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To address the disadvantages of the traditional solution method of the quasistatic ball bearing model, which requires the acquisition
of the initial value with experience, this paper proposes a newmethod for a finite initial value optimization to solve the quasistatic ball
bearing model. A bilevel solution model is established; the first layer is the initial value strategy model, and the second layer is the
numerical optimization model. .e Levenberg–Marquardt algorithm and the Armijo algorithm are adopted to solve the model. .e
correctness of the new method is proved by a case study of calculating a parameter of the bearing compared with the traditional
method. .e experiment results show that the proposed method can realize the fast and finite solution of the quasistatic ball bearing
model. Additionally, the new method can be extended to the calculation of the double-decker ball bearings. It provides a reasonable
and effective way for the exploration of the initial value problem of the solution of a quasistatic ball bearing model.

1. Introduction

Ball bearings are indispensable core components of mechanical
equipment, and the numerical calculation of their mechanical
models forms the basis for exploring bearing characteristics
[1–3]. .e history of mechanical analysis models of ball
bearings can be categorized into four stages, a static analysis
model [4], a quasistatic analysis model [5], a quasidynamic
model [6], and a dynamic analysis model [7]. After the
emergence of the classic model, many scholars have established
some models based on these classical theories as follows: in
terms of life span research, such as a fatigue damage accu-
mulation rating life model [8] and a dynamic contact wear
model [9]; in terms of lubrication, such as an EHL and qua-
sidynamic numerical coupled analysis model [10, 11]; in terms
of structural design, such as a bionic design model [12]; in
terms of dynamics, such as a ball dynamicsmodel [13], a sliding
model [14, 15], a kinematics mathematical model [16], a
raceway free control model [17], and under the arbitrary force
quasidynamic model [18]; and in the aspect of noise research,

such as a radiation noise calculation model [19]. When ex-
ploring the potential bearing performance, scholars have not
been satisfied with the structure of single-layer bearings.
Anderson first proposed the design concept of double-decker
bearings [20], and then some scholars carried out a series of
research on double-decker bearings. For example, the nu-
merical analysis on the double-decker rolling bearing is studied
[21], the mechanical model of a “Z-” type and “I-” type double-
decker ball bearing is established [22, 23]. In the above studies,
the traditional Newton–Raphson algorithm is applied to most
of the numerical model solutions for ball bearings. However,
the Newton–Raphson algorithm is dependent on the initial
value; the iterative initial value is very sensitive, easily falling
into a local optimal solution, and it does not have global
convergence. For strong nonlinear equations, the possibility of
multiple sets of solutions exists in theory. It is often necessary to
experiment with different initial estimates, and the number of
parameters in quasistatic equations is large; thus, the difficulty
of choosing an initial value is drastically increased, which
presents a major problem during the numerical calculation.
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Compared with the research using numerical analysis
models, only a few studies assess the initial value of the nu-
merical calculation model. Wang et al. constrained the un-
knowns of the nonlinear equations and improved the
nonconvergence problem caused by the large deviation be-
tween the initial value and the result of the Newton–Raphson
method in solving the nonlinear equations [24]. However, only
the constraints of the initial value are given; the initial search
point is not given, and the deterministic search algorithm is not
given. Zhang et al. established the relationship between load
and displacement in the state of dry friction and proposed a fast
and reliable energymethod based on the principle ofminimum
potential energy to solve the initial value of the bearing dis-
placement in the state of dry friction [25]. However, the in-
fluence of inertial force and gyroscopic moment is ignored
when the relation of load–displacement is established, so it is
not suitable for high-speed calculations.

A lot of studies have shown that many engineering
problems can be solved as optimization problems [26, 27].
.erefore, to address these problems, a finite initial value
search method is proposed based on extensive research into
the problem of solving a quasistatic ball bearingmodel under
radial and axial forces conditions.

.e main contributions of this paper are as follows:

(1) A bilevel solution model based on the initial value
strategy model and the numerical optimization model
is established. .e Levenberg–Marquardt algorithm
and the Armijo algorithm are adopted to solve the
model and to realize a fast and finite solution.

