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+is article investigates the stabilization problem of a nonlinear networked control system (NCS) exposed to a replay attack. A new
mathematical model of the replay attack is proposed. +e resulting closed-loop system is defined as a discrete-time Markovian
jump linear system (MJLS). Employing the Lyapunov–Krasovskii functional, a sufficient condition for stochastic stability is given
in the form of linear matrix inequalities (LMIs). +e control law can be obtained by solving these LMIs. Finally, a simulation of an
inverted pendulum (IP) with Matlab is developed to illustrate our controller’s efficiency.

1. Introduction

Anetworked control system (NCS) is a system in which all the
data (control input, sensor readings, etc.) are transferred via a
communication network. +is novel kind of system differs
significantly from the classical control systems, where the
exchanges of the data pass via electrical wiring. +e main
advantages of the communication network are flexibility, high
efficiency, and reasonable price. Nevertheless, a new issue
arose with the use of this control implementation compared
with the old wired control systems, such as the packet loss.
+is problem has been the subject of much systematic in-
vestigation, where Lu et al. [1] used the Bernoulli distribution
to model the packet loss of the information transmitted
through the network. Yu et al. [2] modelled the NCS with data
packet dropout as a linear jump system. Chen et al. [3] studied
the H∞ control of a nonlinear NCS with data packet dropout,
where the data packet dropout was described as a homoge-
neous Bernoulli process and the global system was modelled
as a Takagi–Sugeno (T-S) fuzzy system. Xiong and Lam [4]
considered two categories of packet dropout; the first category
was the random packet loss process, whereas the second was
the Markovian packet loss process.

Moreover, the control issue of an NCS with time delay
and packet dropout was established in [5–8], where Qi et al.
[5] studied the event-triggered H∞ control problem for
networked switched systems with a mixed time and state-
dependent switching law taking into consideration the effect
of the network delay. Wang et al. [6] investigated the H∞
issue for NCS with packet dropout and varying time delays.
Wang et al. [7] studied the robust H∞ fault detection di-
lemma for NCS with Markov time delay and packet loss in
both communication channels. Qiu et al. [8] treated the
stability problem for an NCS with random time delays and
packet dropouts based on a unifiedMarkov jumpmodel. For
more information on stochastic control using Markov
chains, we refer the interested reader to [9].

In addition to the network problems mentioned above.
+e cyberattacks pose a significant threat to the NCS, es-
pecially after a series of successful attacks. In the last ten
years, the Stuxnet virus was considered the most dangerous
cyberattack in history. +is virus targeted Iranian nuclear
facilities and caused enormous losses [10]. Stuxnet has the
same characteristic as a replay attack [11, 12], it registers the
measurements of the sensors; after that, it replaces the new
sensor’s output with previous measurements that are already
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saved and stocked by the cybercriminal.+is type of attack is
commonly a principal source of instability.

Due to the Stuxnet events, the control issues of a cyber
system under a replay attack have attracted many re-
searchers. +e majority of these works have a common
point.+ey had used a based-detector method to identify the
replay attack by injecting a noisy signal as an authentication
signal to the nominal control input.+en, they calculated the
control law basing on the information offering by the de-
tector. However, when the detection rate increases, the
control efficacy deteriorates. A trade-off exists between the
detection rate and the degradation of the control efficiency
in terms of the variance of the authentication signal [13].
Moreover, the absenteeism of the attack when the adversary
decides to stop the attack for a while produces a waste of
control cost [11]. Consequently, new technical solutions are
required to design the control law based upon the mathe-
matical model of the replay attack. At our best knowledge,
up to now, far too little attention has been paid to study this
problem using the mathematical-based method, which
motivates the study of this paper. +e main objective of this
article is to use an accurate mathematical model of the replay
attack to calculate a robust feedback controller that guar-
antees the stability and conserves the control efficacy, with or
without the existence of the replay attack.

+e main contribution of this article is to model the
nonlinear NCS against a replay attacker as a discrete-time
Markovian jump linear system (MJLS), where a two-state
Markov chain is used to describe the attack apparition, and a
finite-state Markov chain is utilized to model the replay
delay value. Based on this mathematical model, we will
develop a new LMI employing the Lyapunov–Krasovskii
functional.

