
Research Article
Rapid Identification andQuantitative Analysis of Polycarboxylate
Superplasticizers Using ATR-FTIR Spectroscopy Combined with
Chemometric Methods

Zhiwei Li ,1 Bo Li ,1 Zhizhong Zhao ,2 Weizhong Ma ,3 Wenju Li ,1

and Jiadong Wang 1

1National and Provincial Joint Engineering Laboratory of Road & Bridge Disaster Prevention and Control,
Lanzhou Jiaotong University, Lanzhou 730070, China
2Gansu Highway Construction Management Group Co., Ltd., Lanzhou, China
3Key Laboratory of Highway Net Monitoring in Gansu Province, Gansu Hengda Road and Bridge Group Co., Ltd.,
Lanzhou, China

Correspondence should be addressed to Bo Li; 8857807@qq.com

Received 31 October 2020; Revised 18 December 2020; Accepted 2 January 2021; Published 21 January 2021

Academic Editor: Dongyu Niu

Copyright © 2021 Zhiwei Li et al. -is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Although the quality inspection method of polycarboxylate superplasticizers (PCE) based on macroperformance is still widely
used, it has the drawbacks of time-consuming and low precision. -is study aims to develop a practicable alternative method for
quality inspection of PCE. For this, spectra collection, feature extraction, and cluster analysis were performed up on the PCE
samples to demonstrate the feasibility of the method. Also, a new similarity calculation method was introduced in this work.
Results show that the solid PCE sample for spectrum collection can be prepared using the simple heating method. High-quality
spectra can be rapidly collected by infrared spectrometer combined with ATR accessory. Meanwhile, the accuracy of classification
and clustering is high, suggesting that the feature extraction method based on principal component analysis (PCA) is effective. In
addition, compared with conventional similarity calculation methods of cosine angle and correlation coefficient, the new
similarity calculation method achieves better classification results and better generalization ability. -is work provides a method
of quantitative analysis and rapid identification of PCE for the construction site.

1. Introduction

As an important concrete admixture, the water-reducing
agent has been widely used in improving concrete perfor-
mance. -ey can improve the compressive strength by re-
ducing the amount of water required [1]. Lignosulfonate was
the first plasticizer used in concrete, which is a derivative of
lignin in pulp industry. -en, poly melamine sulfonates and
poly naphthalene sulfonates were developed and applied.
However, these plasticizers have limited water-reducing effect
and may bring potential problems to the concrete hardening
process [2]. -e new generation is polycarboxylate super-
plasticizer (PCE). -ese superplasticizers are widely used in
the construction site and studied in the academic field. Take

China as an example, the consumption of PCE in China was
7.23 million tons in 2017, which was about 77.6% of all water-
reducing agents used in the year [3].-erefore, choosing PCE
accurately and reasonably is a major concern for industry
personnel.

Authenticity is a very important quality criterion for
PCEs because there is a big difference among different
types of PCE products [4, 5]. However, determination of
authenticity for PCEs is traditionally a time-consuming
and laborious process, typically using dispersion effect,
adsorption amount, and setting times to characterize
PCEs [6, 7]. Although these methods can reflect the
macroperformance and ensure the engineering perfor-
mance of PCEs to some extent, they have some drawbacks.
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On the one hand, the relevant methods require a huge
amount of PCE sample and high operating skills of the test
personnel, which may bring potential impact on accuracy
[8]. On the other hand, macroperformance test results
mainly reflect construction control index, but cannot
characterize the relationship between molecular structure
and performance of PCE. For example, different PCEs
with same or similar macroperformance may exhibit
distinct-different in-site performance, with regard of
durability, strength, and workability of concrete due to
molecular composition of PCE, resulting in structure
diseases after long-term use [9].

Moreover, the molecular structure of PCE can be readily
adjusted to provide desirable features in order to improve the
performance of concrete, such as adaptability to different
temperatures and compatibility with different types of cements
[10]. Just because the molecular structure is different, the
physical and chemical composition of PCE is unique [11]. -is
uniqueness is similar to human fingerprint, which can be called
fingerprint information of PCE. In addition, due to the fin-
gerprint information of PCE, it is feasible to identify PCE in
theory.