(2) In the proposed model, the initial value search
strategy is given; thus, solving the disadvantages of
the traditional analysis method requires the acqui-
sition of the initial value with experience.

(3) .e new method can be extended to the calculation
of double-decker ball bearings, which improves the
applicability of the method. It provides a new way for
solving the initial value problem of the double-
decker bearing numerical model.

.e rest of this paper is organized as follows. Section 2
analyzes the quasistatic models of the single-layer ball
bearing and the double-decker ball bearing, which provides
the basis for the following contents. In Section 3, a bilevel
solution model for the quasistatic solution of ball bearings is
established, and the experiment is carried out based on the
proposed method to verify its validity and applicability. In
Section 4, an important parameter of bearing contact angle is
selected as the case study and compared with the traditional
method to verify the correctness of the new method. .e
comparison of the search step, the offset distance, and the
computation time is given. Section 5 concludes the paper.

2. Quasistatic Model

2.1. Analysis Model of Single-Layer Ball Bearing. An analysis
model of the single-layer ball bearing is set up, and the lo-
cation diagram of the ith ball of the single-layer ball bearing
and the roll gap curvature center is shown in Figure 1(a). .e

outer ring of the single-layer ball bearing is fixed on a bearing
pedestal, so the center of the outer ring raceway curvature
Oo2n is considered fixed before and after loading, the inner
ring raceway curvature center position changes from Oo1n to
Oo1n
′ , and the ball center position changes from Ooi to Ooi

′ .
Assuming that the single-layer bearing is subject to a

radial force Fr and an axial force Fa, the ith ball of the single-
layer bearing is subjected to a centrifugal force Fi. .e forces
on the ball at the inner and outer layers of the bearing are
shown in Figure 1(b)..e forces in contact with the inner and
outer rings are Q1i and Q2i. .e gyroscopic moment is Mi.

According to Figure 1(a), at any position angle, the distance
between the curvature center of the outer ring and the ball
center is calculated as shown in the following equations:

A2i � X sin α0i + λa − Δa, (1)

B2i � X cos α0i + λr − Δr( cosφi. (2)

.e geometric relationships are shown in the following
equations according to the Pythagorean theorem [27]:

λ2i �

�������

A
2
1i + B

2
1i



− fo − 0.5( Db, (3)

λ1i �

���������������������

A2i − A1i( 
2

+ B2i − B1i( 
2



− fi − 0.5( Db.
(4)

According to Figure 1(b), the force balance equations of
the ith ball are shown as follows:

Q1i sin α1i − Q2i sin α2i −
Mi

Db

· ξ1i cos α1i − ξ2i cos α2i(  � 0,

(5)

Q1i cos α1i + Fi − Q2i cos α2i +
Mi

Db

· λ1i sin α1i − λ2i sin α2i(  � 0.

(6)

When the force of the ball bearing is balanced, the force
equilibrium equations of the inner raceway can be repre-
sented as follows:


Z

i�1
Q1i cos α1i +

ξ1iMi

Db

sin α1i  cosφi � Fr, (7)



Z

i�1
Q1i sin α1i −

ξ1iMi

Db

cos α1i  � Fa. (8)

.e contact force between the ith ball of the single-layer
bearing and the inner and outer rings can be expressed by
the following equation, where K is the contact stiffness
between the ball and the inner and outer rings:

Q1i � K1iλ
1.5
1i , (9)

Q2i � K2iλ
1.5
2i . (10)
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2.2.AnalysisModel ofDouble-DeckerBall Bearing. A double-
decker ball bearing is composed of two single ball bearings,
and its structural diagram is shown in Figure 2.

.e relevant geometric parameters of the double-decker
ball bearing are shown in Figure 3. .e formula of the
numerical analysis model is similar to that of the single-layer
bearing, with a difference occurring in the middle ring
balance formula, as shown in equations (11) and (12) [29].



Zob
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Dob

sin αo1n  cosφon

� 

Zib

m�1
Qi2m cos αi2m +

ξi2mMim

Dib

sin αi2m  cosφim,

(11)
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ξo1nMon

Dob

cos αo1n 

� 

Zib

m�1
Qi2m sin αi2m −

ξi2mMim

Dib

cos αi2m .

