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A common process control application is the cascaded two-tank system, where the level is controlled in the second tank. A
nonlinear system identification approach is presented in this work to predict the model structure parameters that minimize the
difference between the estimated andmeasured data, using benchmark datasets.+e general suggested structure consists of a static
nonlinearity in cascade with a linear dynamic filter in addition to colored noise element. A one-step ahead prediction error-based
technique is proposed to estimate the model. +e model is identified using a separable least squares optimization, where only the
parameters that appear nonlinearly in the output of the predictor are solved using a modified Levenberg–Marquardt iterative
optimization approach, while the rest are fitted using simple least squares after each iteration. Finally, MATLAB simulation
examples using benchmark data are included.

1. Introductions

Recently, system identification attracted the attention of
many researchers and practitioners because of the difficulty
in modeling many systems using physical modeling ap-
proaches. Good empirical mathematical models that rep-
resent a variety of practical applications in different
engineering fields are required to address various needs [1].
+ese needs might be to understand and analyze the limi-
tations of current systems, predict and simulate new ex-
periments, or design new or modified controllers. +e
process of creating a mathematical model from measured
data is called system identification [2, 3]. Unlike most
machine learning methods, system identification gives more
insight about the structure and dynamics of the system. A
very common approach in system identifications is by using
model structure methods, which is applied in this work.
Unlike linear system identification methods that are well
established and extensively applied in the literature,

nonlinear system identification needs more attention be-
cause our real-life applications are nonlinear. +e unique-
ness of each nonlinearity increases the complexity of
nonlinear systems and their identification [4–11].

+ere are a few attempts to apply nonlinear system
identification techniques to common applications in dif-
ferent engineering fields reported in the literature. In the
area of chemical process control, Aljamaan et al. [12]
identified the dynamics of the continuously stirred tank
reactor (CSTR) in the presence of nonstationary distur-
bances, Zhu [13] identified a distillation column, and Bir-
poutsoukis et al. [14] estimated a Volterra series model of the
cascaded two-tank system. Similarly, in biomedical engi-
neering applications, Vlaar et al. [15] identified brain signals
by electroencephalography (EEG) while Cescon et al. [16]
identified models of the blood sugar level inside the human
body.

+is work is limited to the cascaded two-tank system,
where different identification approaches have been
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proposed in the literature. Unlike the nonlinear state-space
method proposed by Relan et al. [1], Birpoutsoukis et al. [14]
developed a nonparametric Volterra series-based approach.
In this latter method, cancelling the undesired transient part
played an important role in minimizing the error. Svensson
and Schön [17] proposed a black-box nonlinear system
identification state-space technique and applied it to cas-
caded tanks datasets. Different system identification ap-
proaches were proposed in the literature such as [18–32].

In this paper, a prediction error minimization (PEM)
nonlinear system identification parametric approach, similar
to the one proposed in [10], is applied to approximate the
two-tank cascaded model, where the benchmark data pro-
vided by Schoukens et al. [26] were used. +e main con-
tribution is to use such general nonlinear model structure,
Hammerstein Box-Jenkins model, and separable least
squares (SLS) identification approach to predict the pa-
rameters of cascaded tanks system. +e suggested model
structure to fit this application is Hammerstein Box-Jenkins
model, where a static nonlinearity is in series with a linear
dynamic filter whose output is summed with an autore-
gressive moving average (ARMA) noise model. Separable
least squares (SLS) techniques are suggested, where second-
order gradient descent-based optimization approach is
performed on the nonlinear parameters while ordinary least
squares regression is used, after each iteration, to estimate
the coefficients that appear linearly in the predictor.

+e arrangement of the paper is as follows. After a
physical description of the two-tank system and approxi-
mated model structure in Section 2, Section 3 includes the
identification suggested approach. +en, simulation exam-
ples and results’ discussion are illustrated. Finally, con-
cluding remarks are provided in the conclusion.

2. Problem Definition

2.1. 5e Cascaded Water Tanks. +e cascaded water tanks
system is a benchmark system proposed in [26]. It comprises
two water tanks, with free outlets as shown in Figure 1. +e
first tank is fed by a pump and drains into the second tank,
which itself drains into the reservoir (see Figure 2).+e input
to the system is the voltage applied to the pump, while the
output is the reading on a level sensor in the second tank.
Note that if the upper tank overflows, some of the overflow
will land in the second tank, while the rest will go directly
into the reservoir. +e source of nonlinearity is mainly at the
input signal and combined with a small nonlinearity during
the measurement [26].

