are, respectively, used to test
the data, and it is found that LOF is the most suitable method
compared with the other three methods. As shown in
Figure 2, this is the outlier obtained by the LOF method; x-
axis is the sample index, and y-axis is the hourly PV power
generating. For the removal of outliers, the method used is to
make up with the PV power generated at the same time, the
day before or the day after the outlier at that time. The
processed data is shown in Figure 3, which shows that the
processed data is normal.

Thirdly, we analyze the characteristics and calculate the
correlation between them and PV power generation. The
Pearson correlation coefficient is used to measure whether
two data sets are on a line, and it is used to measure the linear
relationship between distance variables. Its formula is shown
in formula (3). To determine whether meteorological data
should be taken as input features, the meteorological data
and PV power generation data are calculated in this paper.
Table 2 shows the Pearson correlation coefficient between
these five meteorological variables and PV power genera-
tion. x is the meteorological data, y is PV power generation,
and u is the average value.

_ Z(X _Aux) * (y _n"ly)
v \/Z (X— Aux)z * Z(y_ luy)z

(3)

It can be observed that there is almost no correlation
between the weather data and the PV power generation, and
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there is a certain correlation between the other several
variables, among which temperature and humidity are the
highest. Therefore, in addition to the weather variable,
several other variables can be used as input variables.

Figure 4 shows the continuity of PV power, and the
change in continuous time is relatively smooth. As shown in
Figure 5, it is obvious that PV power reaches its peak at noon
every day, and it is lower in the morning and evening. The
curve shows an obvious periodicity. Next, we analyze the
Pearson correlation coeflicient between historical continu-
ous PV power generation and periodic PV power generation
and the PV power generation on the forecast day. Figure 6
shows the fitting degree of the PV power at time ¢ — 1 and
t -2 and t, indicating that there is a great dependence
between the two. Figure 7 shows the fitting degree of the PV
power at timet — 1 % pand f — 2 % p and £, and it can also be
seen that there is a great dependence between the two. We
only analyzed the correlation between the data with a lagging
time of 2 hours (or period), but longer lagging time is still
relevant. Therefore, we will conduct experiments to deter-
mine the optimal lagging time later.

After the above process is completed, we finally form a
data set which includes 13,792 training data and 3,412 test
data. As shown in Table 3, all the data are integrated into a
table, and the data will be constructed according to different
input requirements when reading the data. Since the
characteristic dimensions cannot be fully displayed here, we
only show meteorological data and a small amount of
continuous data and periodic data in the table, in which
power is PV power generation at time f, ¢; is PV power
generation at time t — i, and p; is PV power generation at
timet — i * p. The statistical results of some characteristics of
training data are shown in Table 4, including mean value,
standard deviation, minimum value, and maximum value.

In this experiment, the hardware environment includes
Windows 10, 6G memory, and GTX 1660 Ti graphics card.
The software environment includes CUDA 9.0, Cudnn7.4.1,
scikit-learn0.22.2, Python3.6, and Keras2.1.6, and the cor-
responding Keras back end is TensorFlow 1.11.0.

4.2. Forecasting Test. In Figure 1, we divided four different
models according to the different input types and the choice
of double branches, namely, model-A, model-B, model-AC,
and model-BC, but each model contains continuous and
periodic PV power. Therefore, the length of the continuous
data series and the length of the periodic data series should
be determined first. According to these two kinds of data, the
input variables of model-A are formed. In addition to these
inputs, meteorological data should be added to model-B,
model-AC, and model-BC. Then, these models are com-
pared and evaluated to verify the influence of different input
types on the accuracy of model prediction. Finally, the best
model is selected according to the optimal evaluation results.

The following is to conduct continuous training to de-
termine the optimal length of continuous PV power and
periodic PV power, respectively. Considering that the ef-
fective generating time of one day obtained in the previous
data is 7-19 hours, the maximum length of continuous data
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TaBLE 1: The structure and form of data.
Time Power Weather Humidity Temperature Wind speed Wind direction
2018-01-01 07 0 Local cloudy 32 -1 4 The east wind
2018-01-01 08 0 Local cloudy 32 -1 4 The east wind
2018-01-01 09 2.0 Local cloudy 28 1 4 The east wind
2018-01-01 10 7.0 Local cloudy 23 3 5 The east wind
2018-01-01 11 15.0 Local cloudy 18 5 5 The east wind
300 .
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FiGURE 2: Outliers of data (not cleaned up).
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FiGgure 3: Outliers of data (cleaned up).

TaBLE 2: Pearson’s correlation coefficient between meteorological data and PV power generation.