Due to the various uses of the inverted pendulum (IP) in
many fields, this system is considered one of the best ap-
plications of the NCS. Including its distinct physical char-
acteristic (strong nonlinearity), these particularities
encouraged us to choose it as an application system to test
the robustness of our approach. Many methods are utilized
to model the IP. For instance, Wang [14] modelled the IP
based on the Euler–Lagrange equations. Furthermore,
Çakan et al. [15] built for the IP a virtual prototype using
MSC Adams software, this prototype was exporting to
MATLAB, and the simulation was realized via MATLAB
and MSC Adams software. In this study, we will use the
Euler–Lagrange equations to give a mathematical model to
the IP. +en, we will discretize the differential equations by
using the discretization method of the first order (Euler).
After that, we will linearise the discrete model creating the
Takagi–Sugeno (T-S) fuzzy model of the IP, which means
writing the nonlinear model in the form of many linear
subsystems that are connected to membership function [16].
+e overall number of subsystems depend on the number of
nonlinearity exist in the system. For more information on
the T-S fuzzy model and its applications, we refer the in-
terested reader to [17–20].

+e article is organized as follows: first, we will represent
our model of the replay attack, and we will describe the
structure of the global system. Section 3 develops the

sufficient stability conditions of the overall system. After
that, in Section 4, we will use the Euler–Lagrange equations
to give a mathematical model to the IP. In Section 4.3, two
simulations will be performed to investigate the effectiveness
of the proposed approach. Finally, in Section 5, a brief
conclusion is presented to sum up the approach.

Notations. Let (Ω,F,P) be a complete probability space.
X1 > 0 and X1 < 0 are utilized to denote a positive and
negative definite matrices, respectively. Notation X1 ≥X2
(respectively, X1 >X2) where X1 and X2 are real symmetric
matrices, meaning that X1 − X2 is positive semidefinite
(respectively, positive definite). diag(X1, . . . , Xn) refers to an
n × n diagonal matrix with Xi as its ith diagonal entry. 0n

denotes the zero matrix, whereas In denotes the identity
matrix with appropriate dimensions. +e delimiter ‖.‖ refers
to the Euclidean norm for vectors and induced 2-norm for
matrices. +e operator E[.] denotes the mathematical ex-
pectation. +e superscript T denotes the transpose for
vectors or matrices. +e symbol ∗ stands for the symmetric
terms of the corresponding off-diagonal term. +e notation
sym(X1) is employed to denote the expression X1 + XT

1 .

2. Replay Attack Model and
Networked Controller

2.1. Replay Attack. A replay attack is a type of cyberattack in
which a cybercriminal eavesdrops on a secure communica-
tion network, intercepts the data, and then maliciously delays
or retransmits it to misdirect the system into doing what the
adversary wants (Figure 1). +e thing that makes the replay
attack one of the most perilous cyberattacks is that the ad-
versary does not even need advanced skills to decrypt the data,
he just needs to record the sensing data secretly and then
resend it to the controller after modifying the sensors’ output
fraudulently to push the controller to take wrong decisions
which could destabilize the system in the feedback loop.

To explain how the replay attack behaves, an illustrative
example will be utilized (Figure 2), where the first line
represents the transmitted sequence and the second line
represents the received sequence under the replay attack.We
suppose that the attacker records from 100 to 101, and then
he replays it from 102 to 103. In other words, the adversary
replaces the packets 102 and 103 by 100 and 101, respec-
tively. +e same procedure for the packet 200, but this time
the replay delay equals 3Te; that means he saves the packets
197; 198; 199. +en, he replays it from 200 to 202.

2.2. ProblemFormulation. +is article deals with the control
problem of a nonlinear NCS with a replay attack. As Figure 3
shows, the transmission of the packets from the sensor to the
controller passes via a communication network. We assume
that an attacker has connected to the communication net-
work of the system. To keep himself undercover and avoid
being detected by the classical detectors, the attacker will not
apply the attack all the time (steadily); he will appear at
different times (randomly).+is action will reflect negatively
on the stability of the system.
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+e framework of nonlinear NCS exposed to a replay
attack is depicted in Figure 3. +e T-S fuzzy model can be
seen as represented by s plant rules. +e ith plant rule is

Rule i: if z1(k) isMi1 and . . . and if zr(k) isMir. (1)

+en,

x(k + 1) � Aix(k) + Biu(k), (2)

where x(k) ∈ Rn denotes the system state and u(k) ∈ Rm

denotes the control input. Ai ∈ Rn×n and Bi ∈ Rn×m are the
system matrices.