2.2. 5e Proposed Model Structure. +e Box-Jenkins model
is, in some sense, ideal for the modeling and identification of
linear time invariant (LTI) systems because many models
can be regarded as special cases such as the AR, MA, ARMA,
ARX, ARMAX, and OE models [33]. It includes separate
filters for the system and noise models, which gives it a great
deal of flexibility. Replacing the linear process filter in the
Box-Jenkins model with a nonlinear model produces a much
more flexible model, as it can model nonlinear behaviour in

the plant but can still provide accurate predictions, even
when the stochastic disturbance is highly autocorrelated. In
this section, we consider the Hammerstein Box-Jenkins
model, shown in Figure 3. It combines the linear dynamics of
a Box-Jenkins model with the nonlinear structure of a
Hammerstein model. +e main reason for selecting Ham-
merstein is the previous knowledge of the differential bal-
ance equations for the two-tank system that imply the main
nonlinearity is at the input which is in accordance with the
Hammerstein model. Different system identification ap-
proaches are presented in [34–40].

+e main identification target is to estimate the process
and noise parameters and the expansion coefficients of the
nonlinearity. An important factor in achieving an acceptable
identification result is a good initial guess. +is is because
when any iterative optimization method is used, it is un-
certain that the assessment function will converge to the

Figure 1: Cascaded tanks system with the pump voltage input and
the water lower level tank output. +e water is boosted from
reservoir in the upper tank to the lower tank and then returns back
to the reservoir [26].

Tank 1

Tank 2
Output

Tank 2 level

Input
Volts

Pump
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Figure 2: Schematic of the cascaded two-tank system, where the
input and output are the pump voltage and water level of tank 2.
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global minimum unless the initial guess of the parameter
vector is close enough. +e model is formulated as

y(t) � yd(t) + v(t), (1)

where yd(t) is the output of the deterministic part of the
system and the noise part is

v(t) � H q
−1

 e(t) �
B q

−1
 

A q
−1

 
e(t). (2)

+e deterministic process output side is computed by

yd(t) � G q
−1

 x(t), (3)

where x(t) is the output of the static nonlinearity:

x(t) � m(u(t)). (4)

In this paper, the memoryless nonlinearity m(·) will be
approximated by a polynomial of degree M because of the
efficiency and ability to apply LS to find the coefficients of the
polynomial nonlinearity.

x(t) � 
M

i�0
ciu

i
(t). (5)

3. Preliminary

3.1. Prediction Error Method (PEM). +e prediction error
method (PEM) searches for the parameter vector, θ, that
reduces the difference between the measured output and the
output prediction generated by the model. +us, ε is the
prediction error.

ε(t|t − 1, θ) � y(t) − y(t|t − 1, θ)

� H
−1

z
−1

  y(t) − yd(t, θ)( .
(6)

Note that the parameter vector, θ ∈ Rn×1, consists of the
elements of the process and noise filters and coefficients of
the polynomial nonlinearity.

3.1.1. One-Step Ahead Prediction. +emost common option
in PEM is the one-step ahead prediction, where the existing
output, y(t), at time t is approximated given all I/O mea-
surements up to including t − 1. +e one-step ahead

predictor equation for the Hammerstein Box-Jenkins model
is as follows:

y(t | t − 1, θ) � yd(t, θ) + v(t|t − 1, θ), (7)

where the noise model predictor, v(t|t − 1, θ), is solved by

v(t|t − 1, θ) � 1 − H
−1

q
−1

   y(t) − yd(t, θ)( . (8)

By substituting (3) and (8) in (7):

y(t|t − 1, θ) � 1 − H
−1

q
−1

  y(t) + H
−1

q
−1

 

· G q
−1

  

M

i�0
ciu

i
(t)⎛⎝ ⎞⎠.

(9)

+e main objective, (10), is to compute the parameter
vector θ that minimizes the mean squared error (MSE) of the
cost function, VN(θ), in (11).

θ � arg min√√
θ∈DM

VN(θ), (10)

VN �
1
N



N

t�1
ε2(t, θ). (11)

3.2. Separable Least Squares. In the SLS algorithm, the pa-
rameter vector, θ, is divided into two sets: a group of pa-
rameters that appears linearly in the prediction error, θℓ, and
the remaining parameters, θn [41]. +e prediction error is
generally a nonlinear function of θn; although in some cases,
one or more elements of θn may appear bilinearly with
elements of θℓ. In these cases, the decision as to which
parameter is “linear” or “nonlinear” is arbitrary. +us, the
parameter vector is subdivided as

θ � θn|θl . (12)

For the Hammerstein model, the prediction error can be
treated as linear in either the polynomial coefficients or the
plant numerator. +e output of process model, yd(t), and
polynomial X is formulated as follows:

yd(t) � X θn( θℓ, (13)

X θn, t, :(  � G θn( u
0

G θn( u
1

G θn( u
2

. . . G θn( u
M .