Meteorological parameters

Pearson’s correlation coefficient

Temperature 0.2589

Humidity -0.3686

Wind speed 0.1915

Weather 0.0114

Wind direction 0.1657

is set to the first 9 hours. Considering the time consumption After many training sessions, as shown in Figure 8(a),

and the decrease of long time series dependence, the = RMSE decreases as the length of the input variable in-
maximum sequence length of periodic data is also 9. creases at an interval of 1 hour. It can be seen that the
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FIGURE 7: Scatter plot of PV power generation at time f — 1% p and t =2 * p vs. f.
TaBLE 3: The sample of training and testing data.
Temperature Humidity Wind speed Wind direction a I o8 2 P> Ps Power
-3 15 11 6 15 3 0 30 24 3 15
-3 14 11 6 33 15 3 35 33 3 22
-2 14 10 6 38 33 15 38 35 5 19
-2 13 10 6 40 38 33 34 35 6 21
TaBLE 4: The statistical results of training data.
Power Humidity Temperature
Mean 14.47 39.41 15.00
Std 13.03 19.52 13.16
Min 0.00 7.00 -12.00
Max 46.00 97.00 40.00
6 - 81
7
54
6
4 4 5 |
I =)
z z
& 3 2 4
3
2
2
14 1
0 - 0 -
t-1 t-2 t-3 t-4 t-5 t-6 t-7 t-8 t-9 t—-1%pt-2"pt-3*pt—4"pt - 5*pt - 6"pt - 7*pt - 8" pt - 9*p

Lagging time (hour) Lagging time (hour)

@ (b)

FiGure 8: Error of different lengths of continuous (periodic) data sequence on prediction. (a) RMSE of different length of contiguity data
sequence. (b) RMSE of different length of periodicity data sequence.
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TaBLE 5: The influence of different inputs on the prediction accuracy of the model.

nRMSE RMSE R
Model-A 0.2209 3.2453 0.9357
Model-B 0.1919 2.8189 0.9515
Model-AC 0.2009 2.9515 0.9468
Model-BC 0.1743 2.5605 0.9600
TaBLE 6: LSTM-FC parameters setting.

Parameters Content Setting
n_LSTM The number of LSTMs 2
n_FC Th number of FCs 4
batch_size The number of batch training samples 64

P Periodic time interval 13
Adam Optimization algorithm —
Relu Activation function —
Lr Learning rate 0.001
Lc The number of contiguity samples 4
Lp The number of periodic samples 9
epoch Iterations 200

60

20 A

50 A

1600 1620
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30 4

20 4

PV power generation (kW/H)

10 -

1640 1660 1680 1700

—+— Actual
—«— Prediction

0 500 1000 1500

Time (hour)

2000 2500 3000 3500

FiGURE 9: Prediction results of LSTM-FC on test set.

prediction accuracy is the highest when the lagging time
is 9, but the decline is no longer significant after the
lagging time is 4. As shown in Figure 8(b), RMSE de-
creases as the length of the input variable increases, and
the prediction accuracy is highest when the lagging time
is 9, where pis 13. After the above analysis, the length of
the final selected continuous data is 4, and the length of
the periodic data is 9.

After the above experiments, we will now select a
continuous data sequence of length 4 and a periodic data
sequence of length 9 as the inputs of Model-A, Model-B,
Model-AC, and Model-BC. In this paper, these two kinds of

data are combined into data with dimension 13 as the input
of Model-A. At the same time, we add meteorological data to
form the input of the other three models as required and
then verify and evaluate each model.

As shown in Table 5, the worst is Model-A, with an
nRMSE of 0.2209 and the best is Model-BC, with an
nRMSE of 0.1743. Certainly, Model-A, Model-B, Model-
AC, and Model-BC are all better than just considering
continuous data or just periodicity data. After the above
discussion, we finally choose Model-BC as the LSTM-FC
model. Next, we will describe the parameters of the
model that is finalized.
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TaBLE 7: Evaluation of each model under different input conditions.
nRMSE RMSE R
SVM (M+C) 0.2465 3.6200 0.9201
SVM (M+C+P) 01976 2.9028 0.9486
GBDT (M +C) 0.2168 31848 0.9381
GBDT (M +C+P) 0.1890 2.7762 0.9529
FENN (M + C) 0.2126 31223 0.9405
FFNN (M +C +P) 0.1918 2.8168 0.9516
GRNN (M +C) 0.2433 3.5730 0.9221
GRNN (M + C+P) 0.1966 2.8877 0.9491
LSTM (M + C) 0.2471 3.6298 0.9196
LSTM (M +C + P) 0.1919 2.8189 0.9515
LSTM-FC 01743 2.5605 0.9600
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5 10
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--- SVM --- GRNN
- __ GBDT --- LSTM
--- FFNN —— LSTM-FC

Figure 10: The error results of different models on test set.