Using a standard fuzzy inference, the final state of the
fuzzy model is inferred as follows:

x(k + 1) � 

s

i�1
hi(x) Aix(k) + Biu(k)( , (3)

where

hi(x) � hi(z(k)) �
wi(z(k))


s
l�1 wl(z(k))

,

wl(z(k)) � 

j

l�1
μi,l zl(k)( ,

(4)

wi(z(k)) is the attributed weight for each rule i, and
μi,l(zl(k)) is the appurtenance degree of the membership
function to the fuzzy set Mi,j.

+e functions hi(z) satisfies the convex sum property,
i.e, 

s
i�1 hi(z) � 1, and 0≤ hi(z)≤ 1, with i� 1. . .s.

+e state feedback controller can be driven by the next
rules:

Rule j: if z1(k) isMj1 and, . . . , and if zr(k) isMjr. (5)

+en,

u(k) � 
s

j�1
hj(x)Kj x(k), (6)

where Kj ∈ Rm×n is the controller gain and x(k) is the
controller input with

x(k) � (1 − δ(k))x(k) + δ(k)x(k − τ(k)). (7)

+e variable δ is a two-state Markov model that rep-
resents the state of the switch S, Figure 4. If the commu-
nication link between the sensor and the controller was
perfect, δ will be equal to 0. Otherwise, if there was a
communication problem (communication delay and/or
replay attack), δ will be equal to 1. τ(k) represents the replay
delay and/or the network delay; that means if there is an
attack, the state x(k) will be changed by the previous state
x(k − τ1(k)). However, if there is a communication delay,
the state x(k) will be equal to x(k − τ2(k)). Finally, if there
are a replay attack and a network delay simultaneously, the
state x(k) will be equal to x(k − τ1(k) − τ2(k)), and since the
delays τ1(k) and τ2(k) are variables, we can unify the two
variables in one variable τ(k), where τ(k) is a random scalar
which bounded between τmin and τmax, such as
0≤ τmin ≤ τ(k)≤ τmax. Consequently, the controller (6) will
be switching between several subsystems based on the value
of δ(k) and τ(k). +e switching controller has been widely
used for other similar systems (see [21, 22], and the refer-
ences therein).

Replacing the equation (6) in (2), we obtain a discrete-
time MJLS defined on a complete probability space
(Ω,F,P):

x(k + 1) � ACL(δ(k))x(k) + Ad(δ(k))x(k − τ(k)), (8)

where ACL(δ(k)) � A + (1 − δ(k))BK and Ad(δ(k)) �

δ(k)BK, A � 
s
i�1 hi(x)Ai, B � 

s
i�1 hi(x)Bi, K � 

s
j�1

hj(x)Kj, {δ(k), k ∈ Z} is a two-state Markov chain which
takes value in the set S1 ≜ 0, 1{ }, and { τ(k), k ∈ Z } is a
finite-state discrete-time homogeneous Markov chains
which takes value in the finite set S2 ≜ 0, 1, . . . , τmax . +e
transition probability matrices are

Prob δ(k + 1) � β|δ(k) � α  � Παβ,

Prob τ(k + 1) � η|τ(k) � ]  � Θ]η,

⎧⎨

⎩ (9)

where Παβ ≥ 0 and Θ]η ≥ 0 for all α, β ∈ S1, ], η ∈ S2, and
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Figure 3: Structure of the physical process with a replay attack.
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1

β�0
Παβ � 1,



τmax

η�0
Θ]η � 1.

(10)

Definition 1 (see [23]).+e system (8) is stochastically stable
if for any initial condition x0 � x(0) and initial modes
δ0 � δ(0) ∈ S1, τ0 � τ(0) ∈ S2, there exists a finite Ξ> 0
such that the following inequality holds:

E 
∞

k�0
‖x(k)‖

2
|x0, δ0, τ0

⎧⎨

⎩

⎫⎬

⎭ <x
T
0Ξx0. (11)

3. Main Results

+is section will be devoted to the stabilization theorem for
the closed-loop system (8).

Theorem 1. 1e overall closed-loop system (8) will be sto-
chastically stable if there exist matrices Pα] > 0, α ∈ S1,
] ∈ S2, Q> 0, R> 0 , Q< R, Yj with appropriate dimensions,
and a symmetric matrixW, such that the following LMIs hold:

ϕ11 ϕ12 ϕ13
∗ ϕ22 ϕ23
∗ ∗ ϕ33

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (12)

where,

X � W
− 1

,

Yj � Kj
X,

Q � XQ X,

R � XR X,

Pα] � XPα] X,

Pα] � XPα]
X,

ϕ11 � Q + τmax − τmin(  R + Pα] − Pα]

− sym( X) + sym Ai
X +(1 − δ(k))BiYj ,

ϕ12 � Ai
X +(1 − δ(k))BiYj 

T
+ δ(k)BiYj − X

T
,

ϕ13 � Pα] + Ai
X +(1 − δ(k))BiYj 

T
− sym( X),

ϕ22 � − Q + sym δ(k)BiYj ,

ϕ23 � δ(k)BiYj 
T

− X,

ϕ33 � Pα] − sym( X).