Recently, fingerprint identification technology has been
widely applied in material analysis [12, 13]. Several tech-
niques have been used to describe and determine the quality
of the test sample, including colorimetric methods, Gel
Permeation Chromatography (GPC), Nuclear Magnetic
Resonance Hydrogen Spectrum (NMR), and Gas Chro-
matography Mass spectrometry. Although these methods
can identify the unique fingerprint information of samples,
they have the disadvantages of time-consuming, expensive,
or cumbersome operation. Compared with the conventional
methods, Fourier transform infrared (FTIR) spectroscopy
has become one of the most useful analytical means because
of its merits including rapid detection, easy operation, and
cost saving. Combined with attenuated total reflection
(ATR) accessory, a small amount of samples can be analyzed
in a short time without sample preparation. ATR-FTIR
spectroscopy measures the sample at a depth of 0.5–5 μm
from the surface of the internal reflection element. ATR-
FTIR schematic diagram is shown in Figure 1, which usually
employs a diamond, and collects information from the layer
of the sample adjacent to the surface of the internal reflection
element. In particular, the development of chemometric
technology linked with ATR-FTIR spectral data provides an
effective way to determine the physical and chemical
properties of materials. Mahsa Mohammadi proposed a new
analytical method using ATR-FTIR spectroscopy associated
with chemometric methods for addressing regression and
classification tasks for crude oil analysis based on API gravity
values [14]. Hannah Tiernan applied ATR-FTIR spectros-
copy to determining protein content and protein secondary
structure composition [15]. Li Zhihui employed ATR-FTIR
spectra coupling with SVM classifier to identify graded
asphalt [16]. Xiting Sun proposed a rapid and expedient
method to determine asphalt properties, including content,
softening point, and penetration [17]. Christian Schramm
studied the curing process of the impregnated and dried
cotton samples by using ATR-FTIR spectroscopy [18].

Currently, the combination of ATR-FTIR and chemo-
metrics has been widely used in the evaluation of petroleum,
flocculant, and wood. However, there is no work that has
treated the properties of PCE by direct spectroscopic
methods according to literature index. -is work uses ATR-
FTIR combined with chemometrics to identify and quan-
titatively analyze PCE.-emethod of obtaining high-quality
spectrum of PCE is firstly explored. -e feature extraction
and classification were carried out by chemometrics. In
addition, different PCEs were compared by the similarity
calculation formula, and acceptance threshold was estab-
lished for each PCE. -e results provide a rapid, accurate,
and nondestructive method for quality control of PCE.

2. Materials and Methods

2.1. Materials. -e selected PCEs for this study are com-
monly used by contractors on construction projects in
Gansu Province, China. Four kinds of PCEs are selected
from four different manufacturers, denoted here as A, B, C,
and D. -e corresponding batches are denoted here as A1,
A2, A3, A4, B1, B2, B3, B4, C1, C2, C3, C4, D1, D2, D3, and
D4.-e acronymA1 represents manufacturer A and batch 1,
as indicated in Table 1. All PCE samples are sealed in the
sample tank before testing to avoid long time connection
with air and stored in a shady and cool place.

2.2. Sample Preparation. All the PCE collected in this re-
search are liquid samples, and the samples contain water.
Water can interfere with the quality of infrared spectrum, so
it is crucial to eliminate the impact of water. Some re-
searchers achieve this goal by organic solvent extraction. In
Standard ASTM C494/C494M-13, a drying method is
adopted, that is, the diluted PCE sample is weighed and dried
at 105± 3°C for 17±¼h [19]. After cooling, infrared spectra
of dried residue are studied by the KBr method. However,
this method is complex and time-consuming, so it is not
suitable for field test. Casale et al. III exploded the feasibility
of reducing the drying time to 10 h [5]. Part of the study
content, especially the spectral sampling method, is different
from this study. -erefore, it is necessary to explore the
feasibility of reducing drying time in this study.

-is study refers to the test procedure outlined by the
ASTM Standard above. In order to study the feasibility of
reducing drying time, weigh 3± 0.1 g PCE sample, put it in
an evaporation dish, and dry it in an oven at 105± 3°C for 30,
60, 90, 120, 150, and 180 minutes until the weight does not
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Infrared in Infrared collect

ATR crystal

Figure 1: -e schematic diagram of ATR-FTIR technology.
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change. -e time is recorded and used as drying time. -e
flow chart of sample preparation is shown in Figure 2.