(12)

3. The Proposed Method

3.1. Algorithm Selection. Common optimization algorithms
include heuristic algorithms and accurate algorithms [30, 31].
.e Newton–Raphson method is one of the accurate algo-
rithms, which is widely used in the numerical calculation of ball
bearings, and although the algorithm reserves the first- and
second-order Taylor series and quadratic convergence speed,
every step needs to compute the Hessian matrix, and the
computation is complex. To improve the efficiency, the
Gauss–Newton algorithm and the Levenberg–Marquardt al-
gorithm were introduced. However, the disadvantage of the
Gauss–Newton algorithm is that it cannot be iterated when the
Hessian matrix is not satisfied with the rank. .e Lev-
enberg–Marquardt algorithm can address the Hessian matrix
that is not being satisfied with rank or not being positive, which
is an improvement on the Newton–Raphson method. .e
Levenberg–Marquardt algorithm is one of the optimization
algorithms [32, 33]. It is a nonlinear optimization method
combining the Gauss–Newton method and the gradient de-
scent method. It uses standard numerical optimization cal-
culation and it is a fast algorithm. But the step size needs to be
calculated in the process of solving, and theArmijo algorithm is
a common line search method to find step length in solving
nonlinear optimization problems [34]. .erefore, the Lev-
enberg–Marquardt algorithm and the Armijo algorithm are
adopted in this paper to solve nonlinear equations.

3.2. Establishment of the Bilevel Solution Model

3.2.1. 3e First-Layer Model. .e first-layer model is the
initial value search model. .e contact deformation value λ1i

and λ2i of the bearing should be greater than zero in the actual
working condition. In the solution of nonlinear equations, if
the initial value is not selected properly, the contact defor-
mation of the solution will be less than zero, and then the
results are not consistent with the actual situation. So, the
numerical relation of equations (3) and (4) are converted into
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Figure 1: Analysis model of the single-layer ball bearing [28]. (a) .e relationship diagram of the position of the ith ball center and the
curvature center of the raceway for the single-layer ball bearings. (b) .e force diagram of the single-layer ball bearing.
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Figure 2: .e structure of the double-decker ball bearing.
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two circles for analysis..e contact deformation equations (3)
and (4) can be regarded as two circles: one with (0, 0) as the
center and (fo − 0.5)Db as the radius and the other with (A1i,
B1i) as the center and (fi − 0.5)Db as the radius [24, 35], as
shown in the black circle and the red circle of Figure 4.

According to the analysis of the relationship between the
changes of the curvature center of the bearing before and after
loading, the difference of the given initial value points can
make the positions of the two circles exist in the following two
relationships: intersection or separation, as the position of the
black circle and the red circle shown in Figure 4. .e initial
point can fall into the region represented by the point of
M1,M2,M3, and M4. According to equations (3) and (4), if
the displacements λ1i and λ2i are greater than 0, the position of
the initial value point needs to fall outside the two circles.

In the actual running process of the ball bearing, the
contact angle between the ball and the inner raceway grad-
ually increases, while the contact angle between the ball and
the outer raceway gradually decreases, so the slope of the line
between the initial value and the center of the circle O1 should
be less than the slope of the line between the two centers.

According to the above analysis, three rules should be
met in the solution process:

Rule a. .e contact deformation value λ1i and λ2i

should be greater than zero.
Rule b. .e initial point needs to fall outside the two
circles.
Rule c. .e slope of the line between the initial value
and the center of the circle O1 should be less than the
slope of the line between the two centers.

If the initial value makes the two circles tangent, there
exists the situation that the string is searched along the
tangent line to the intersection of two circles, but the value is
negative, and the initial value needs to be adjusted again. If the
two circles are separated by the initial value, there exists the
situation that the given initial value is large, the two circles are
far apart, and the number of search steps increases.