4.3. Network Parameter Setting. The performance of the
model will be affected by some factors. For example, if the
number of network layers is too small, the accuracy may not
be high; if the number of network layers is too large, the
result of overfitting may also be caused. Therefore, an op-
timal parameter should be selected after several times of
training. After feedback of training results for many times,
the final network parameters in this paper are shown in
Table 6, mainly including 2 LSTM layers and 4 FC layers, and
Adam optimization function, and the continuous variables
and periodic variables determined by the above tests are 4
and 9, respectively.

4.4. Result Analysis. After the above experimental results, we
know that Model-BC has the highest accuracy. Following,
we will use LSTM-FC to represent Model-BC. We will
evaluate LSTM-FC on the test set, and the prediction results
obtained by inputting the test set into our model are shown
in Figure 9, where the solid line blue is the truth value and

orange is the predicted value. As can be seen from the local
enlarged figure, the expected value and the predicted value
are basically fitted, and the error between them is very small.

As shown in Table 7, (M + C) means to take continuous
data and meteorological data as input, and (M + C+ P) is to
add one periodic data as input. We use SVM, GBDT, FENN,
GRNN, and LSTM models commonly used in related work
to test different inputs, and the results showed that the model
error with periodic data as input was less than the model
error not applicable to periodic data. This verifies the idea
that using periodic data as input in this paper can improve
the accuracy, and under the same, the error of the LSTM-FC
model proposed in this paper is minimal. The following
model results take (M+C+P) as input. Compared with
SVM, GBDT, FFNN, GRNN, and LSTM, LSTM-FC’s RMSE
improves 11.79%, 7.77%, 9.1%, 11.33%, and 9.16%, re-
spectively. Figure 10 shows the errors of each model on the
test set, and it can be seen that the errors of LSTM-FC are
smaller than other models in most of samples. Through the
above discussion, it can be concluded that the performance
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of LSTM-FC model in PV power generation prediction is
superior to other models.

5. Conclusions

This paper first expounds the benefits of accurate PV power
quantity prediction; that is, it can improve the operation
efficiency of PV power station, generate stable and reliable
power supply, et al. Then, we discuss the research of some
current machine learning and deep learning methods in PV
power generation prediction. In most of the previous PV
power prediction studies, the influence of time continuity
and meteorological data on PV power was considered, but
did not obtain the periodicity dependence or the model used
is not as good as LSTM in capturing time correlation.
Therefore, a PV power generation prediction method of
LSTM-FC with double branches is proposed. It used LSTMs
to better obtain the temporal correlation of PV power
generation, used FCs to capture the mapping relationship
between meteorological data and PV power generation, and
then weighted the output of the two branches to get the final
prediction result. The simulation results show that the ac-
curacy of (M + C + P) as input is higher than (M + C), and the
accuracy of LSTM-FC model is the highest compared with
other baseline models in the same situation, with #RMSE
reaching 0.1743 and RMSE reaching 2.5605.

Using the results of this research, we can use the pre-
dicted value of PV power generation to provide decision-
making for power dispatch, which greatly improves the
output efficiency, basically solving the problem of power
output reliability caused by the volatility and intermittent-
ness of PV power generation. On the other hand, we can set
an outliers confidence interval. When the error between the
actual power generation and the predicted power generation
exceeds this interval, it indicates that the power station may
have a certain fault, which provides feasibility for fault
detection. In subsequent studies, we will consider solar ir-
radiance, average power, panel temperature, and rainfall as
input features to obtain a better model. Moreover, since the
training time of deep learning model is slightly longer than
other machine learning models’ training time, we will
consider how to further reduce the time consumption and
make the training faster in the future.

Data Availability

The data used to support the findings of this study are in-
cluded within the article.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This work was partly supported by the Fundamental Re-
search Funds of the Central Universities under Grant no.
B200202185, 2018 Jiangsu Province Key Research and De-
velopment Program (Modern Agriculture) Project under

Mathematical Problems in Engineering

Grant no. BE2018301, 2017 Jiangsu Province Postdoctoral
Research Funding Project under Grant no. 1701020C, and
2017 Six Talent Peaks Endorsement Project of Jiangsu under
Grant no. XYDXX-078.

Supplementary Materials

Here, the authors will explain some of the details of the data
set. Considering the confidentiality of the data, the authors
collected open photovoltaic power generation data and
meteorological data from January 1, 2018, to December 31,
2018, resulting in 13,792 training data and 3,412 test data. As
shown in Table 8, the necessary properties mainly include
meteorological data, historical continuous data, and his-
torical periodic data. The meteorological data include
temperature, humidity, weather, wind direction, and speed.
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