(13)

Proof. +e stochastic Lyapunov functional candidate for the
system (8) is

V(x(k), δ(k), τ(k)) � 
3

ρ�1
Vρ(x(k), δ(k), τ(k)) � 

3

ρ�1
Vρ,

(14)

where

V1 � x
T
(k)P(δ(k), τ(k))x(k),

V2 � 
k− 1

l�k− τk

x
T
l (k)Qxl(k),

V3 � 

− τmin+1

l�− τmax+2


k− 1

m�k+l− 1
x

T
m(k)Rxm(k).

(15)

+e difference of the function V is given by

ΔV(x(k), δ(k), τ(k)) � 
3

ρ�1
ΔVρ(x(k), δ(k), τ(k)) � 

3

ρ�1
ΔVρ

� 
3

ρ�1
Vρ(x(k + 1), δ(k + 1),

τ(k + 1))|(x(k), δ(k), τ(k))

− Vρ(x(k), δ(k), τ(k)).

(16)

If we put δ(k) � α, and τ(k) � ], we will denote
P(δ(k), τ(k)) as Pα], ACL(δ(k)) as A

ij

α , and Ad(δ(k)) as A
ij

dα.
+e mathematical expectation of ΔVρ is given by

∗E ΔV1  � E x
T
(k + 1)P(δ(k + 1), τ(k + 1))

x(k + 1) − x
T
(k)P(δ(k), τ(k))x(k),

� E [x(k) + y(k)]
T
P(δ(k + 1), τ(k + 1))

x(k) + y(k)] − x
T
(k)P(δ(k), τ(k))x(k) ,

� ζT
(k)

Pα] − Pα] 0 Pα]

∗ 0 0

∗ ∗ Pα]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ζ(k),

(17)

where

ζ(k) � x
T
(k)x

T
τ (k)y

T
(k) 

T
,

Pα] � 
1

β�0


τmax

η�0
ΠαβΘ]ηPβη.

(18)

We define y(k) � x(k + 1) − x(k). +en,

Π01

Π10

Π11Π00 δ = 0 δ = 1

Figure 4: Two-state Markov model.

4 Mathematical Problems in Engineering



x(k + 1) − x(k) − y(k) � 0,

2ζT
(k)W[x(k + 1) − x(k) − y(k)] � 0,

2
s

i�1


s

j�1
hihjζ

T
(k)W Aα

ij
− In x(k) + Adα

ij
xτ(k) − y(k)  � 0.

(19)

+erefore,

E ΔV1  �

ϕ11 ϕ12 ϕ13
∗ ϕ22 ϕ23
∗ ∗ ϕ33

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (20)

where

ϕ11 � Pα] − Pα] + sym WA
ij

α  − sym(W),

ϕ12 � WA
ij

α 
T

+ WA
ij

dα − W
T
,

ϕ13 � Pα] + WA
ij

α 
T

− sym(W),

ϕ22 � sym WAdα
ij

 ,

ϕ23 � WA
ij

dα 
T

− W,

ϕ33 � Pα] − sym(W).

∗E ΔV2  � 
k

l�k+1− τk+1

x
T
l Qxl − 

k− 1

l�k− τk

x
T
l Qxl.

(21)

Notice that



k

l�k+1− τk+1

x
T
l Qxl � 

k− τmin

l�k+1− τk+1

x
T
l Qxl + 

k− 1

l�k+1− τmin

x
T
l Qxl + x

T
k Qxk,



k− 1

l�k− τk

x
T
l Qxl � 

k− 1

l�k+1− τk

x
T
l Qxl + x

T
k− τk

Qxk− τk
.