All of the above are initial value uncertainty problems.
Based on the geometric equation of the change of the
curvature center of the bearing and the changing trend of the
contact angle between ball and raceway in the actual op-
eration of the bearing, the initial value search model of the
nonlinear equations is established to transform the uncer-
tainty problem into the determination problem to enhance
the stability of the initial value search.

As mentioned above, the initial value search strategy is
established as follows:

(1) Simplify the circle O2. .e intersection coordinate of
the simplified model O3 and the tangent circle O1 is
proposed as the initial value search point. Since there
is no axial movement or radial movement of the
bearing in the initial state and the bearing clearance
is ignored in the current state, the intersection co-
ordinates can be obtained by solving the equations of
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Figure 3: Relation diagram of the position of the mth and nth ball centers and the raceway curvature centers of the inner and outer of the
double-decker ball bearings.
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Figure 4:.e relationship of initial values for numerical analysis of
the single-layer ball bearings.
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the two circles, as shown in Figure 4. In equations (1)
and (2), λr and λa are the radial and axial dis-
placement of the inner ring under the action of
bearing external load, and Δr and Δa are radial and
axial clearance. Because the initial state of the bearing
is not under external load, λr and λa are zero,
suppose ignoring it; Δr, Δa, and X can be calculated
according to the initial parameters of the bearing.
According to equations (1) and (2) to find A2i and
B2i, substitute into equations (3) and (4) to calculate
the intersection of the two circles.

(2) Plan the search path.As described above, the slope of
the line between the initial value and the origin
should be greater than the slope of the line between
the center of the two circles, so search along the
tangent direction to ensure that the search point is
outside the two circles. If the initial value of con-
vergence is not found, search the initial value along
the upwards of the perpendicular direction of the
tangent line.

.e basis for establishing the above search strategy is as
follows: the position diagram of the simplified model O3 and
the real model O2 are shown in Figure 5. Suppose that the
red circle O2′ is the true position diagram of the bearing
under force. As described above, the search for the initial
values satisfying the nonlinear equations should be within
the shadow range of the graph; the green circle O3 is a
simplified model. According to equations (1)–(4), the
simplified model O3 only changes the position of the center
of the circle, while the radius remains unchanged. .e
simplified model O3 is tangent to the circle O1, and the limit
position is shown in the green circle O3 and circle O3′ in
Figure 5. It can be seen from the figure that, although the
model is simplified, the search path proposed above is still in
the shaded region, and the initial value is the value near the
truth value. .erefore, the simplified model can be used as
the initial search point to search the initial value. .e un-
certain initial search point is converted into a certain initial
search point, which does not depend on the working con-
dition and does not need to change the initial value
manually.

.e center of a circle O1 is (0, 0), the center coordinate of
the simplified model O3 is (A1i3, B1i3), and the point of
intersection is (A, B)..e line equation between the circleO1
and the point of intersection is shown as follows:

B1i �
B1i3

A1i3
A1i. (13)

.e tangent equation is shown as follows:

B1i
′ � −

A1i3

B1i3
A1i
′ + B +

A1i3

B1i3
A. (14)

.e perpendicular equation of the tangent line is shown
as follows:

B1i
″ �

B1i3

A1i3
A1i
″ +

AA1i3B1i3 + BB
2
1i3

A
2
1i3

. (15)

.en, the initial value search path is shown as follows:

B1i � B1i
′ + B1i
″ . (16)

Remark 1. Based on the analysis of the influence of initial
value on the calculation results, an initial value search
strategy is established. .e intersection point between the
simplified model O3 and the circle O1 is proposed as the
initial search point. .e search method of the initial value is
given. Transform the initial uncertainty problem into a
certainty problem. .us, the problem of trying to find the
initial value by manual experience is solved

3.2.2. 3e Second-Layer Model. .e second layer establishes
a numerical optimization model for the ball bearings, which
transforms the problem of solving the nonlinear equations
into an optimization problem. .e optimization objective
function is established as follows:

minF(Ω)

s.t λ1i > 0, λ2i > 0,
(17)

where Ω is composed of 2Z+ 2 nonlinear equations, whose
composition is shown as follows:

F � F1, F2, F3, F4 ,

Where :

F1 � Q1i sin α1i − Q2i sin α2i −
Mi

Db

ξ1i cos α1i − ξ2i cos α2i( ,

F2 � Q1i cos α1i + Fi − Q2i cos α2i +
Mi

Db

λ1i sin α1i − λ2i sin α2i( ,

F3 � Fr − 
Z

i�1
Q1i cos α1i +

ξ1iMi

Db

sin α1i  cosφi,

F4 � Fa − 
Z

i�1
Q1i sin α1i −

ξ1iMi

Db

cos α1i ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i � 1 ∼ z.