(14)

+e parameter vector of the linear part, θℓ, is estimated
by doing simple LS.

θl � X
T θn( X θn(  

−1
X

T θn( Y, (15)

where Y is the vector that contains all experimental results of
y(t). +e nonlinear parameter vector, θn, is estimated using
an iterative approach.

θn(k+1) � θn(k) + dk. (16)

It is noticed from (16) that θℓ relied on θn in finding the
direction of the search. Similar to the parameter vector θ, the

u (t) x (t)

e (t)

yd (t) y (t)
v (t)

m (.) G (q–1)

H (q–1)

+

Figure 3: Hammerstein Box-Jenkins model.
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Jacobian is divided into two parts too: Jℓ and Jn that consist
of the linear parameters and nonlinear coefficients,
respectively:

J � Jℓ|Jn , (17)

and formulated in (18) and (19):

Jn(t, :) �
zy(t|t − 1, θ)

zθn

, (18)

Jl(t, :) �
zy(t|t − 1, θ)

zθℓ
. (19)

+e Jacobian of the SLS Js is computed by

Js(t, :) �
zy θn, θℓ θn( ( 

zθn

. (20)

Because the predictor output relies on the nonlinear
parameters that might result variations in the linear ele-
ments the projection of the linear part, Pℓ, defined in (21), is
required to calculate this variation.

Pℓ � Jℓ J
T
ℓ Jℓ 

−1
Jℓ. (21)

+e complementary projection, Qℓ, is defined in the
following equation:

Qℓ � I − Pℓ. (22)

Now Js can be calculated by

Js � QℓJn. (23)

Once Js has been computed, θn can be updated using any
quasi-Newton optimization, and Levenberg–Marquardt is
proposed in this work. +e separable least squares approach
is described in more detail by Aljamaan et al. [12].

+e nonlinear vector parameters θn can be updated using
any quasi-Newton optimization.

3.3. L-M Optimization. +e Levenberg–Marquardt algo-
rithm is a second-order iterative optimization-based tech-
nique, where the update applied to the parameter depends
on the local gradient and the approximation of the error
surface’s local curvature [42, 43]. It is applied to find the
nonlinear LS problems, where minimum is explored, but it is
not guaranteed to be the global minimum. Also, it is used in
software applications to fit best curve. +e phase direction
and length were measured together in the L-M iteration.+e
update is defined in (14).

Note that the distance and the direction of the kth step
are chosen so that the cost decreases.

Vn θ(k+1) ≤Vn θ(k) . (24)

+e L-M method formulas are as follows:

H � −
1
N

J
T
J + μ(k)IM, (25)

d(k) � −
1
N

J
T

J + μ(k)IM 
−1

J
Tε � H

−1
J

Tε, (26)

where ε is the error and J is the Jacobian. d(k) is the updated
step to control the step size and also responsible for speeding
up of the convergence and ensures the stability, and H is the
approximate Hessian; the step size for the Hessian ap-
proximation is included. IM is the M×M identity Matrix.

3.4. InstrumentalVariable (IV). +e global minimum can be
always achieved by using LS if the parameters of the model
are linear. On the other hand, models that are nonlinear in
their parameters require iterative optimization techniques to
converge to a minimum. +is minimum may not be the
global minimum and hence the importance of a good initial
guess. Moreover, predicting an excellent initial guess plays a
significant factor to have a successful identification. +e IV
approach, used in this work, is a familiar option that yields
unbiased approximated coefficients (this is explained in
[2, 3]). An extended IV approach is provided in [44].

3.5. Hammerstein Box-Jenkins Model Identification Using
SLS. In the following, a summary of the proposed SLS
identification algorithm (Algorithm 1) is presented.

4. Experimental Results

MATLAB simulation examples using two datasets of 1024
points each, identification and validation data, were pro-
vided by Vlaar et al. [15]. +ese datasets were collected from
the cascade tanks system shown in Figure 2.+e input u (t) is
a multisine signal, which is the voltage applied to pump the
water from the reservoir to the upper tank with frequency
range between 0 and 0.0144Hz and sampling time Ts equal
to 4 seconds. +e water level of the lower tank is the output
of the system, y (t), with signal to noise ratio, SNR, ap-
proximately equal to 40 dB. Input and output are shown in
Figure 4. More information about the data is included in
[15].

A Hammerstein Box-Jenkins model structure similar to
the illustrated one in Figure 3 is applied to identify the
approximated mathematical model. A third-order polyno-
mial nonlinearity in cascade with second-order filter that
represents the plant model is selected. Unlike the process
model, the noise subsystem was of first-order ARMA filter.