(22)

Hence,

E ΔV2  � x
T
k Qxk − x

T
k− τk

Qxk− τk
+ 

k− τmin

l�k+1− τk+1

x
T
l Qxl + 

k− 1

l�k+1− τmin

x
T
l Qxl − 

k− 1

l�k+1− τk

x
T
l Qxl, (23)

∗E ΔV3  � 

− τmin+1

l�− τmax+2


k

m�k+l

x
T
mRxm − 

− τmin+1

l�− τmax+2


k− 1

m�k+l− 1
x

T
mRxm

� 

− τmin+1

l�− τmax+2


k− 1

m�k+l

x
T
mRxm + x

T
k Rxk − 

k− 1

m�k+l

x
T
mRxm − x

T
k+l− 1Rxk+l− 1⎡⎣ ⎤⎦

� 

− τmin+1

l�− τmax+2
x

T
k Rxk − x

T
k+l− 1Rxk+l− 1  � τmax − τmin( x

T
k Rxk − 

− τmin+1

l�− τmax+2
x

T
k+l− 1Rxk+l− 1

� τmax − τmin( x
T
k Rxk − 

k− τmin

l�k+1− τmax

x
T
l Rxl.

(24)

Notice that 0≤ τmin ≤ τ(k)≤ τmax for all k, we get



k− 1

l�k+1− τmin

x
T
l Qxl ≤ 

k− 1

l�k+1− τk

x
T
l Qxl.



k− τmin

l�k+1− τk+1

x
T
l Qxl ≤ 

k− τmin

l�k+1− τmax

x
T
l Qxl.

(25)

Employing the simplification in ([24], p.5), we have



k− τmin

l�k+1− τmax

x
T
l Qxl < 

k− τmin

l�k+1− τmax

x
T
l Rxl. (26)

+en, Q<R.
Finally, combining (20), (23), and (24) together with

+eorem 1, we obtain

E[ΔV]≤ ζ(k)
TΨij

α]ζ(k)< 0, (27)

where Ψij
α] �

ϕ11 ϕ12 ϕ13
∗ ϕ22 ϕ23
∗ ∗ ϕ33

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦< 0,

ϕ11 � Q + τmax − τmin( R + ϕ11,

ϕ22 � − Q + ϕ22.
(28)

Remark 1. +e inequality (27) cannot be regarded as an LMI
because of the existence of nonlinear terms. So, we cannot
solve it using Yalmip toolbox in Matlab. Nevertheless, if we
multiply the matrix Ψij

α] in (27) by the matrix diag3×3(W− 1)

in left and right sides.+e problem will be solved, and we get
(12).
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Remark 2. In practice, it is important to know the maximum
network delay and the maximum replay delay such that the
NCS can remain stable. To determine these maximum time
delays, we should solve the following nonlinear optimization
problem:

max τmax s.t.(12) (29)

4. Application to an Inverted Pendulum

4.1. Mathematical Model of the Inverted Pendulum. +e
inverted pendulum depends on three parameters Figure 5.
+e position of the cart noted as X, the angle θ which makes
the pendulum rod with the vertical position, and the force
exerted to the cart to put the pendulum rod in the stable
position. +ese parameters of the system are included in
Table 1.

In reason to give the mathematical model of the system,
we will use the Lagrangian equation. +is equation is based
on the principle of conservation of mechanical energy. In
our case, the system has two degrees of freedom which can
be represented by

(i) X for the horizontal movement of the cart.
(ii) θ for the angular position of the pendulum.

+e Lagrangian equation is generally defined by the
difference between the kinetic energy (Ec) and the
potential energy (Ep) of the system:

LE � Ec − Ep. (30)

+e form of the Lagrange equation is

d
dt

zLE

zE
.

j

⎛⎝ ⎞⎠ −
zLE

zEj

� Gj. (31)

With Ej and Gj are, respectively, the degree of
freedom and the generalized force in the sense of the
degree of freedom Ej.
+e kinetic energy of the system is given by

Ec �
1
2

M _X
2

+
1
2
m′ _X

2
− 2L _Xθ

.

cos(θ) + L
2θ

. 2
  +

1
2

Jθ
. 2

,

(32)

where J� (m′L2/3).
+e potential energy of the system is given by

Ep � m′gLcos(θ). (33)

Replacing equation (32) and (33) in (30), we obtain

LE �
1
2

M _X
2

+
1
2
m′ _X

2
− 2L _Xθ

.

cos(θ) + L
2θ

. 2
 

+
1
2

Jθ
. 2

− m′gLcos(θ).

(34)

(iii) If Ej(t) � X(t), then, equation (31) becomes

M + m′(  €X − m′Lθ
..

cos(θ) + m′Lθ
. 2
sin(θ) � F,

€X �
F

M
−

m′Lθ
. 2
sin(θ)

M
+

m′L
M

θ
..

cos(θ). (35)

With M �m’ +M.
(iv) If Ej(t) � θ(t), then equation (31) becomes

m′L2
+ J θ

..