(18)
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.e steps for combining the Levenberg–Marquardt al-
gorithm and the Armijo algorithm are as follows:

Step 1. Use the intersection point in Figure 5 as the
current initial value x0. Compute n � length(x0);
length is a function that calculates the length of an array
dimension, and give the allowed error δ.
Step 2. Compute the functionfk � feval(Fk, x0),
muk � norm(feval(Fk, x0)), where feval is execute
the specified function and norm is matrix or vector
norm function.
Step 3. Compute the Jacobian matrix:jfk � feval
(jFk, x0).
Step 4. Compute gk � jfk

′ ∗fk.
Step 5. Solve a system of equations:dk � − (jfk

′ ∗
jfk + muk∗E(n))/gk, where E is the identity matrix
function.
Step 6. If norm(gk)< δ, then go to step 9; using the
Armijo algorithm, find the step size.
Step 7. Given the initial value ε ∈ (0, 1), ϖ ∈ (0, 0.5),
mk � 0, where k is the maximum number of iterations.
Step 8. If the inequality f(xk + αkdk)≤f(xk)+

αkϖGTdk is true, then mk
′ � mk, xk+1 � xk + εmk

′
dk, and

stop calculation; else, go to step 9, where dk is the search
direction, εmk

′ is the step size factor, and αk � βmk .
Step 9. mk � mk + 1; go to step 7.
Step 10. If the contact deformation λ1i > 0, λ2i > 0, then
stop calculation; else return to the first-layer model to
adjust the initial value by the initial value search policy.

Remark 2. .e bilevel model for the quasistatic solution of
ball bearings is established. .e Levenberg–Marquardt al-
gorithm and the Armijo algorithm are adopted to solve the
model, which transforms the problem of solving the non-
linear equations into an optimization problem.

3.3.NumericalAnalysis andCalculation of theBilevel Solution
AlgorithmModel. According to the above description, a bilevel
model for the quasistatic solution of ball bearings is established.
.e process of the layered j iteration is shown in Figure 6.

4. Results and Discussion

4.1. Type Selection of the Bearing. An ACBB 71808 bearing is
selected as the single-layer ball bearing, and the specific size
parameters are shown in Table 1.

.e inner layer bearing of the double-decker ball bearing
is designated as 71901C, the outer layer bearing is designated
as 71905C, and the specific parameters are shown in Table 2.

4.2. Verification of the Proposed Method. To verify the cor-
rectness of the method, the important parameter of ball bearing
of the contact angle is selected as a study case. Figure 7 shows the
relationship between the contact angle and the position angle of
a single-layer ball bearing using the Newton–Raphson method
and the proposed method. As the rotation speed increases, the
contact angle between the ball and the outer raceway increases,
while the contact angle between the ball and the inner raceway
decreases. .is trend is consistent with the Newton–Raphson
method..emaximum error of the contact angle is 0.84%, and
the correctness of the proposed method is proved.

4.3. Results of the Analysis of the Search Data, the Offset
Distance, and the Time. .e search step, the offset distance,
and the time are selected as the evaluation results. .e
number of searches (not the number of iterations) is defined
as the number of the initial value experiments, which at-
tempts to make the program converge and the result correct.
It is used to evaluate the finite solution of the new method.