2.3. FTIRMeasurements. ATR-FTIR spectra were obtained
using -ermo Fisher Scientific® NicoletiS5 Fourier
Transform Infrared Spectrometer combined with iD5
ATR accessory, with an instrument parameter of 32 scans
in 4000–400 cm−1 range and a resolution of 4 cm−1. To
collect infrared spectra, the dried residue of PCE was
directly put on the diamond ATR crystal, and the torque
knob was tightened to ensure that the sample is in close
contact with the diamond ATR crystal. Analyses were
carried out at room temperature (25°C). -e background
collected before every sample was measured. -e diamond
ATR crystal was cleaned by kerosene. In order to solve the
problem that PCE samples are small, a reasonable method
is to repeat the number of spectral for each sample. Based
on the word reported by Yang et al., three scans were
performed and saved in a database for each PCE in each
batch [4]. Please note that each scan saved is the average of

four scans, and 48 scans were utilized for chemometric
analysis.

2.4. Data Pretreatment and Outlier Detection. Before using
the chemometric method for the next calculation, raw data
obtained should be preprocessed. Baseline correction was
performed by using OMINIC software. -en, the data were
smoothed using the Savitzky–Golay method. Also, in order to
increase the calculation accuracy, it is necessary to detect and
eliminate outliers. To this end, according to the method
provided by Mahsa Mohamadi’s paper, the PCA model and
Hotelling T2 statistical plot are used to detect outliers [20].
Outliers can be eliminated from the original dataset, and the
original dataset were loaded in the Unscrambler V-10.5 soft-
ware (CAMO Analytics) for outlier detection by using the
Hotelling T2 statistical method. Data processing and PCAwere
further performed with MATLAB software (MathWorks).

2.5. Multivariate Analysis: Chemometrics. Infrared spec-
trum data is a high-dimensional vector composed of

Table 1: Detailed information of PCEs used in this paper.

PCE Manufacturer Batch Water-reducing rate (%) Bleeding rate (%)
Setting time difference (min)

Compressive
strength
ratio (%)

Initial setting Final setting 7 d 28 d
A1

A

1 31 9 −10 +35 194 168
A2 2 32 18 +65 +5 194 167
A3 3 29 9 −25 −65 186 164
A4 4 28 12 −20 −55 165 142
B1

B

1 35 52 +120 +120 197 173
B2 2 27 12 +100 — 163 149
B3 3 26 22 +105 — 153 147
B4 4 26 35 +120 — 192 174
C1

C

1 27 27 +95 +70 198 169
C2 2 29 42 +100 +60 190 165
C3 3 32 12 +95 +105 194 168
C4 4 28 15 +95 +40 190 169
D1

D

1 35 50 +120 +120 178 173
D2 2 27 60 +120 — 160 146
D3 3 28 20 +80 +70 161 155
D4 4 27 15 +100 — 158 147

Dying time
150min

Weight
3 ± 0.1g

Temperature
105 ± 3°C

Grinding

Wave number range:
4000-400cm–1

Scanning times:32

Figure 2: -e sample preparation process and ATR-FTIR spectrum collection.

Mathematical Problems in Engineering 3



absorbance corresponding to different wave numbers.
Along with the development of spectral detection tech-
nology, the characteristic variables of spectral data be-
come larger and larger. One of the major drawbacks of
high-dimensional data analysis is the curse of dimen-
sionality. However, a related fact is that hyperspace is
essentially sparse, causing the phenomenon of empty
space [21]. A natural way to mitigate this problem is to
significantly reduce the dimension of original data. It has
been shown that principal component analysis (PCA) is
an effective multivariate statistical approach for both
dimension reduction and information retention. -ere-
fore, all ATR-FTIR spectra data were analyzed by prin-
cipal component analysis (PCA) to determine the
characteristic band. In this way, the redundant infor-
mation can be filtered effectively. -en, the band selection
method is verified by support vector machine (SVM) and
cluster analysis [22]. As a new algorithm for classification,
SVM has been widely used to nonlinear separation
problems [23]. SVM represents the samples as points in
space. -e samples are separated by plane or line vectors
after mapping. -e new sample data is first mapped to the
same space, and the category is determined based on
which side of the vector they fall. A set of 108 samples were
used to construct the calibration model, and 36 samples
were used for the prediction model.