+ m′L €X cos(θ) − m′gLsina(θ) � 0,

(36)

θ
..

�
3g

4L
sin(θ) +

3
4L

€X cos(θ). (37)

We define

_x1(t) � x2(t) � θ
.

. (38)

Hence,

_x2(t) � θ
..

. (39)

Replacing the value of €X in (37), we obtain

(m, 2L)

MF X

θ

Figure 5: Inverted pendulum.

Table 1: Inverted pendulum parameters.

Symbol Description Unit
X Cart position Meter
θ Pendulum angle with vertical Radium
F Applied force to the cart Newton
m’ Mass of the pendulum rod Kilogram
M Mass of the cart Kilogram
L Half of pendulum rod length Meter
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_x2(t) �
3g

4L
sin x1(t)(  +

3
4L

cos x1(t)( 

· au(t) − m′Lax22(t)sin x1(t)( 

+ m′aL _x2(t)cos x1(t)( ,

�
gsin x1(t)(  − am′L/2(  x

2
2(t)sin 2x1(t)( 

(4L/3) − am′Lcos2 x1(t)( 

+
acos x1(t)( u(t)

(4L/3) − am′Lcos2 x1(t)( 
,

(40)

where a � (1/M).
+e mathematical model of the IP system can be
written as follows:

_x1(t) � x2(t),

_x2(t) �
gsin x1(t)(  − am′L/2( x

2
2(t)sin 2x1(t)(  + acos x1(t)( u(t)

(4L/3) − am′Lcos2 x1(t)( 
.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(41)

4.2. T-S Fuzzy Modelling of the Inverted Pendulum. To pass
from continuous time to discrete time, the differential
equations (41) can be discretised by using the discretization

technique of the first-order Euler in which we will replace
_xi(t) by (xi(k + 1) − xi(k))/Te, where Te is the sampling
time. +e differential equation (41) becomes

x1(k + 1) � x1(k) + Tex2(k),

x2(k + 1) � x2(k) + Te

gsin x1(k)(  − am′L/2( x
2
2(k)sin 2x1(k)(  + acos x1(k)( u(k)

(4L/3) − am′Lcos2 x1(k)( 
.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(42)

As we can notice from (42), the state-space represen-
tation contains four nonlinearities, which can be presented
as follows:

z1(k) �
1

(4L/3) − am′Lcos2 x1(k)( 
,

z2(k) � sin x1(k)( ,

z3(k) � x2(k)sin 2x1(k)( ,

z4(k) � cos x1(k)( ,

(43)

where x1(k) ∈ [(− π/2), (π/2)]. For x1(k) � ± (π/2), the
system is not controllable. So let us suppose that x1(k) is
bounded between two angles [− θlimit, θlimit] with θlimit is less
than 90 degree Figure 6.

+e equation (42) becomes

x1(k + 1) � x1(k) + Tex2(k),

x2(k + 1) � x2(k) + Tez1(k) gz2(k) − am′L/2z3( (k) + az4(k)u(k) ,
 (44)
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where

z1(k) �
1

(4L/3) − am′Lcos2 x1(k)( 
� 

2

i�1
Mi z1(k)( qi,

(45)

with q1 � max(z1(k)), q2 � min(z1(k)), M1(z1(k)) � (z1
(k) − q2)/(q1 − q2), and M2(z1(k)) � (q1 − z1(k))/(q1 − q2).

z2(k) � sin x1(k)(  � 
2

i�1
Ni z2(k)( bi, (46)

with b1 � max(z2(k)), b2 � min(z2(k)), N1(z2(k)) � (z2
(k) − b2)/(b1 − b2), and N2(z2(k)) � (b1 − z2(k))/(b1 − b2).

z3(k) � x2(k).sin 2.x1(k)(  � 
2

i�1
Ri z3(k)( ci, (47)

with c1 � max(z3(k)), c2 � min(z3(k)), R1(z3(k)) � (z3
(k) − c2)/(c1 − c2), and R2(z3(k)) � (c1 − z3(k))/(c1 − c2).

z4(k) � cos x1(k)(  � 
2

i�1
Si z4(k)( di, (48)

with d1 � max(z4(k)), d2 � min(z4(k)), S1(z4(k)) � (z4
(k) − d2)/(d1 − d2), and S2(z4(k)) � (d1 − z4(k))/(d1 − d2).

After using this linearisation technique, the IP system
can be written as a sixteen linear subsystems, with the
matrices Ai and Bi of these subsystems given in Appendix.