.e long distance between the true value and the current
value does not mean that the truth value cannot be solved,
but the closer the initial value is to the truth value, the higher
the probability is that it can be solved correctly. .erefore,

O1

O3

O′3

O′2
B1i

A1i

(a)

B1i

A1i

O1

O3

O′3

O′2

(b)

Figure 5: .e position diagram of the simplified model and the real model.
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the offset distance between the current point and the truth
value is chosen as another evaluation index, which is used to
measure the reliability of the initial value search. .e dis-
tance deviation is defined as the distance between the po-
sition of each search point and the true position, the
calculation formula is as follows, where (xt

′, yt
′) is the mean

of the current initial value points and(xt, yt) is the mean of
the value of ideal truth points:

Ι �
������������������

xt − xt
′( 
2

+ yt − yt
′( 
2



. (19)

.e time complexity is selected to evaluate the rapidity
and stability of the new method.

4.3.1. Single-Layer Ball Bearing. .e comparison of the
experiment data of the type of 71808 and B218 bearings is
shown in Table 3. .e experimental environment is Intel
Xeon X5650, 2.66 GHz∗6 Core, 32GB on Windows 10, and
MATLAB 2015b. .e numerical results under different
working conditions are analyzed. Since the angular contact
ball bearings mainly bear axial load, the working condition is
select under the axial load and rotating speed increases. As
the axial load and rotating speed increase, the number of
searches slightly increases because the increases in load and
speed affect the relationship between the locations of the two
rounds, but both converge within a few steps. .e

Start

Input the structure parameters of bearing Z, Db, Dp, Ei, Eo, fi, fo
and working conditions parameters Fa, Fr, n

Determine the contact stiffness at ball-raceway contact points Kni, Kno

Solve the position angles at different positions φi

Solve the position coordinates of the initial point of intersection of
two circles A1i, B1i

Use the Armijo method to calculate the search direction

To solve the quasistatic optimization model of ball bearing with
Levenberg–Marquardt method

No

No

Yes

Yes

End

Use the initial value search
strategy to determine new A′1i, B′1i

A1i = A′1i
B1i = B′1i

abs(Fi
j +1 – F j

i) < ε0

λ1i < 0, λ2i < 0

Figure 6: Numerical analysis and calculation flowchart of the bilevel model.

Table 1: .e parameters of the single-layer ball bearing.

Parameter Value
Diameter of ball D (mm) 3.175
Initial contact angle α0 (°) 25
Number of ball Z 29
Groove curvature coefficients of inner raceway fi 0.515
Groove curvature coefficients of outer raceway fo 0.525
Pitch diameter Dp (mm) 46

Table 2: .e parameters of the double-decker ball bearing.

Parameter
Value

71901C 71905C
Diameter of ball (mm) 3 4.25
Initial contact angle (°) 15 15
Number of ball 17 21
Groove curvature coefficients of inner raceway 0.515 0.525
Groove curvature coefficients of outer raceway 0.515 0.525
Pitch diameter (mm) 18 33.5

Mathematical Problems in Engineering 7



calculation results show that the new method can effectively
decrease the number of search implementations, realizing
efficient and finite solutions.

.e fast and stable performance of the new method is
evaluated by the total time and the single search time, re-
spectively. In the design experiment in Table 3, the total time
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Figure 7: .e comparison of the relationship of the contact angle and position angle between the Newton-Raphson method and the
proposed method. (a) By the Newton–Raphson method. (b) By the proposed method.

Table 3: .e comparison of the search data and the calculation time of a single-layer ball bearing.

Bearings
type Test

Working condition .e number of search times Total time (s) .e single search time (s)
Fr
(N)

Fa
(N)

n
(r/min)

Newton–Raphson
method

Proposed
method

Newton–Raphson
method

Proposed
method

Newton–Raphson
method

Proposed
method

71808

1 200 200 10000

By trying the initial
value manually, the
uncertainty of the

initial value
determines the

uncertainty of the
search times.

3

By trying the initial
value manually, the
uncertainty of the

initial value
determines the

uncertainty of the
total times.

27.323

By trying the initial
value manually, the
uncertainty of the

initial value
determines the

uncertainty of the
single search times.