In addition, similarity calculation was used for calcu-
lating the spectral difference and similarity threshold for
each PCE was determined. Spectral similarity analysis is an
effective method to characterize spectral difference [24].
According to the similarity results, the quality fluctuation of
PCE can be determined or the types of PCE can be dis-
tinguished. In the process of infrastructure construction, IR
spectrum can be considered when the sample is completely
known, and the material composition and quality are re-
quired to confirm. However, based on the favorable com-
parison between the infrared spectrum and original sample
spectrum, the interpretation of the results is qualitative. -e
New Jersey Department of Transportation (NJDOT) uses
correlation coefficient-based quantitative assessment of in-
frared scanning to accept or reject field sample. -e NJDOT
determined an acceptable correlation coefficient threshold of
97.5% [5]. However, the objective fact is that the thresholds
for each material may be different. In addition, the quality
control method for quantitative evaluation of concrete ad-
mixtures using the correlation coefficient has not been
established. -erefore, it is necessary to establish the cor-
relation between the sample to be tested and the original
sample and to establish the acceptable threshold. -is helps
to visually verify whether the PCE received at the con-
struction site is acceptable using the quantitative method.
Most researchers believe that similarity is an effective pa-
rameter to distinguish different spectra [25–27]. After lit-
erature retrieval, there are many methods to calculate the
similarity, among which the angle cosine formula and

correlation coefficient formula are more commonly used,
which can be evaluated by
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where cos α means angle cosine value, ai means absorbance
values of the measured PCE sample, bi means absorbance
values of the standard PCE sample, a means average of
absorbance value of the measured PCE sample, and b means
average of absorbance value of the standard PCE sample.-e
detailed flowchart is illustrated in Figure 3.

3. Results and Discussion

3.1. Drying Time. ASTM C494/C494M-13 Sect.18.1.1 re-
quires that dry conditions are 17±¼ h at 105± 3°C [19]. -is
method belongs to the existing uniformity and equivalence
tests, so the quality of PCEs can be unchanged by high
temperature in theory. However, considering that this
method needs to dilute the PCE first and the drying time is
too long, this study explored the feasibility of shortening the
drying time.

Figure 4 illustrates typical variation curves of weight of
PCEs with drying time. -e drying time at the temperature
of 105± 3°C was 0, 30, 60, 90, 120, 150, and 180min, re-
spectively. As shown in Figure 4, the weight of four different
PCEs decreases with the increase of drying time. -e ob-
servation can be attributed to the evaporation of water in
PCEs. Furthermore, after evaporation for 30 minutes, the
weight of PCEs decreases sharply and then decreases slowly
with drying time. At 150 minutes, the weight of four PCEs
was kept stable. -erefore, the drying time of all samples is
determined to be 150 minutes.

3.2. Spectral Characteristics of PCE. -e ATR-FTIR spectra
of evaporated residue of different PCEs are shown in
Figure 5. PCEs are composed of different types of hy-
drocarbons and oxygen containing compounds. As shown
in Figure 5, the spectra of all PCE samples are basically the
same. -e intensity and position of some absorption peaks
are slightly different, which indicates that the composition
of different PCEs is different [28, 29]. -e peak location
provides the structural information of the sample, and the
peak intensity corresponds to the information of molecular
concentration in the sample. In addition, the width of the
peak is easily affected by the pH value and hydrogen bond
[30]. -e characteristic absorption peaks of all PCE spectral
range from 3700 to 700 cm−1 and are especially concen-
trated between 1700 and 700 cm−1, that is, the fingerprint
region. -e band observed at 3400–3200 cm−1 corresponds
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to O-H stretching vibrations in PCE. -e absorption peaks
around 2865 and 2950 cm−1 are attributed to aliphatic C-H
symmetric and asymmetric stretching vibrations, respec-
tively. Moreover, the band at 1635–1750 indicates the
existing of C�O stretching vibrations. -e band around
1130–1070 corresponds to C-O stretching vibrations. -e
spectral characteristics measured are consistent with the
results of literature, indicating that the sample preparation
method is reasonable [31].