+e order was selected manually using the training data.
On the other hand, Table 1 illustrates the MSE results using
the validated dataset. MSE function was chosen as the as-
sessment tool.+e first experiment was applied by selecting a
first-order process and noise model with zero-order non-
linearity, and it produces high MSE results. +en, the order
of the nonlinearity increases and it is clear that the cost
decreases in the 2nd and 3rd nonlinearity cases. Unlike in the
2nd and 3rd cases, there is very small difference in the cost
between 3rd and 4th order nonlinearities. After that, the
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process linear dynamic order was increased, and it was
noticed that using 2nd order plant model and 3rd order
nonlinearity produces the minimum cost. Notice that a 1st
order noise model was fixed for all the experiments.

+e proposed parametric identificationmethod based on
Section 3 was applied. Figure 5 shows the difference between
the simulated outputs, dotted black lines, that tracks the
measured output represented in red solid line. Moreover, the
cost function using iterative second order gradient descent
method based is plotted in Figure 6, where the final

convergence was at iteration 25. +e nonlinearity is illus-
trated in Figure 7. +e mean square error, MSE, of the 2nd
order linear dynamic subsystem, the 1st order noise filter,
and 3rd order nonlinearity was the minimum with 0.0073.

(1) Find initial guess θn(0) using IV method.
(2) Compute x(t) using (5), and then fit θℓ(0) using LS.
(3) Find Jℓ and Jn as in (18) and (19).
(4) Calculate the updated step dk, (26), and then update, θn(k+1), (16).
(5) Compute x(t), (5), using updated θn(k+1), and fit θ(ℓ+1).
(6) Using LS.
(7) Compute the error and cost function, ε and Vn, respectively.
(8) If the cost Vn decreases.
(9) If Vn is significant 	en
(10) Exit
(11) else increase speed of convergence by setting the update step δ � δ/c, then go back to step 3
(12) End
(13) else the cost, Vn, increases 	en
(14) Decrease the speed of convergence by setting: δ � δc and go back to step 5
(15) end

ALGORITHM 1: Summary of the proposed identification algorithm.
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Figure 4: Recorded input to of the cascaded tanks system, pump
voltage, and output of the cascaded tanks system, the water level at
the lower tank.

Table 1: +e orders of the plant model vs. the nonlinearity and the
resulted mean square error (MSE).

Linear plant order Nonlinearity order MSE
1 0 3.0031
1 1 0.0099
1 2 0.0093
1 3 0.0092
1 4 0.009
2 3 0.0073
3 3 0.0087
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Figure 5: Zoomed figure of the exact and estimated output using
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Table 2: A comparison of MSE results using different approaches from previous studies using the validated dataset.

Method MSE (training) MSE (validation)
PNLSS-I (polynomial nonlinear state space) 0.0324 0.4498
NLSS2 0.1165 0.3433
BLA (best linear approximation) 0.5471 0.7574
Volterra models (3rd degree) (transient removal) 0.5400
Volterra models (3rd degree) (no transient est.) 2.0800
Proposed HBJ 0.0045 0.0087
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A comparison between the results obtained by applying
this proposed approach and two previous studies using the
same benchmark data by Relan et al. and Birpoutsoukis et al.
[1, 14] is given in Table 2 and Figure 8. It is clear that the
proposed Hammerstein Box-Jenkins approach out-
performed the other algorithms and has the least MSE value.

5. Conclusions

In this research, a nonlinear identification approach is ap-
plied to estimate a cascade tank system from data provided
on the nonlinear system identification benchmark website as
one of the challenging datasets, provided by Aljamaan[11].
+e suggested model structure that fits this application is a
Hammerstein Box-Jenkins model. +is parametric method
is prediction error based, where the linear dynamic process
and noise subsystem elements are approximated using it-
erative Hessian method optimization technique; on the
other hand, the polynomial nonlinearity coefficients are
fitted using the simple LS method after each iteration be-
cause they appear linearly in the predictor. In order to
prevent the ill-condition issue and increase the chance of
convergence, an IV method is used for the initial guess.
Different orders were tested to select the suitable one, and
simulated data were applied to validate the results. +e final
results are promising for the successful identification of real
two-tank systems.
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[41] A. Ruhe and P. Å. Wedin, “Algorithms for separable non-
linear least squares problems,” SIAM Review, vol. 22, no. 3,
pp. 318–337, 1980.

[42] A. Ranganathan, “+e levenberg-marquardt algorithm,”
Tutoral on LM Algorithm, vol. 11, no. 1, pp. 101–110, 2004.
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