4.3. Simulation

4.3.1. System Stabilization. To illustrate the effectiveness of
the developed controllers in+eorem 1, a simulation of an IP
controlled through a communication network is performed
using the parameters in Table 2.

+e convex sum propriety of the activation functions
hi(z) is well respected. From Figure 7, we can see that

0≤ hi(z)≤ 1. And from Figure 8, we have 
s
i�1 hi(z) � 1,

with i� 1. . .16.
Figure 9 represents the switch values of δ(k). To be close

to the reality, we chose that the commutation of the switch S

is random. +e command “dmtc” in Econometrics Matlab
toolbox is used to create the switching law of δ(k). +e
matrix of the transition probability is

Π �
0.5 0.5

0.5 0.5
 . (49)

In this example, we will take the case when τ(k) is
bounded between 0.5s and 1s, which means it will take the
following values (0.5–0.6–0.7–0.8–0.9–1). Figure 10 shows
the switch of τ(k) between these values. +e transition
probability matrix is as follows:

Θ �

0 0.25 0.2 0.25 0 0.3

0.1 0 0 0.4 0.1 0.4

0.35 0.15 0 0.1 0.2 0.2

0.45 0 0.15 0.1 0 0.3

0.3 0.2 0 0.2 0 0.3

0.15 0.2 0.15 0.3 0.1 0.1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (50)

As is custom, the IP system has an inherent instability,
Figures 11 and 12 show the state trajectory of the open-loop
system. +e states of the system (x1 which denotes the
angular θ, and x2 which denotes the angular velocity θ

.

)
diverge from zero. According to +eorem 1 and exploiting
Matlab, the LMIs (12) have a feasible solution, with the value
of the gain vector Kj of the controller

Stabilization zone

θ = 0

θ = π

θlimt
θ

x

Figure 6: Stabilization zone [25].

Table 2: Inverted pendulum parameters.

Symbol Description Value
g Gravitational acceleration 9.81Newton/kilogram
m’ Mass of pendulum rod 0.25 kilogram
M Mass of cart 1 kilogram
L Half of pendulum rod length 0.15 meter
Te Sampling time 0.01 second

h i
 (z

)
10 20 30 40 50 60 70 80 90 1000

k

−0.5

0

0.5

1

Figure 7: Activation functions hi(z) of the IP.
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K1 � − 5.2918 − 6.7255 ,

K2 � − 5.2975 − 6.7248 ,

Kj � K2, for all j � 3, . . . , 16.

(51)

+e state trajectories are shown in Figures 13 and 14,
where the two curves represent the trajectory of the states x1
and x2 under the controller gain Kj. +e initial condition is
x0 � π/4 0 

T. As we can notice from the figures, the two
curves converge to zero. Accordingly, the closed-loop system
is stable.

4.3.2. Trajectory Tracking. Let us consider the above system
with the same parameter’s value given in Table 2.+e subject
of this paragraph is that the angle θ(k) of the IP’s rod tracks
the desired trajectory Yr (the reference).

+e control law will be written as follows:

u(k) � Kx(k) + LYr(k), (52)

x(k + 1) � (A +(1 − δ)BK)x(k)

+ δBKx(k − τ(k)) + BLYr(k).
(53)

To find the value of Lj, we will apply the Z-transform
proprieties on the equation (53):

∑h
i (
z)

10 20 30 40 50 60 70 80 90 1000
k

−0.5

0

0.5

1

1.5

Figure 8: Summation of hi(z) from i� 1 to 16.

10 20 30 40 50 60 70 80 90 1000
k

–1

–0.5
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1

1.5

2

δ 
(k

)

Figure 9: Switch values of δ(k).
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Figure 10: Switch values of τ(k).
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Figure 11: State trajectory x1 of the open-loop system.
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Figure 12: State trajectory x2 of the open-loop system.
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zX(z) − zx(0) � (A +(1 − δ)BK)X(z)

+ δBKz
− τ
X(z) + BLYr(z),

X(z) � z − A +(1 − δ)BK + δBKz
− τ

( 
− 1

× zx(0) + BLYr(z)( .

(54)

+e output y(k) of the system can be rewritten as follows:

y(k) � Cx(k), (55)

where C� [1 0].
+e gains Lj will be calculated in such a way that

y∞ � Yr, with

y∞ � lim
z⟶1

1 − z
− 1

 CX(z). (56)

Hence,

L
− 1

� C(I − (A + BK))
− 1

B,

L
− 1
j � C I − A + BKj  

− 1
B.