9.1077
2 200 200 20000 3 29.641 9.8803
3 200 200 30000 4 40.126 10.0315
4 200 200 40000 5 48.753 9.7506
5 200 400 10000 3 28.142 9.3807
6 200 400 20000 3 28.97 9.6567
7 200 400 30000 5 49.211 9.8422
8 200 400 40000 7 60.094 8.5849
9 200 600 10000 3 28.639 9.5463
10 200 600 20000 3 29.785 9.9283
11 200 600 30000 7 62.193 8.8847
12 200 600 40000 8 70.516 8.8145

B218

13 500 1000 0 3 26.763 8.9210
14 500 1000 5000 5 35.267 7.0534
15 500 1000 10000 7 56.726 8.1037
16 500 1500 0 3 29.878 9.9593
17 500 1500 5000 6 47.252 7.8753
18 500 1500 10000 7 59.646 8.5209
19 1000 2000 0 3 27.514 9.1713
20 1000 2000 5000 4 36.582 9.1455
21 1000 2000 10000 6 46.913 7.8188
22 1000 3000 0 3 31.122 10.3740
23 1000 3000 5000 7 60.537 8.6481
24 1000 3000 10000 8 67.128 8.3910
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for solving in each condition ranges from 26.763 s to
67.128 s, while the total solving time of the traditional
Newton–Raphson method is uncertain, which shows that
the new method can achieve finite and fast solution. What is
more, the single search time is from 7.0534s to 10.0315 s; it is
proved that the computational complexity of the new
method is acceptable and stable.

Figures 8 and 9 show the offset distance graphs corre-
sponding to different search steps in the single-layer bearing
tests with models 71808 and B218. It can be seen from the
figure that although each test has different convergence
steps, the offset distance of the search gradually decreases
and approaches the truth value gradually, indicating that the
search direction is correct and the method is stable and
reliable.

4.3.2. Double-Decker Bearing Model. .e proposed method
is extended to calculate the double-decker bearings. .e
number of nonlinear equations of solution for double-
decker bearing is 4Z + 4. Figure 10 shows the relation of the
contact angle and position angle of the double-decker ball
bearing. When the speed is not equal to zero, the ball
produces centrifugal force, and the contact angles between
the inner and outer raceways and the ball are unequal. .e
contact angles between the inside and outside layers of the
ball bearings and the inner raceway are both increased, and
the contact angle of the ball bearing with the outer raceway is
reduced because of the effect of the double-decker bearing
speed distribution ratio. .e influence of the centrifugal
force of the external layer of the ball bearing on the contact
angle is less than that of the centrifugal force of the inner
layer of the ball bearing and the influence of the internal and
external contact angles. As a result, the change in the outer
bearing contact angle range is not large..emaximum error
of the contact angle between the Newton–Raphson method
and the proposed method is 1.1%; the calculation results
illustrate the correctness of the method.

.e search data, the total time, and the single search time
of the double-decker bearing are shown in Table 4. .e new
proposed method can search the adjacent initial values in a
few attempts. .e search data and the total time perform
longer than that of single-layer bearing because the pa-
rameters of double-decker bearing are twice as much as that
of the single-layer bearing. But they are all solved in a limited
time ranged from 90.143 s to 150.187 s. .e single search
time is from 15.0238 s to 18.8521 s. It is shown that the
method is stable and acceptable for the solution of double-
decker bearing. .e proposed method effectively solves the
problem of manually randomly trying different initial values
and searching without a range, and the high efficiency and
finite solution of the double-decker bearing are realized.

Figure 11 shows the offset distance diagram corre-
sponding to different search steps in the double-decker
bearing test. As can be seen from the figure, with the increase
of search steps, the offset distance gradually decreases and

gets closer to the truth value, indicating that the search
direction is correct and proving that the method is stable and
reliable.