In addition to the absorption peaks described above,
there are some nonobvious peaks in infrared spectra of
PCEs. In order to determine which absorption peak can
represent the difference of different PCEs, all spectra need to
be further processed and analyzed by the chemometric
method.

3.3. Data Preprocessing and Outlier Detection. Figure 6(a) is
the overview of PCA using the Unscrambler software. In the
score chart, 85% of total variance was presented by the first
two principal components (PC-1 and PC-2). Outliers can
also be detected by Hotelling’s T2 statistic plot, as shown in
Figure 6(c). It is noteworthy to see that no outlier is detected.
-erefore, all spectral data can be utilized for further
calculation.

3.4. Spectral Feature Selection. A total of 48 spectral data of 4
different PCEs were imported into MATLAB software to
establish the PCA model. Table 2 shows the results of
principal component analysis. It can be seen from Table 2
that there were three principal components: PC1, PC2, and
PC3, with an eigenvalue of 0.2 or more.-e eigenvalue of the
first principal component was large with 0.542, as shown in
Figure 7, and the contribution rate of variance of the first
four principal components is 98.47%. -erefore, it can be
concluded that most of the information of the original data
has been retained by the first four principal components
[24].

PCA results consist of the score plot and loading plot.
Among them, the score plot represents the relationship
between different samples, while the loading plot represents
the relationship between variables. -e loading plot can help
to determine which variables carry useful information.
Figure 8 shows the distribution of the load factor with the
wave number. -e relationship between spectra variables
becomes clear. -e absorption peak around 1730 cm−1 has a
higher influence on the PCA model in the negative direction
of X-axis, which corresponds to C�O stretching vibrations,
indicating this absorption peak of different PCEs is obvi-
ously different. Similarly, the wave number around 3287,
2859, 1573, 1466, 1409, 1342, 1278, 1241, 1093, 961, and
839 cm−1 also have high influence on the PCE model. In
addition, compared with PC1, PC2, and PC3, the loading
factor distribution of PC4 is more balanced. -is is because
the variance of PC4 is less than that of PC1, PC2, and PC3,
that is to say, PC4 contains less difference among sample
classes. -erefore, PC4 basically does not contain valid
variables.

In addition, according to the rotation component ma-
trix, the absorbance at the wave number of 3287, 2859, 1730,
1573, 1466, 1409, 1342, 1278, 1241, 1093, 961, and 839 has a
large load. It is noteworthy that these 12 bands correspond to
the corresponding absorption peaks of ATR-FTIR spectrum
of PCE, indicating that the difference between PCEs is
mainly near these 12 peaks, as shown in Table 3. It should be
noted that the O-H hydroxyl absorption peak around
3287 cm−1 fluctuates greatly and is not suitable for modeling.
-erefore, the 11 absorption peak wavelengths can be se-
lected for further calculation, as shown in Table 3.

3.5. SupportVectorMachine (SVM)Model. -e present work
proposed amodel of classification based on SVM. In order to
expand the sample, sample preparation was performed, and
36 spectral data were collected for each PCE sample. A total
of 144 spectral data were collected. Among them, a set of 108
samples were used to construct the calibrationmodel, and 36

Spectra data

Data pretreatment and
outlier detection

Feature extraction

Classification using
similarity

Classification using
clustering tree

Training set Testing set

SVM

Comparison and evaluation

Figure 3: -e flowchart of the chemometric analysis for deter-
mination and classification of PCEs.
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Figure 6: (a) Score plot. (b) Residual plot on ATR-FTIR of PCEs. (c) Hotelling’s T2 statistic plot.
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samples were used for the prediction model. By using the
SVM classifier, the accuracy rate of total verifying samples
stood at up to 100%, as shown in Figure 9. Figure 10 shows
the prediction accuracy of four PCE samples. -e diagonal
part is the proportion accurately predicted, while the other
part is the proportion misjudged as other classes. As shown,
the four PCEs used in this work were found with an accuracy
of 100%, 100%, 100%, and 100%. It means it was 100%
correctly classified, whereas none were misclassified. Simi-
larly, PCE-A, PCE-B, and PCE-C were 100% correctly
classified. -erefore, the type of PCE can be rapidly iden-
tified by using the SVM classifier. In addition, characterized
bands selected are effective and suggested for further
calculation.