L � 
16

j�1
hj(z(k))Lj.

(57)

To see the robustness of the proposed theorem, three
different situations will be studied. In the first situation, the
event rate of the switch S is 0.1 (the percentage to have a
replay attack during 100 s is 10%). In the second situation,
the event rate equals 0.3. Finally, in the third situation, the
event rate is 0.5.

Figures 15–17 represent the different events rates of the
switch S. 0.1, 0.3, and 0.5, respectively.

As we have said previously, the instants, when δ(k) takes
value 1, represent the times of the replay attacks. To simulate
perfectly the attacks, these instance are chosen arbitrary.+e
values of τ(k) stayed the same (Figure 10).

+e value of the controller gain Kj and the trajectory
controller gain Lj are given in Tables 3 and 4.
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Figure 13: State trajectory of x1 of the closed-loop system.

10 20 30 40 50 60 70 80 90 1000
k

–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

A
ng

le
 v

el
oc

ity

Figure 14: State trajectory of x2 of the closed-loop system.
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Figure 15: Event rate of S is 0.1.
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Figure 16: Event rate of S is 0.3.
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From Figure 18, we can notice that if the event rate of the
switch S equals 0.1, the output can track perfectly the ref-
erence; the same thing happens if the chance to have an
attack rises to 30% or 50%. But, the response time at start up
increases in these two cases. However, the results stay ac-
ceptable, which reflects the potency of our theorem.

5. Conclusion

+is study dealt with the control problem of a nonlinear NCS
exposed to a replay attack. A novel approach was used to
calculate the control law based on an accurate mathematical
description of the global system, taking into account the
stochastic characteristics of the replay attack.

Two simulations have been performed to investigate the
effectiveness of the proposed approach. +e obtained results
show that the new approach conserves the performance of
the system despite the existence of the replay attack. +e
main advantages of the presented control method compared
with the other approach that based on the detectors are the
stochastic robustness, the good response time, and the
adaptability for a practical application.

As a perspective of this study, our attention will be
oriented towards studying the same problem with packet
losses and an external disturbance.

Appendix

+e state matrices and the input matrices of the sixteen
subsystems are

A1 �

1 Te

Tegq1b1 1 − Te

am′L
2

q1c1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

A2 � A1,

A3 �

1 Te

Tegq1b1 1 − Te

am′L
2

q1c2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

A4 � A3,

A5 �

1 Te

Tegq1b2 1 − Te

am′L
2

q1c1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

A6 � A5,

A7 �

1 Te

Tegq1b2 1 − Te

am′L
2

q1c2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

0

−1

1

0.5

−0.5

1.5

2

10 20 30 40 50 60 70 80 90 1000
k

δ(
k)

Figure 17: Event rate of S is 0.5.

Table 3: Controller gain values.

Value of Kj

j 10% 30% 50%

1 [− 1.0577,
− 7.8518]

[− 1.3758,
− 6.6825] [− 5.2918, − 6.7255]

j ≥ 2 [− 1.0835,
− 7.8515] [− 1.3931, − 6.6876] [− 5.2975,

− 6.7248]

Table 4: Trajectory tracking gain values.

Value of Lj

j 10% 30% 50%
1 12.7505 13.0686 16.9846
j ≥ 2 12.7763 13.0859 16.9903

Reference
10%

30%
50%
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Figure 18: Trajectory tracking.
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A8 � A7,

A9 �

1 Te

Tegq2b1 1 − Te

am′L
2

q2c1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

A10 � A9,

A11 �

1 Te

Tegq2b1 1 − Te

am′L
2

q2c2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

A12 � A11,

A13 �

1 Te

Tegq2b2 1 − Te

am′L
2

q2c1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

A14 � A13,

A15 �

1 Te

Tegq2b2 1 − Te

am′L
2

q2c2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

A16 � A15,

B1 �
0

Teaq1d1

⎡⎢⎢⎣ ⎤⎥⎥⎦,

B2 �
0

Teaq1d2

⎡⎢⎢⎣ ⎤⎥⎥⎦,

B3 � B1,

B4 � B2,

B5 � B1,

B6 � B2,

B7 � B1,

B8 � B2,

B9 �
0

Teaq2d1

⎡⎢⎢⎣ ⎤⎥⎥⎦,

B10 �
0

Teaq2d2

⎡⎢⎢⎣ ⎤⎥⎥⎦,

B11 � B9,

B12 � B10,

B13 � B9,

B14 � B10,

B15 � B9,

B16 � B10.
(A.1)
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