Remark 3. .e new method can be extended to the calcu-
lation of the double-decker ball bearings, which improves
the applicability of the new method and realizes the finite
and fast solution of the model.
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Figure 10: .e comparison of the relationship of the contact angle and position angle of the double-decker ball bearing between the
Newton–Raphson method and the proposed method. (b) By the proposed method. (a) By the Newton–Raphson method.
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From the contrast case which can be seen in the example,
the proposed method can solve the problem of the quasi-
static analysis of the ball bearing. .e result is proved by a
study case; however, unlike the traditional methods, the
bilevel model is established. From the geometric relationship
of the ball bearing of numerical analysis, this paper puts
forward the initial value search policy. By converting the
uncertain problems to a certain problem, it thus reduces the
artificial trying of the initial value by experience. So, the new
method can solve the problem in a finite number of steps.

5. Conclusion

In this paper, based on a quasistatic analysis of ball bearings,
a new method for finite initial value optimization is pro-
posed. First, a bilevel model is established, and an initial
value search strategy is proposed; the adjacent reasonable

initial value can be found in a few steps, which compensates
for the shortcoming of searching the initial value manually.
.en, the Levenberg–Marquardt algorithm and the Armijo
algorithm were used to solve the optimization problem. .e
fast solution of quasistatic analysis of ball bearings is real-
ized. .e method can be extended to the calculation of the
double-decker bearings. Finally, the correctness of the new
method is proved by comparison with the traditional
method and numerical analysis experiment. In future work,
it will be improved to calculate the multi-DOF conditions,
and the proposed methods can provide a basis for the rapid
solution of multi-DOF models in the future.

Abbreviations

Z, Zib, Zob: Ball number
Db, Dib, Zob: Ball diameter (mm)
Dp, Dip, Dop: Pitch diameter (mm)
α0, αi0, αo0: Initial contact angle (°)
fi, fi1, fi2, fo,
fo1,fo2:

Radius coefficient of curvature of
inner/outer groove

φi, φim, φon: Position angle
Ei, Eo: Modulus of elasticity
Δr, Δir, Δor, Δa, Δia,
Δoa:

Radial clearance and axial clearance
(mm)

λ1i, λi1m, λi2m, λ2i,
λo1n, λo2n:

Contact deformation (mm)

λr, λir, λor, λa, λia,
λoa:

Radial and axial displacement of the
inner ring (mm)

X, Xi, Xo: Distance between the center of
curvature of the raceway when not
subjected to load (mm)

A1i, B1i, Ai1m, Bi1m,
Ao1n, Bo1n:

Axial projection and radial projection
between the center of curvature of the
outer rings and ball center

A2i, B2i, Ao2n, Bo2n,
Ai2m, Bi2m:

Axial and radial projections between
the curvature center of the inner and
outer rings

α1i, α2i, αi1m, αi2m,
αo1n, αo2n:

Inner and outer contact angle (°)

Table 4: .e comparison of the search data and the calculation time of the double-decker bearing.

Bearings
type Test

Working
condition .e number of search times Total time (s) .e single search time (s)

Fr
(N)

Fa
(N)

n
(r/min)

Newton–Raphson
method

Proposed
method

Newton–Raphson
method

Proposed
method

Newton–Raphson
method

Proposed
method

71901C
71905C

1 200 200 10000

By trying the initial
value manually, the
uncertainty of the

initial value
determines the

uncertainty of the
search steps.

6

By trying the initial
value manually, the
uncertainty of the

initial value
determines the

uncertainty of the
total times.

90.143

By trying the initial
value manually, the
uncertainty of the

initial value
determines the

uncertainty of the
single search times.

15.0238
2 200 200 20000 7 108.636 15.5194
3 200 200 30000 7 112.581 16.0830
4 200 200 40000 8 131.64 16.4550
5 200 400 10000 6 92.591 15.4318
6 200 400 20000 7 115.74 16.5343
7 200 400 30000 8 136.219 17.0274
8 200 400 40000 8 137.415 17.1769
9 200 600 10000 7 106.173 15.1676
10 200 600 20000 7 128.318 18.3311
11 200 600 30000 8 149.363 18.6704
12 200 600 40000 8 150.817 18.8521
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Figure 11: .e offset distance of the double-decker ball bearing.
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Q1i, Q2i, Qi2m,Qo1n: Contact force (N)
Fi: Centrifugal force (N)
ξoin, ξi2m: Guidance coefficient
n: Speed (r/min).
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