3.6. Systematic Clustering Analysis. Figure 11 shows the
results for systematic clustering analysis, and the data used
for analysis were the characteristic bands of ATR-FTIR
spectra of four PCEs. -e abscissa represents the sample
number, and the ordinate represents the rescaled distance
cluster combine.

It can be seen that the spectra of all samples are classified
into four categories, and the result was consistent with the

number of PCE samples used in this study. Among them, one
cluster was A1-1, A1-2, A1-3, A2-1, A2-2, A2-3, A3-1, A3-2,
A3-3, A4-1, A4-2, and A4-3.-e second cluster was B1-1, B1-
2, B1-3, B2-1, A2-2, A2-3, B3-1, B3-2, B3-3, B4-1, B4-2, B4-3,
and C3-2.-e third cluster was C1-1, C1-2, C1-3, C2-1, C2-2,
A2-3, C3-1, C3-3, C4-1, C4-2, and C4-3, while D1-1, D1-2,
D1-3, D2-1, D2-2, D2-3, D3-1, D3-2, D3-3, D4-1, D4-2, and
D4-3 belong to another cluster. -e PCE spectra are clustered
well according to their types except that C3-2 is incorrectly
clustered. -e potential reason is that the spectrum was not
operated properly during collection. PCEs have different
molecular structure, so the intensity and location of infrared
absorption peaks are slightly different. -erefore, the PCEs
can also be classified effectively by the cluster method. -is
further shows that the feature selection method based PCE
can effectively highlight the difference between different
water-reducing agents.

3.7. Similarity Analysis of ATR-FTIR Spectra of PCE Samples.
Figures 12 and 13 show similarity calculation results by
using the angle cosine formula and correlation coefficient
formula, respectively. To establish the correlation be-
tween different PCE samples, the similarities of infrared
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Figure 7: -e scoring diagram of the first six principal components.

Table 2: Results of principal component analysis.

Number of principal components Eigenvalue Variance contribution (%) Cumulative variance contribution (%)
1 0.6521 0.5426 0.5426
2 0.2556 0.2127 0.7553
3 0.2413 0.2008 0.9561
4 0.0343 0.0286 0.9847
5 0.0076 0.0063 0.9910
6 0.0063 0.0053 0.9963
7 0.0013 0.0011 0.9974
8 0.0008 0.0007 0.9981
9 0.0004 0.0004 0.9984
10 0.0004 0.0003 0.9988
11 0.0003 0.0003 0.9990
12 0.0002 0.0002 0.9992
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spectrum of each PCE sample from all batches were
evaluated.

As shown in Figures 12 and 13, the similarities (cor-
relation coefficient value) of all 16 samples were all greater

than 0.98. In addition, the results show that the similarity of
the same PCE, even from different batches, is close to 1 as
expected, indicating that the chemical composition is ba-
sically the same. However, the PCE cannot be accurately
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Figure 8: Distribution of the load factor with the wave number: (a) PC1, (b) PC2, (c) PC3, and (d) PC4.

Table 3: Rotating principal component factor score.

No. Wave number (cm−1) Factor 1 Factor 2 Factor 3 Factor 4 Upper bound (cm−1) Lower bound (cm−1)
1 2859 −0.002 0.015 −0.006 −0.006 2755 3000
2 1730 −0.020 −0.022 −0.060 −0.025 1681 1754
3 1573 0.047 0.005 0.046 −0.006 1504 1652
4 1466 0.005 0.015 0.003 −0.005 1428 1504
5 1409 0.026 0.005 0.014 0.002 1385 1427
6 1342 −0.002 0.036 0.013 0.001 1318 1353
7 1278 −0.002 0.022 -0.005 0.005 1263 1298
8 1241 −0.006 0.014 −0.016 −0.002 1223 1258
9 1093 −0.019 0.118 0.062 0.036 1067 1132
10 961 −0.008 0.035 −0.006 0.013 982 1032
11 839 −0.021 0.041 −0.006 −0.001 895 979
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matched by the above two formulas. For example, the
similarity between D3 and D4 (0.998) from the same
manufacturer is the same as C1 and D3 (0.998) from dif-
ferent manufacturers by using the angle cosine formula.
Similar results are also found in the calculation results using
the correlation coefficient formula. -is is because the two
formulas have some limitations, that is, they are not sensitive
to the concentration. For this reason, other similarity cal-
culation methods are needed to be introduced.

In order to improve the sensitivity to the concentration
and increase the discrimination between different samples, a
new similarity calculation method is introduced in this
work, which is shown as

S � 1 −
􏽐

n
i�1 Xi − Yi( 􏼁/ Xi + Yi( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

n 􏽐
n
i�1 Xi + 􏽐

n
i�1 Yi( 􏼁( 􏼁

k
, (2)

where S means similarity between measured PCE spectral
and standard PCE spectral, Xi means peak area of the
measured PCE sample, Yi means peak area of the standard
PCE sample, n means total absorption peak number of the
standard sample spectrum, and k means shape parameter,
k� 0.3 in this work, specifically.

In PCA analysis, the characteristic bands of the PCE
spectra were extracted, and the bands correspond to the
absorption peaks in PCE spectra, indicating the difference
between different PCEs. -erefore, the area under the ab-
sorption peak corresponding to the characteristic band is
substituted into equation (2). On this basis, similarity cal-
culation results are shown in Figure 14. As expected, the
similarity between PCEs from the same manufacturer is
basically greater than 0.9, whereas PCEs from different
manufacturers is less than 0.8, which shows that the new
similarity calculation formula has better distinguishing
ability. When the PCE product received by the construction
site changes, the new formula can choose to reject the
product according to the change of some absorption peak
area.

-e similarity analysis should have an upper and lower
bound, making it transferable between dataset and methods
[32]. As mentioned earlier, NJDOT currently uses 0.975 as
the acceptance standard threshold for concrete admixtures.
However, the fluctuation of each PCE is different, and the
specific threshold should be determined for each PCE. In
this work, the three sigma method is used to establish target
threshold, as shown in

AT � μ − 3σ, (3)

0 5 10 15 20 25 30 35
1

2

3

4

Tr
ue

 c
la

ss

Number of sample for test

Predicted

True

1

2

3

4

Pr
ed

ic
te

d 
cl

as
s

Figure 9: Comparison of the test set and SVM prediction results (RBF kernel function).
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where μ means the average of similarities and σ means
standard deviation of similarities involved in calculation.

-erefore, the Acceptance -reshold (AT) corre-
sponding to each PCE is given in Table 4. In this case, the AT

of PCE-D is 0.883, indicating the quality fluctuation of this
product is large. In addition, the AT of PCE-A, PCE-B, and
PCE-C is 0.965, 0.942, and 0.928, respectively.-erefore, it is
more accurate to determine a specific AT for each PCE.
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Figure 11: Dendrogram of PCEs based on selected variables.
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Figure 12: Similarity calculation results using the angle cosine formula.
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Figure 13: Similarity calculation results using the correlation coefficient formula.
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Figure 14: Similarity calculation results utilization.
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4. Conclusions

-is study developed a practicable alternative method for
quality inspection of PCE. Specifically, the methods of
spectra collection, feature extraction, and cluster analysis
were discussed in this study. Moreover, the specific oper-
ation steps of PCE quality inspection were also proposed.
Based on the experimental result and analysis, the following
conclusions can be drawn:

(i) FTIR analysis indicated that a simple heating
method can be used to prepare samples for col-
lecting high-quality PCE spectra.

(ii) -e feature extraction method based on PCA can
effectively reserve significant information bands
while reducing the load of calculation.-e SVM and
cluster analysis results further confirm the validity
of the feature extraction method and optimization
method.

(iii) Similarity calculation results indicated that the new
similarity calculation method not only has better
classification performance but also has good gen-
eralization ability compared with the conventional
method.

(iv) -e acceptance threshold determination method
based on the 3σ principle determined the specific
threshold for each PCE rather than unified
threshold, which is much more rational and in
accordance with the actual conditions.

(v) It should be noted that it is not enough to establish
the acceptance threshold only by 4 batches. In
practical application, the correlation between
sample number and acceptance threshold should be
further explored. In addition, concrete admixtures
are not limited to PCE. Future research studies
should further verify the feasibility of applying this
method to air entraining agent, retarder, and other
concrete admixtures.
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